
Combinatory Categorial Grammar and Link
Grammar are Equivalent

Linas Vepstas

Updated 14 July 2022

Abstract

This is a short, semi-formal note explaining how Combinatory Categorial Gram-
mar (CCG) and Link Grammar (LG) are equivalent. It covers some basic ideas
from proof theory, type theory, and the “sexuality” in type combinators. The key
idea exposed is that type theory must be combined with connector sexuality in or-
der to get a fully general framework encompassing proof theory, logical inference,
and linguistics that is also free of ambiguities and implicit assumptions.

A Question posed on a Discord chat channel
@Adam Vandervorst asks: Does anyone here know about
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar?

(from Wikipedia) Combinatory categorial grammar (CCG) is an ef-
ficiently parsable, yet linguistically expressive grammar formalism.
It has a transparent interface between surface syntax and underly-
ing semantic representation, including predicate–argument structure,
quantification and information structure. The formalism generates
constituency-based structures (as...

I talked to its inventor last week (who has since moved on to do learning in linguis-
tics) and it was really interesting — Today at 9:31 AM 13 July 2022

Prelude
The difference between physicists and mathematicians is that the physicists don’t sweat
the details. They get to say things like “ah, whatever, I get the general idea, let’s just
assume this is right, and proceed, and see where we get.” Losing months to prove a
minor detail that seemed like it was right all along is just ... a loss of time. Physicists
focus on those details that seem to be wrong or inconclusive. That’s where you dig for
gold.

1

https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://www.cs.cmu.edu/afs/cs.cmu.edu/project/link/pub/www/papers/ps/tr91-196.pdf

This paper is a physics paper, not a math paper. I beleive everything in it is ab-
solutely correct; however, there are no formal proofs here. There are proofs in here,
they’re just not formal.

The Nature of Grammar
To open, there’s this thing about grammars that you should know.

As far as I can tell, all of the different (formal) grammar formalisms are inter-
convertible into one-another, by purely algorithmic means. That is, given the collection
of symbols and rules that are used to define one formalism (e.g. constituency gram-
mars, CG) one can convert that into a different formalism (e.g. dependency grammars,
DG) by applying a purely automatic transformation on the grammar specifications. No
hand-waving is required, nor any metaphysics: a machine can convert DG into CG and
vice versa, and that machine is rather simple.

Somewhere out there is a nice paper that explains how to convert between DG
and CG and back. It provides a simple algo to do this. Sadly, I have misplaced the
reference. A paper by Xia and Palmer[1] is not quite as extensive, but gives a flavor of
the idea.

CCG is Equivalent to LG
I looked at CCG many years ago, and from what I could tell, for each and every CCG
compound type, one has an equivalent LG link type, and vice versa. For example,
the compound type NP/N is the same thing as the LG D+ link (determiner) type and
(S\NP)/NP is the just the LG S- & O+ (verb taking subject and object) and one can
march down the list this way. The goal of this PDF is to make the above statement
precise.

At first, it’s mildly confusing, because it seems like the compound type NP/N might
be encoding some kind of structure that the single-letter, single-type D+ is not ... but,
actually, no, that is incorrect. The CCG notation is not actually "more atomic" or "more
compositional" than the LG notation. To understand this, one must slightly shift one’s
point-of-view.

Jigsaw Pieces
Recall how I talk about "jigsaw pieces" all the time? Some example LG jigsaw pieces:

2

The above diagram is taken from the original 1991 paper presenting Link
Grammar.[2] Now, lets look at that CCG Wikipedia article. You can find this
inference rule:

α : X/Y β : Y
αβ : X

>

This says that (roughly speaking) "if you have a jigsaw called alpha and it has connector
of type X on left and type Y on right, and if you have jigsaw beta with a connector Y ,
you can connect the two Y ’s together, to yield a combined jigsaw alphabeta having only
one unconnected connector X ."

Lets now try to be more precise. This inference rule uses conventional proof-theory
style notation. The horizontal line is the defines the inference to be done. Above the
line are the inputs, below the line are the outputs. The Greek letters α,β are terms, and
the Latin letters X ,Y are types. The colon indicates a term-type pairing, so that β : Y is
a term of type Y . The slash / and the backslash \ are type constructors, so that X ,Y are
simple types, and X/Y is a compound type, constructed from the two simpler types.
The > is just a label for the rule; it has no syntactic role.

