|
3 | 3 | from .common import Benchmark, get_squares
|
4 | 4 |
|
5 | 5 | import numpy as np
|
| 6 | +from io import StringIO |
6 | 7 |
|
7 | 8 |
|
8 | 9 | class Copy(Benchmark):
|
@@ -62,3 +63,179 @@ def setup(self):
|
62 | 63 |
|
63 | 64 | def time_vb_savez_squares(self):
|
64 | 65 | np.savez('tmp.npz', self.squares)
|
| 66 | + |
| 67 | +class LoadtxtCSVComments(Benchmark): |
| 68 | + # benchmarks for np.loadtxt comment handling |
| 69 | + # when reading in CSV files |
| 70 | + |
| 71 | + params = [10, int(1e2), int(1e4), int(1e5)] |
| 72 | + param_names = ['num_lines'] |
| 73 | + |
| 74 | + def setup(self, num_lines): |
| 75 | + data = [u'1,2,3 # comment'] * num_lines |
| 76 | + # unfortunately, timeit will only run setup() |
| 77 | + # between repeat events, but not for iterations |
| 78 | + # within repeats, so the StringIO object |
| 79 | + # will have to be rewinded in the benchmark proper |
| 80 | + self.data_comments = StringIO(u'\n'.join(data)) |
| 81 | + |
| 82 | + def time_comment_loadtxt_csv(self, num_lines): |
| 83 | + # benchmark handling of lines with comments |
| 84 | + # when loading in from csv files |
| 85 | + |
| 86 | + # inspired by similar benchmark in pandas |
| 87 | + # for read_csv |
| 88 | + |
| 89 | + # need to rewind StringIO object (unfortunately |
| 90 | + # confounding timing result somewhat) for every |
| 91 | + # call to timing test proper |
| 92 | + np.loadtxt(self.data_comments, |
| 93 | + delimiter=u',') |
| 94 | + self.data_comments.seek(0) |
| 95 | + |
| 96 | +class LoadtxtCSVdtypes(Benchmark): |
| 97 | + # benchmarks for np.loadtxt operating with |
| 98 | + # different dtypes parsed / cast from CSV files |
| 99 | + |
| 100 | + params = (['float32', 'float64', 'int32', 'int64', |
| 101 | + 'complex128', 'str', 'object'], |
| 102 | + [10, int(1e2), int(1e4), int(1e5)]) |
| 103 | + param_names = ['dtype', 'num_lines'] |
| 104 | + |
| 105 | + def setup(self, dtype, num_lines): |
| 106 | + data = [u'5, 7, 888'] * num_lines |
| 107 | + self.csv_data = StringIO(u'\n'.join(data)) |
| 108 | + |
| 109 | + def time_loadtxt_dtypes_csv(self, dtype, num_lines): |
| 110 | + # benchmark loading arrays of various dtypes |
| 111 | + # from csv files |
| 112 | + |
| 113 | + # state-dependent timing benchmark requires |
| 114 | + # rewind of StringIO object |
| 115 | + |
| 116 | + np.loadtxt(self.csv_data, |
| 117 | + delimiter=u',', |
| 118 | + dtype=dtype) |
| 119 | + self.csv_data.seek(0) |
| 120 | + |
| 121 | +class LoadtxtCSVStructured(Benchmark): |
| 122 | + # benchmarks for np.loadtxt operating with |
| 123 | + # a structured data type & CSV file |
| 124 | + |
| 125 | + def setup(self): |
| 126 | + num_lines = 50000 |
| 127 | + data = [u"M, 21, 72, X, 155"] * num_lines |
| 128 | + self.csv_data = StringIO(u'\n'.join(data)) |
| 129 | + |
| 130 | + def time_loadtxt_csv_struct_dtype(self): |
| 131 | + # obligate rewind of StringIO object |
| 132 | + # between iterations of a repeat: |
| 133 | + |
| 134 | + np.loadtxt(self.csv_data, |
| 135 | + delimiter=u',', |
| 136 | + dtype=[('category_1', 'S1'), |
| 137 | + ('category_2', 'i4'), |
| 138 | + ('category_3', 'f8'), |
| 139 | + ('category_4', 'S1'), |
| 140 | + ('category_5', 'f8')]) |
| 141 | + self.csv_data.seek(0) |
| 142 | + |
| 143 | + |
| 144 | +class LoadtxtCSVSkipRows(Benchmark): |
| 145 | + # benchmarks for loadtxt row skipping when |
| 146 | + # reading in csv file data; a similar benchmark |
| 147 | + # is present in the pandas asv suite |
| 148 | + |
| 149 | + params = [0, 500, 10000] |
