8000 Inconsistent behavior using numpy.r_ with a masked array · Issue #9233 · numpy/numpy · GitHub
[go: up one dir, main page]

Skip to content
Inconsistent behavior using numpy.r_ with a masked array #9233
Closed
@wilywampa

Description

@wilywampa

When using numpy.r_ to, for example, append a value to an array, the operation fails with a ValueError if the element to be appended is masked. The behavior should be to add another masked value to the end of the array. See below where the exact same use of r_ fails when using a masked element.

Python 3.6.0 (default, Dec 24 2016, 08:02:28)
[GCC 4.2.1 Compatible Apple LLVM 7.0.2 (clang-700.1.81)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy as np
>>> np.__version__
'1.14.0.dev0+18f69fd'
>>> x = np.ma.arange(3)
>>> np.r_[x, x[-1]]
masked_array(data = [0 1 2 2],
             mask = False,
       fill_value = 999999)

>>> x[-1] = np.ma.masked
>>> np.r_[x, x[-1]]
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "/Users/jniehus/Documents/dev/numpy_test_env/lib/python3.6/site-packages/numpy-1.14.0.dev0+18f69fd-py3.6-macosx-10.10-x86_64.egg/numpy/lib/index_tricks.py", line 340, in __getitem__
    res = self.concatenate(tuple(objs), axis=axis)
ValueError: all the input arrays must have same number of dimensions

Metadata

Metadata

Assignees

No one assigned

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0