The CCG Wikipedia article calls these inference rules “combinators”. Above is one
“application combinator”; there is also a second rule:

β : Y α : X\Y
βα : X

<

Lets rewrite these two rewrite rules in LG notation. They would be

α : (X− & Y+) β : Y−
αβ : X−

>

and
β : Y+ α : (X+ & Y−)

βα : X+
<

Here, the X ,Y are the LG types, called “link types” in the literature. The Y+ and Y−
are called “connectors”: they are jigsaw-puzzle-piece tabs, as-yet unconnected. When
they do connect, they are called a “link”, and thus the name “Link Grammar”. The +
and − are the “connector directions”: they specify in which direction a connector can
connect: to the right or to the left.

The ampersand & is a “kind of” type constructor. Given two connectors, say, X−
and Y+ it creates a new type (more precisely, a “jigsaw”) X− & Y+. This can be made
more precise, in an upcoming section.

So what are these two inference rules really saying? Well, its almost trivial: they’re
just saying “connectable connectors can connect, if the connector types are identical,
and the sexuality of the connectors is opposite.” Let’s cement the obvious. Here’s the
first combinator, using the same diagrammatic representation as in the original 1991
Link Grammar paper:

3

https://en.wikipedia.org/wiki/Type_constructor

What is this picture saying? The obvious: when you combine terms α and β the
result is a single term αβ and it is convenient to not draw, to ignore, to pretend that the
link Y joining these two pieces as disappeared. In other words, a partially-assembled
jigsaw puzzle behaves exactly like a single jigsaw piece.

In the above, the type Y is meant to be understood as a primitive type, an ur-type
belonging to the theory. The situation for types Y that are compond types, built with
type constructors, requires a bit of finesse. This is discussed further below, after the
examples.

The CCG Composition Combinators
For completeness, the remaining CCG combinators should be treated as well. Here’s a
side-by-side Rosetta Stone of the two composition combinators.

CCG LG

α:X/Y β :Y/Z
αβ :X/Z B>

α:X−& Y+ β :Y−& Z+
αβ :X−& Z+ B>

β :Y\Z α:X\Y
βα:X\Z B<

β :Y+ & Z− α:X+ & Y−
βα:X+ & Z− B<

Clearly, they just specify how to connect single connectors on compound jigsaws.

The CCG Type-raising Combinators
The last pair of combinators are the type-raising combinators. These are

4

CCG LG

α:X
α:T/(T\X)T> α:X−

α:T−& T+ & X−T>

α:X
α:T\(T/X)T< α:X+

α:T+ & T−& X+T<

The interpretation of these two rules is that, given a connector X , leave it alone,
but also create a matching set of new connectors. The goal of these new connectors is
allow a type T to come in on one side, and leave at the other; they form a pass-through,
a tunnel for the type T to scoot by X , leaving both types unaffected, untouched.

There seems to be a slight awkwardness, as the earlier combinators could be easily
understood by thinking only about simple types. By contrast, the type-raising combi-
nator requires a more complex explanation:

“The type-raising combinators, often denoted as T> for forward type-
raising and T< for backward type-raising, take argument types (usu-
ally primitive types) to functor types, which take as their argument
the functors that, before type-raising, would have taken them as ar-
guments.”

Phew. That’s a mouthful, when all that is really being said is “create a pass-
through” or “create a bridge/tunnel”. The type-raising rule might seem a bit mysterious
at first: where did T come from, and what does it have to do with X? This metaphor an-
swers this question: X and T are not related; T flies in out of the blue, on one side, and
departs on the other. The two types never interacted. A better name for this might have
been “type-crossing combinator”. A longer discussion on the linguistic interpretation
and linguistic utility of type-crossing is given in a later section, below.

