13
13
appropriate kernel depending on the parameters. All wrappers forward the keyword
14
14
parameters to the underlying generalized ufunc (the kernel).
15
15
16
+ The functions are intended to be used on arrays of functions. For those
17
+ functions where a result may not be possible to obtain (like the inverse of
18
+ a matrix that is not invertible) no exception is raised, but the results for
19
+ the elements involved are set to NaN.
20
+
16
21
Additional functions some fused arithmetic, useful for efficient operation over
17
22
"""
18
23
@@ -283,7 +288,7 @@ def inv(a, **kwargs):
283
288
Implemented for types single, double, csingle and cdouble. Numpy conversion
284
289
rules apply.
285
290
286
- Singular matrices and thus, not invertible, result in an array of NANs .
291
+ Singular matrices and thus, not invertible, result in an array of NaNs .
287
292
288
293
See Also
289
294
--------
@@ -328,6 +333,7 @@ def cholesky(a, UPLO='L', **kwargs):
328
333
See Also
329
334
--------
330
335
chosolve : solve a system using cholesky decomposition
336
+ poinv : compute the inverse of a matrix using cholesky decomposition
331
337
332
338
Notes
333
339
-----
@@ -336,6 +342,10 @@ def cholesky(a, UPLO='L', **kwargs):
336
342
Implemented for types single, double, csingle and cdouble. Numpy conversion
337
343
rules apply.
338
344
345
+ Decomposition is performed using LAPACK routine _potrf.
346
+
347
+ For elements where the LAPACK routine fails, the result will be set to NaNs.
348
+
339
349
If an element of the source array is not a positive-definite matrix the
340
350
result for that element is undefined.
341
351
@@ -404,6 +414,9 @@ def eig(a, **kwargs):
404
414
This is implemented using the _geev LAPACK routines which compute
405
415
the eigenvalues and eigenvectors of general square arrays.
406
416
417
+ For elements where the LAPACK routine fails, the result will be set
418
+ to NaNs.
419
+
407
420
Examples
408
421
--------
409
422
@@ -481,6 +494,9 @@ def eigvals(a, **kwargs):
481
494
This is implemented using the _geev LAPACK routines which compute
482
495
the eigenvalues and eigenvectors of general square arrays.
483
496
497
+ For elements where the LAPACK routine fails, the result will be set
498
+ to NaNs.
499
+
484
500
Examples
485
501
--------
486
502
@@ -846,6 +862,9 @@ def eigh(A, UPLO='L', **kw_args):
846
862
The eigenvalues/eigenvectors are computed using LAPACK routines _ssyevd,
847
863
_heevd
848
864
865
+ For elements where the LAPACK routine fails, the result will be set
866
+ to NaNs.
867
+
849
868
Implemented for single, double, csingle and cdouble. Numpy conversion
850
869
rules apply.
851
870
@@ -893,6 +912,9 @@ def eigvalsh(A, UPLO='L', **kw_args):
893
912
894
913
The eigenvalues are computed using LAPACK routines _ssyevd, _heevd
895
914
915
+ For elements where the LAPACK routine fails, the result will be set
916
+ to NaNs.
917
+
896
918
Implemented for single, double, csingle and cdouble. Numpy conversion
897
919
rules apply.
898
920
@@ -939,6 +961,9 @@ def solve(A,B,**kw_args):
939
961
940
962
The solutions are computed using LAPACK routine _gesv
941
963
964
+ For elements where the LAPACK routine fails, the result will be set
965
+ to NaNs.
966
+
942
967
Implemented for single, double, csingle and cdouble. Numpy conversion
943
968
rules apply.
944
969
@@ -996,6 +1021,9 @@ def svd(a, full_matrices=1, compute_uv=1 ,**kw_args):
996
1021
997
1022
Singular Value Decomposition is performed using LAPACK routine _gesdd
998
1023
1024
+ For elements where the LAPACK routine fails, the result will be set
1025
+ to NaNs.
1026
+
999
1027
Implemented for types single, double, csingle and cdouble. Numpy conversion
1000
1028
rules apply.
1001
1029
@@ -1055,6 +1083,9 @@ def chosolve(A, B, UPLO='L', **kw_args):
1055
1083
1056
1084
The solutions are computed using LAPACK routines _potrf, _potrs
1057
1085
1086
+ For elements where the LAPACK routine fails, the result will be set
1087
+ to NaNs.
1088
+
1058
1089
Implemented for single, double, csingle and cdouble. Numpy conversion
1059
1090
rules apply.
1060
1091
@@ -1106,6 +1137,9 @@ def poinv(A, UPLO='L', **kw_args):
1106
1137
1107
1138
The inverse is computed using LAPACK routines _potrf, _potri
1108
1139
1140
+ For elements where the LAPACK routine fails, the result will be set
1141
+ to NaNs.
1142
+
1109
1143
Implemented for types single, double, csingle and cdouble. Numpy conversion
1110
1144
rules apply.
1111
1145
0 commit comments