@@ -55,13 +55,13 @@ segment that joins the origin to *z*.
5555The following functions can be used to convert from the native
5656rectangular coordinates to polar coordinates and back.
5757
58- .. function :: phase(x )
58+ .. function :: phase(z )
5959
60- Return the phase of *x * (also known as the *argument * of *x *), as a float.
61- ``phase(x ) `` is equivalent to ``math.atan2(x .imag, x .real) ``. The result
60+ Return the phase of *z * (also known as the *argument * of *z *), as a float.
61+ ``phase(z ) `` is equivalent to ``math.atan2(z .imag, z .real) ``. The result
6262 lies in the range [-\ *π *, *π *], and the branch cut for this operation lies
6363 along the negative real axis. The sign of the result is the same as the
64- sign of ``x .imag ``, even when ``x .imag `` is zero::
64+ sign of ``z .imag ``, even when ``z .imag `` is zero::
6565
6666 >>> phase(complex(-1.0, 0.0))
6767 3.141592653589793
@@ -71,147 +71,147 @@ rectangular coordinates to polar coordinates and back.
7171
7272.. note ::
7373
74- The modulus (absolute value) of a complex number *x * can be
74+ The modulus (absolute value) of a complex number *z * can be
7575 computed using the built-in :func: `abs ` function. There is no
7676 separate :mod: `cmath ` module function for this operation.
7777
7878
79- .. function :: polar(x )
79+ .. function :: polar(z )
8080
81- Return the representation of *x * in polar coordinates. Returns a
82- pair ``(r, phi) `` where *r * is the modulus of *x * and phi is the
83- phase of *x *. ``polar(x ) `` is equivalent to ``(abs(x ),
84- phase(x )) ``.
81+ Return the representation of *z * in polar coordinates. Returns a
82+ pair ``(r, phi) `` where *r * is the modulus of *z * and * phi * is the
83+ phase of *z *. ``polar(z ) `` is equivalent to ``(abs(z ),
84+ phase(z )) ``.
8585
8686
8787.. function :: rect(r, phi)
8888
89- Return the complex number *x * with polar coordinates *r * and *phi *.
89+ Return the complex number *z * with polar coordinates *r * and *phi *.
9090 Equivalent to ``complex(r * math.cos(phi), r * math.sin(phi)) ``.
9191
9292
9393Power and logarithmic functions
9494-------------------------------
9595
96- .. function :: exp(x )
96+ .. function :: exp(z )
9797
98- Return *e * raised to the power *x *, where *e * is the base of natural
98+ Return *e * raised to the power *z *, where *e * is the base of natural
9999 logarithms.
100100
101101
102- .. function :: log(x [, base])
102+ .. function :: log(z [, ba
7440
se])
103103
104- Returns the logarithm of *x * to the given *base *. If the *base * is not
105- specified, returns the natural logarithm of *x *. There is one branch cut,
104+ Return the logarithm of *z * to the given *base *. If the *base * is not
105+ specified, returns the natural logarithm of *z *. There is one branch cut,
106106 from 0 along the negative real axis to -∞.
107107
108108
109- .. function :: log10(x )
109+ .. function :: log10(z )
110110
111- Return the base-10 logarithm of *x *. This has the same branch cut as
111+ Return the base-10 logarithm of *z *. This has the same branch cut as
112112 :func: `log `.
113113
114114
115- .. function :: sqrt(x )
115+ .. function :: sqrt(z )
116116
117- Return the square root of *x *. This has the same branch cut as :func: `log `.
117+ Return the square root of *z *. This has the same branch cut as :func: `log `.
118118
119119
120120Trigonometric functions
121121-----------------------
122122
123- .. function :: acos(x )
123+ .. function :: acos(z )
124124
125- Return the arc cosine of *x *. There are two branch cuts: One extends right
125+ Return the arc cosine of *z *. There are two branch cuts: One extends right
126126 from 1 along the real axis to ∞. The other extends left from -1 along the
127127 real axis to -∞.