An Sloppy Example
The Wikipedia article includes an example of two different proofs (two different deriva-
tion trees) of the same sentence. The sentence is “the dog bit John”. Here’s one deriva-
tion tree:

the
NP/N

dog
N

NP
>

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

If we are sloppy and uncareful ***, we find the translated LG derivation rules:

the
NP+ & N+

dog
N−

NP+
>

bit
S+ & NP− & NP+

John
NP−

S+ & NP−
>

S+
<

5

This is perhaps hard to read? The conventional LG notation for this derivation would
be:

+−−−−−−−−S−−−−−+
| |

+−−N−−+−−NP−−+−−NP−−+ |
| | | | |

t h e dog b i t John RIGHT−WALL

where an extra jigsaw piece RIGHT-WALL: S- was introduced, so as to keep all con-
nectors fully connected. The above works. It is not the preferred LG parse for the
current English language dictionary. That would be:

+−−−−−−−−>WV−−−−−−−>+
+−−−−>Wd−−−−−+ |
| +Ds** c+−Ss *s −+−−Os*e −+
| | | | |

LEFT−WALL t h e dog b i t John

The link types are obviously more complex. Note also the present of a cycle (the
triangle, whose edges are WV, Wd and Ss*s.) Note the presence of several directed con-
nectors. The complex upper-case/lower-case link types are an example of “sexuality”;
see next section.

A Less Sloppy Example
*** Wait, what? Sloppy and uncareful? If we are careful, and don’t gloss any plus and
minus signs, then the following derivation results:

the
NP− & N+

dog
N−

NP−
>

bit
S+ & NP− & NP+

John
NP−

S+ & NP−
>

NP− & S+ & NP−
fail !!

This reveals a bug in the Wikipedia article derivation. It should have been:

the
N

dog
NP\N

NP
<

bit
(S\NP)/NP

John
NP

S\NP
>

S
<

This is provides a hint as to why LG might actually be better than CCG: it’s easier to
spot bugs. We live in an era of compilers and debuggers; yet hand-writing expressions
is error prone.

6

Constituency and Dependency
The reason for this bug appears to be a slavish adherence to the conventions of olde-
fashioned constituency grammar. The inherited tradition is that N denotes a noun, and
NP is a noun phrase. When one writes “The dog bit John”, it is clear that “the dog” is
an NP, and its also clear that “the” is not N, and that “dog” is N. Thus, one is forced
into assigning NP/N to the determiner. But this is an error!

The markup NP/N is saying that the word “the” is a noun-phrase, and it’s just
missing a noun before it becomes a complete NP. Do you really want to give such a
primal ascendancy to the word “the”? It makes it the head of a head phrase. Hard to
imagine that determiners are head words.

Knowing even a little of dependency grammar would have exposed the error: “the”
should have been D and “dog” should have been N (if it stands alone) or NP\D (if
its a noun taking a determiner). But conventional constituency grammars rarely if ever
bother with issuing a distinct type for determiners, and thus we arrive at a basic markup
error. The road to hell is indeed paved with Chomskian gold.

A Second Example
The CCG article also gives an alternative derivation for the sentence. It is also prob-
lematic. The article currently states:

the
NP/N

dog
N

NP
>

S/(S\NP)
T>

bit
(S\NP)/NP

S/NP
B>

John
NP

S
>

Translating this to into the LG combinator form reveals an issue, apparently with the
B> rule:

the
NP− & N+

dog
N−

NP−
>

S− & S+ & NP−
T>

bit
S+ & NP− & NP+

S− & S− & NP− & S+ & NP−
B>

John
NP−

XXX
fail !

There does not appear to be any fix for this, while continuing to employ the B> rule.
We can get rid of the excess of S’s by getting rid of the T< inference, and replacing the
B> inference by < and so writing

the dog
NP+

bit
S− & NP+ & NP−

S− & NP+
<

7

Working backwards to get the CCG form, this becomes

the dog
NP

bit
(S/NP)\NP

S/NP
<

From this point, the rest of the derivation can go through, as before.

Primitive Types vs. Compound Types
A closer look at the B> rule reveals an issue with the LG mapping. The rule is this:

α : X/Y β : Y/Z
αβ : X/Z

B>

In the original LG mapping, the type Y was taken to be a primitive type. It would
be one of the inbuilt types of the system, and not one that was constructed by means of
type constructors. Yet, in the second example, B> is being applied with Y = (S\NP)
which is a compound type, not a primitive type. Perhaps the translation to LG was
flawed? Let’s look at it again. The relevant part is

the dog
S/(S\NP)

bit
(S\NP)/NP

S/NP
B>

and so perhaps the translation should have been

the dog
S− & (S\NP)+

bit
(S\NP)− & NP+

S− & NP+
B>

and now the two compound types can connect to one another, correctly. Does this
insight provide the correct LG mapping, finally? Well it depends...