| 150 | + param_names = ['skiprows'] |
| 151 | + |
| 152 | + def setup(self, skiprows): |
| 153 | + np.random.seed(123) |
| 154 | + test_array = np.random.rand(100000, 3) |
| 155 | + self.fname = 'test_array.csv' |
| 156 | + np.savetxt(fname=self.fname, |
| 157 | + X=test_array, |
| 158 | + delimiter=',') |
| 159 | + |
| 160 | + def time_skiprows_csv(self, skiprows): |
| 161 | + np.loadtxt(self.fname, |
| 162 | + delimiter=',', |
| 163 | + skiprows=skiprows) |
| 164 | + |
| 165 | +class LoadtxtReadUint64Integers(Benchmark): |
| 166 | + # pandas has a similar CSV reading benchmark |
| 167 | + # modified to suit np.loadtxt |
| 168 | + |
| 169 | + params = [550, 1000, 10000] |
| 170 | + param_names = ['size'] |
| 171 | + |
| 172 | + def setup(self, size): |
| 173 | + arr = np.arange(size).astype('uint64') + 2**63 |
| 174 | + self.data1 = StringIO(u'\n'.join(arr.astype(str).tolist())) |
| 175 | + arr = arr.astype(object) |
| 176 | + arr[500] = -1 |
| 177 | + self.data2 = StringIO(u'\n'.join(arr.astype(str).tolist())) |
| 178 | + |
| 179 | + def time_read_uint64(self, size): |
| 180 | + # mandatory rewind of StringIO object |
| 181 | + # between iterations of a repeat: |
| 182 | + np.loadtxt(self.data1) |
| 183 | + self.data1.seek(0) |
| 184 | + |
| 185 | + def time_read_uint64_neg_values(self, size): |
| 186 | + # mandatory rewind of StringIO object |
| 187 | + # between iterations of a repeat: |
| 188 | + np.loadtxt(self.data2) |
| 189 | + self.data2.seek(0) |
| 190 | + |
| 191 | +class LoadtxtUseColsCSV(Benchmark): |
| 192 | + # benchmark selective column reading from CSV files |
| 193 | + # using np.loadtxt |
| 194 | + |
| 195 | + params = [2, [1, 3], [1, 3, 5, 7]] |
| 196 | + param_names = ['usecols'] |
| 197 | + |
| 198 | + def setup(self, usecols): |
| 199 | + num_lines = 5000 |
| 200 | + data = [u'0, 1, 2, 3, 4, 5, 6, 7, 8, 9'] * num_lines |
| 201 | + self.csv_data = StringIO(u'\n'.join(data)) |
| 202 | + |
| 203 | + def time_loadtxt_usecols_csv(self, usecols): |
| 204 | + # must rewind StringIO because of state |
| 205 | + # dependence of file reading |
| 206 | + np.loadtxt(self.csv_data, |
| 207 | + delimiter=u',', |
| 208 | + usecols=usecols) |
| 209 | + self.csv_data.seek(0) |
| 210 | + |
| 211 | +class LoadtxtCSVDateTime(Benchmark): |
| 212 | + # benchmarks for np.loadtxt operating with |
| 213 | + # datetime data in a CSV file |
| 214 | + |
| 215 | + params = [20, 200, 2000, 20000] |
| 216 | + param_names = ['num_lines'] |
| 217 | + |
| 218 | + def setup(self, num_lines): |
| 219 | + # create the equivalent of a two-column CSV file |
| 220 | + # with date strings in the first column and random |
| 221 | + # floating point data in the second column |
| 222 | + dates = np.arange('today', 20, dtype=np.datetime64) |
| 223 | + np.random.seed(123) |
| 224 | + values = np.random.rand(20) |
| 225 | + date_line = u'' |
| 226 | + |
| 227 | + for date, value in zip(dates, values): |
| 228 | + date_line += (str(date) + ',' + str(value) + '\n') |
| 229 | + |
| 230 | + # expand data to specified number of lines |
| 231 | + data = date_line * (num_lines // 20) |
| 232 | + self.csv_data = StringIO(data) |
| 233 | + |
| 234 | + def time_loadtxt_csv_datetime(self, num_lines): |
| 235 | + # rewind StringIO object -- the timing iterations |
| 236 | + # are state-dependent |
| 237 | + X = np.loadtxt(self.csv_data, |
| 238 | + delimiter=u',', |
| 239 | + dtype=([('dates', 'M8[us]'), |
| 240 | + ('values', 'float64')])) |
| 241 | + self.csv_data.seek(0) |
0 commit comments