128128
129129
130- .. function :: asin(x )
130+ .. function :: asin(z )
131131
132- Return the arc sine of *x *. This has the same branch cuts as :func: `acos `.
132+ Return the arc sine of *z *. This has the same branch cuts as :func: `acos `.
133133
134134
135- .. function :: atan(x )
135+ .. function :: atan(z )
136136
137- Return the arc tangent of *x *. There are two branch cuts: One extends from
137+ Return the arc tangent of *z *. There are two branch cuts: One extends from
138138 ``1j `` along the imaginary axis to ``∞j ``. The other extends from ``-1j ``
139139 along the imaginary axis to ``-∞j ``.
140140
141141
142- .. function :: cos(x )
142+ .. function :: cos(z )
143143
144- Return the cosine of *x *.
144+ Return the cosine of *z *.
145145
146146
147- .. function :: sin(x )
147+ .. function :: sin(z )
148148
149- Return the sine of *x *.
149+ Return the sine of *z *.
150150
151151
152- .. function :: tan(x )
152+ .. function :: tan(z )
153153
154- Return the tangent of *x *.
154+ Return the tangent of *z *.
155155
156156
157157Hyperbolic functions
158158--------------------
159159
160- .. function :: acosh(x )
160+ .. function :: acosh(z )
161161
162- Return the inverse hyperbolic cosine of *x *. There is one branch cut,
162+ Return the inverse hyperbolic cosine of *z *. There is one branch cut,
163163 extending left from 1 along the real axis to -∞.
164164
165165
166- .. function :: asinh(x )
166+ .. function :: asinh(z )
167167
168- Return the inverse hyperbolic sine of *x *. There are two branch cuts:
168+ Return the inverse hyperbolic sine of *z *. There are two branch cuts:
169169 One extends from ``1j `` along the imaginary axis to ``∞j ``. The other
170170 extends from ``-1j `` along the imaginary axis to ``-∞j ``.
171171
172172
173- .. function :: atanh(x )
173+ .. function :: atanh(z )
174174
175- Return the inverse hyperbolic tangent of *x *. There are two branch cuts: One
175+ Return the inverse hyperbolic tangent of *z *. There are two branch cuts: One
176176 extends from ``1 `` along the real axis to ``∞ ``. The other extends from
177177 ``-1 `` along the real axis to ``-∞ ``.
178178
179179
180- .. function :: cosh(x )
180+ .. function :: cosh(z )
181181
182- Return the hyperbolic cosine of *x *.
182+ Return the hyperbolic cosine of *z *.
183183
184184
185- .. function :: sinh(x )
185+ .. function :: sinh(z )
186186
187- Return the hyperbolic sine of *x *.
187+ Return the hyperbolic sine of *z *.
188188
189189
190- .. function :: tanh(x )
190+ .. function :: tanh(z )
191191
192- Return the hyperbolic tangent of *x *.
192+ Return the hyperbolic tangent of *z *.
193193
194194
195195Classification functions
196196------------------------
197197
198- .. function :: isfinite(x )
198+ .. function :: isfinite(z )
199199
200- Return ``True `` if both the real and imaginary parts of *x * are finite, and
200+ Return ``True `` if both the real and imaginary parts of *z * are finite, and
201201 ``False `` otherwise.
202202
203203 .. versionadded :: 3.2
204204
205205
206- .. function :: isinf(x )
206+ .. function :: isinf(z )
207207
208- Return ``True `` if either the real or the imaginary part of *x * is an
208+ Return ``True `` if either the real or the imaginary part of *z * is an
209209 infinity, and ``False `` otherwise.
210210
211211
212- .. function :: isnan(x )
212+ .. function :: isnan(z )
213213
214- Return ``True `` if either the real or the imaginary part of *x * is a NaN,
214+ Return ``True `` if either the real or the imaginary part of *z * is a NaN,
215215 and ``False `` otherwise.
216216
217217
0 commit comments