One possibility is to create a brand-new primitive LG type, call it SU for “subject”,
and employ the mapping

(S\NP) 7→ SU

Then the above translation goes through perfectly well, and the B> rule can be kept
as-is.

Another possibility is to attempt to work with the compound type. This will not
work, and here’s why. The LG mapping is

(S\NP) 7→ S+ & NP−

and so perhaps one could in infer that

(S\NP)− 7→ S− & NP+

But this will not work, because writing S+ & NP− to the left of S− & NP+ does not
allow it to be contracted. The S parts can be contracted, because S+ is to the left of S−
but the NPparts cannot be contracted – they are facing away from each other.

8

To conclude: the mappings from the six CCG combinators to the equivalent LG
combinators work if they are also supplemented with additional mappings from com-
pound CCG types to primitive LG types. If they are not supplemented, then inference
paths that require compound types to appear in the combinators must be avoided.

Equivalence, or Not?
In order to preserve the equivalence of CCG and LG by means of the straight-forward
translation of the inference rules, (i.e. avoiding the compound types) two changes
had to be made to the second example: The use of the type-raising rule T< had to be
abandoned, and the form for the verb had to be changed into

bit
(S/NP)\NP

which is not the same form as that in first example.
Is this too much to ask for? Is it OK to say that, sometimes transitive verbs have

the form (S\NP)/NP and sometimes they have the form (S/NP)\NP? Certainly LG
doesn’t care: LG just provides one connector going left, to the subject of the verb,
and another going right, to the object. To support two homotopic parse trees in CCG,
should there be one more inference rule, say, for example, a limited associativity rule:

α : (X\T)/T
α : (X/T)\T

WAssoc.

or even a broad one:
α : (X\Y)/Z
α : (X/Z)\Y

SAssoc.

One has four possibilities, then:

1. Transitive verbs can be written in either of two forms: (S\NP)/NP or (S/NP)\NP.

2. Transitive verbs only have one form, but an associativity rule provides homotopic
equivalence.

3. The equivalence between LG and CCG is a false mirage; the proposed fixes must
be rejected, and the use of the T< rule is just fine, as it stands.

4. The equivalence between LG and CCG is true, but an LG primitive type has to
be introduced for any CCG compound type appearing in a reduction.

Hard-core adherents to CCG may opt for the third case, and live in denial. But careful
if you chose this option: it is glossing over a deeper interpretational issue concerning
types, connectors and connector sexuality. This is delved into much greater detail in an
upcoming section. The crux is that in many situations, when people say “type”, they
really mean “connector”, but leave the connector direction (polarity, sexuality) +/−
implicit, deducible from context. The default presentation of CCG assumes mono-
sexual types (types without the +/− directional markup), and makes implicit assump-
tions about polarity, left to the reader to infer from context. This is dangerous: leaving

9

implicit, unstated conventions to the reader to blithely assume is just asking for trouble.
I think we’ve found trouble, here.

The root cause of both of these bugs was a failure to attend the polarity that is
implied by the type constructors / and \. These type constructors build compound
types with an implicit polarity; the failure to write it down leads to interpretational
issues. These bugs can only be resolved by taking care to distinguish between types
and sexualities (polarities, here, since the sexualities here are heterosexual.) More on
sexuality, shortly.

Homotopic Equivalence
There is yet another infelicity in the Wikipedia article. It currently states:

The sentence "the dog bit John" has a number of different possible
proofs. Below are a few of them. The variety of proofs demonstrates
the fact that in CCG, sentences don’t have a single structure, as in
other models of grammar.

This is misleading. Two different derivation trees are presented. The ultimate parse
is identical. This phenomenon is commonly treated in textbooks on proof theory: two
different proofs have proof trees that appear to be different, but can be rearranged by
homotopic deformations into one-another.[3] That is, there is a Scott-continuous defor-
mation, referring to the Scott topology that conventionally applied to proofs/programs.

How can continuous transformations be spotted? This is out of bounds for the
current text; however, a taste of that flavor can be gotten from the associativity inference
rule, above. Roughly speaking, one proceeds at a meta level, by indicating when two
inferences are equivalent, effectively by an associativity (meta-)rule.

Free Object Lemma
Are the mappings of the six combinators sufficient to prove equivalence? In category
theory, there is a lemma, we’ll call it the “free object lemma”, that says homomor-
phisms extend “trivially” to free objects. That is, if one has a homomorphism A→ B
and F (A) is the free object on A, then the homomorphism extends to F (A)→ F (B).

In the present case, the mapping A→ B is the mapping of the six combinators.
We haven’t really “proven” that the mapping is truly a homomorphism, preserving all
algebraic properties of the combinators. Instead, we did a hand-wavey “see this makes
perfect sense” kind of argument. Is this enough? Well, for the CCG primitive types,
there does not seem to be any further structure or algebraic properties to consider, and
so the presented mapping is trivially a homomorphism. For the case where compound
types appear in the combinators, we’ve discovered, by way of example, that each CCG
compound type must be mapped to a new LG primitive type, before it can be properly
reduced (connected). In other words, compound types in CCG do have non-trivial
algebraic properties, and these must be “forgotten” with the mapping. Exercise left to
the reader to restate the same thing, using the forgetful functor.

10

https://en.wikipedia.org/wiki/Free_object

The second part of applying this lemma is to confirm that CCG really is the free
object of the six combinators. I beleive the answer is yes. There are not any further
constraints on combining the combinators: all possible syntactically-valid combina-
tions are valid.

Moving in the opposite direction, from LG to CCG, is less obvious. The LG dis-
juncts do have an algebraic property that must be respected: LG connectors are com-
mutative, when the polarities differ. For example, (X+ & Y −)= (Y− & X +). Yet the
mapping from LG to CCG is that (X+ & Y −) 7→ X\Y whereas (Y− & X +) 7→ Y/X ,
and the two are inequivalent in CCG. In either case, in CCG, Y connects to the left, and
X connects to the right. Perhaps the resulting language (the free object) is exactly the
same, but this is not immediately obvious.

In essence, LG doesn’t care about the order in which connectors are connected
during parsing, while CCG does. In CCG, when connectors are joined in a differ-
ent order, a different derivation tree results. It is reasonable to argue that these two
should be homotopic, and that there should not exist an obstruction preventing connec-
tion sequence reordering. To repeat: (X+ & Y −) = (Y− & X +) is a statement about
Scott-continuity. Can we treat equality as equivalence? That is, is the free theory of
CCG modulo commutativity equivalent to the free theory of LG? I think so, because
that is how the free object works, in general, when one has modulo constraints that
commute with the homomorphism.

Type-Raising and Link Crossing
The fix proposed to the example above eliminates the use of the type-raising rule.
It’s an interesting rule, but when is it actually needed, linguistically speaking? LG
does not explicitly have such a rule; if more connectors are needed on some particular
grammatical class, one can simply put them there. What is the linguistic significance of
the type-raising combinator? How does it impact the equivalence of CCG to LG? The
answer to these questions is that it enables link crossing, and equivalence is preserved.

LG has a global rule, and that is that all parse graphs must be planar. In other words,
two links may not cross. There are a number of reasons for this global rule:

1. Linguists have determined that most languages do not need parses that involve
link-crossing. There are exceptions (Finnish, Turkish?, ...) but these seem rare.

2. Studies in psycholinguistics shows that sentences with crossing links are more
difficult to comprehend. Humans take longer to understand such sentences.

3. The planarity constraint enables certain kinds of parsing algorithms that are not
possible for the general non-planar case. Those algorithms run several orders
of magnitude faster, on ordinary-sized sentences. This has a practical impact on
real-world software.

4. Despite a global planarity constraint, there is a work-around: with appropriate
connectors, one link can be passed through another. The trick is similar to that
of drawing non-planar electric circuits on a flat sheet of paper: one simply draws
“hops” where they are needed.

11

5. This is a good thing, because for English, there are examples where crossing
links are appropriate and needed.

Some examples:

• “An easy book to read” requires the links “an—book” and “easy—to”; these
cross. (It is the reading that is easy, not the book.)

• ”It was announced that remains have been found of the ark of the covenant.”
requires links “that—have” which crosses “remains—of ”. (The head verb of the
subordinate verb phrase is “have”, and therefore “that” must link to the head.)

In the face of the planarity constraint, link crossings can be engineered in LG by de-
signing jumping connectors. Suppose a link of type T connecting “easy—to” has to
cross a link of type D connecting “an—book”. Then one invents new link-types Tl and
Tr (left and right) and a dict entry “book: Tl- & D- & Tr+;”. Diagrammatically,
this works out as:

+−−−−−−−D−−−−−+
| +−−Tl −−+−−Tr −−+
| | | |

an ea sy book t o r e a d

LG could have a rule (but it doesn’t) that could globally enable link-crossing, in all
cases. It would take any dictionary entry “word: X+;” and convert it to the entry
“word: X+ or (Yl- & X+ & Yr+);” for any link types X and Y. It does not have
such a global rule, because of the reasons spelled out above: in practice, link-crossings
are rare, and, as a general rule, one wants to tightly control them. Some link types can
be allowed to cross, others can be prohibited. One might even want to control which
type is the crosser: in the above example, it could have been arranged so that the D link
splits in two, instead of the T link.

Hopefully, the above discussion has made clear what the type-raising combinator
really is: it is a link-crossing enabler. That is, the rule

α : X
α : T/(T\X)

T>

says, in plain terms: “given any connector to type X, keep the X, but surround it by
two new connectors, one linking to the left, and one linking to the right. The two new
connectors must have exactly the same type T.” Just to hammer this home, here it is
again, as an LG rule:

α : X−
α : T− & T+ & X−

T>

and, since connectors of opposite polarity commute in LG, this could be written as

α : X−
α : T− & X− & T+

T>

12

Again, LG eschews such a rule, except for a certain limited set of types T. How
should the CCG type-raising combinators be understood? Are they combinator classes,
with one such combinator for any and every type T, or is the intent to limit it to only
certain types T? If the former, then LG and CCG are not equivalent, since LG does not
include such a global rule. If the later, then yes, the two grammars remain equivalent.

Conclusion
In conclusion: CCG is equivalent to LG. The inference rules of CCG are merely rules
for how to join together connectors. Two rules connect simple types to compound
types; two more rules connect compound types, and the final two rules show how to
disassemble connections (equivalently, to create unconnected pairs).

It should be clear that CCG uses a far more awkward notation (the proof-theoretical
inference-bar notation). Awkwardness matters, because concepts like link-crossing and
Dick Hudson’s "landmark transitivity" become hard to talk about in CCG.

Proof Theory
Although the presentation above focused on CCG, and LG, the concept of inference
rules as being certain peculiar kinds of rewrite rules is not new. Lets take a look at the
“standard form” of an inference rule, taken from Wikipedia:

Premise #1
Premise #2
· · ·

Premise #n
Conclusion

This is, oddly enough, just another jigsaw. Let’s be painfully clear, by actually
drawing it:

The Xk are the premises, the Y is the conclusion. These are drawn as if they’re
typed. The jigsaw connector shapes are just illustrative; what matters in this picture
are the connector directionalities: there are n inputs and one output. Structurally, this
has the form of a lambda combinator, having n inputs ... in practical applications,
inference rules behave as if they were lambdas. The central point being made here
is that the input-to-output connections are heterosexual. Premises cannot be “plugged
into” premises; conclusions cannot be “plugged into” conclusions. There is only one
possible direction: conclusions can be plugged into premises, and nothing more.

13

https://en.wikipedia.org/wiki/Rule_of_inference

All proof-theoretical inference rules are always jigsaw pieces. All of them, without
any exceptions. This holds for any type of logic: classical, predicate, intuitionist,
modal, linear logic. This observation is "trivial" because its effectively just a notational
thing.

Alternative notations used to write inference rules, however, are interesting. One
common form appearing in many computer-science settings is

X1∧X2∧·· ·∧Xn→ Y

The wedges obviously denote “conjunction”, but the semantics of the Xk can be left
wonderfully imprecise: are these boolean variables? Predicates? Or just terms of some
sort? It doesn’t much matter: the meaning of the wedge is say that all of these premises
must be present and (perhaps) satisfied.

The LG notation for this is

X1− & X2− & · · · & Xn− & Y+

One reason for writing the ampersand instead of a wedge is simply that the American
keyboard does not have a wedge symbol on it, and LG dictionaries must be typed in
by hand. The Xk are LG link types. The are not variables, they are not type-variables;
they are types.

In tensor algebras, one would write

X∗1 ⊗X∗2 ⊗·· ·⊗X∗n ⊗Y

where the * denotes the (contra-variant) dual. In index notation, this would be written
as

T ν

αβ ···µ

In quantum mechanics, one uses the bra-ket notation:

|X1〉⊗ |X2〉⊗ · · ·⊗ |Xn〉〈Y |

The tensor operator ⊗ is a kind-of conjunction, in that it states that all of the in-
dicated terms must be present. It is also more: tensors can be assigned numeric val-
ues, and so ⊗ implies a certain kind of linearity on how tensors are composed from
lower-rank tensors. Together with disjunction⊕ and comultiplication, it forms a tensor
algebra. There is a corresponding logic, called “linear logic” (“linear” because “linear
algebra”). This is interesting because linear logic describes mutexes and semaphores
in computing, as well as vending machines. Notable in the present context is that Link
Grammar is a fragment of linear logic. Disconnecting connectors (the “type-raising
combinator”) appears to correspond to comultiplication.

One must be careful, though; the tensor forms can be beguilingly misleading. Ten-
sor algebras are (dagger) symmetric, and thus have only one type constructor. In lin-
guistics, there are two type constructors, which go to the left and the right, because
the left-right distinction matters in linguistics. This is a source of confusion that hasn’t
been (in my mind) fully and clearly resolved. There’s a further note on this at the end.

14

Connector Sexuality
In CCG, there are two "type raising combinators" \ and / because in linguistics, word
order matters. Nouns appearing to the left of a verb are subjects; nouns appearing
on the right are objects. Link Grammar accomplishes the left-right distinction with
the + and − connector directions. This is, in general, sufficient for linearly-ordered
sequences of words.

The rules for joining together LG connectors state that + can only be attached to
−. One can never attach + to + or − to −. In this sense, the connection rules are
heterosexual. This is also the conventional mechanism for lambda calculus, and of
function calls: one can plug earlier outputs into new inputs. One can take a number 42
and plug it into f (x) to get f (42) but one cannot plug f (x) into 42. Nor 42 into 42,
for that matter. Function calls are also heterosexual (and almost always typed, except
for simply-typed lambda calculus).

Mono-sexual connectors are those for which there is only one connector type. It can
be denoted simply by *, or not at all (by just dropping the concept). In a monosexual
system, all relations are necessarily homosexual, as there is only one sex.

Jigsaws can in general have monosexual connectors, or trisexual connectors, or
other arbitrarily complex rules. If calling this “sex” seems odd, take a look at fungi,
molds, mushrooms. Some have dozens of sexes, with complex mating rules!

Trisexuality
An example of trisexual connectors would be the set

{Aa,Ab,Ac,Ba,Bb,Bc}

with the connection rules that upper-case letters must match, while lower-case letters
must be different. In this case, there are three sexes a,b,c instead of two +−, but the
rules still demand heterosexuality between the connector “directions”.

One can enliven the situation by introducing * as a direction wild-card. Thus, * can
mate with *, or with any of the sexes a,b,c. So for example, Ab can attach to A∗, or
any of the other A’s; just not to another Ab. Likewise B∗ cannot attach to any of the A’s,
because the uppercase letters denote type, and you cannot mix these.

The fundamental need for connectors
We now come to perhaps the most subtle point of this. It’s subtle because its blaringly,
forehead-slappingly obvious. It’s so obvious that, in fact, it will shoot right by, if you
are not paying attention.

It is this: in almost all conventional, day-to-day usage of types, when someone says
“this is a type”, half the time, they really mean “this is a connector”. Connectors are
implicitly present almost everywhere; their use is rampant, and the concept of “direc-
tion” is never mentioned, because it is almost always obvious from context. One could
say that type theory and computer programming suffer from “systemic hetero-sexism”
or “normative heterosexuality”.

15

Consider programming in C, C++ or Java. Three basic types are int, float and
string. Duhh. Function calls have “signatures”, e.g. int func(int x). What is the
number 42? Obviously, its an int, and obviously you can plug it into int func(int

x), so that func(42) is syntactically valid (in C, C++, Java) but 42(func) is obviously
syntactic nonsense. No one ever needs to explain this.

It would be strange and bizarre to explain that 42 is actually a “connector”, having
type int and direction “output”. Likewise, in func(int x), the x is actually a con-
nector. Obviously, x has the type int, but it also has the direction of “input”. There
is an implicit connector rule that states that connections can only be heterosexual. The
rule is implicit because it’s obvious: you can connect an output to an input, and that
is it. You cannot connect two inputs, you cannot connect two outputs. Duhh. Any
dummy knows this.

Now it is time to slap one’s forehead. About half the time when someone says
something is of type X , what they really mean is that something is a connector, and
that connector has a type of X and a direction of either “input” or “output”, which is
always obvious from context. In software development, when people say “type”, they
often mean “connector”.

Normative Heterosexuality
The reason for my belaboring this “normative heterosexuality” is that sometimes, it
gets you into trouble. When CCG writes the inference rule

α : X/Y β : Y
αβ : X

>

the types X and Y were implicitly mono-sexual. They were taken to have no directional
information, and all left-right distinctions in the grammar emerged from the two type
constructors / and \. Superficially, this seems all fine and correct, although ambiguous
associative situations arise, which can be resolved by using parenthesis. Thus, associa-
tive expressions such as X\(Y/Z) and the algebra of CCG types is a non-associative
algebra (the locations of the parenthesis matter).

In fact, the mono-sexed types, when used with the two combinators and with the
parenthesis, provides a golden path to hell. This doesn’t become apparent until one
starts tripping over buggy expressions. The two example sentences contained three
bugs, grand total. These bugs were not visible until the placeholders X and Y were
reinterpreted as connectors (with types X and Y), and the previously implicit directional
attachments were made explicitly visible with + and −.

Type constructors vs. Sexuality
The definition of CCG involved seemingly mono-sexed types, and two type construc-
tors / and \. The definition of LG involves heterosexual types, with connector direc-
tions + and − and a single type constructor &. This text has exposed the relationships
between these two, but it leaves open a bigger question: what is the formal interplay
between type constructors and sexuality? It seems that the one can be traded for the
other, but the mechanics of this in a general setting are not clear.

16

Conclusion
The lesson for today: CCG is equivalent to LG. More or less. We glossed over or
completely ignored many of the finer points of LG. No doubt, many important aspects
of CCG were omitted as well. Yet, the basic jigsaw structure of CCG was exposed in
the plainest way.

The meta-lesson for today: Jigsaws are fundamental for describing a vast class of
mathematical and linguistic phenomena. Jigsaws have types (the types of the connec-
tors) and the connectors have "sexuality" (usually heterosexual, for most applications).

The story does not end there; lets leave off with some hazy futuristic scifi: to infinity
and beyond! Consider chemical bonds. Two atoms can bond to one-another, using
ionic bonds, molecular bonds, hydrogen bonds and van der Waals bonds. In this sense,
molecules are clearly jigsaw pieces, having connectors on them. The type+direction
theory outlined so far is not quite sufficient to properly describe chemistry. But it does
move in that direction. What more is needed to obtain a fully-accurate type-theoretic
model of chemistry?

References
[1] Fei Xia and Martha Palmer., “Converting Dependency Structures to Phrase Struc-

tures”, HLT ’01: Proceedings of the first international conference on Human lan-
guage technology research, 2001, pp. 1–5, URL https://aclanthology.org/

H01-1014.pdf.

[2] Daniel Sleator and Davy Temperley., Parsing English with a Link Grammar, Tech.
rep., Carnegie Mellon University Computer Science technical report CMU-CS-91-
196, 1991, URL http://arxiv.org/pdf/cmp-lg/9508004.

[3] A. S. Troelstra and H Schwichtenberg, Basic Proof Theory, Second Edition, Cam-
brdige University Press, 2000.

17

https://aclanthology.org/H01-1014.pdf
https://aclanthology.org/H01-1014.pdf
http://arxiv.org/pdf/cmp-lg/9508004

