8000 Update README.md · milaan9/10_Python_Pandas_Module@4d51718 · GitHub
[go: up one dir, main page]

Skip to content

Commit 4d51718

Browse files
authored
Update README.md
1 parent e12e4d5 commit 4d51718

File tree

1 file changed

+33
-69
lines changed

1 file changed

+33
-69
lines changed

README.md

Lines changed: 33 additions & 69 deletions
Original file line numberDiff line numberDiff line change
@@ -31,35 +31,22 @@ In Pandas, the data is usually utilized to support statistical analysis in SciPy
3131
## Main Features
3232
Here are just a few of the things that pandas does well:
3333

34-
- Easy handling of [**missing data**][missing-data] (represented as
35-
`NaN`) in floating point as well as non-floating point data
36-
- Size mutability: columns can be [**inserted and
37-
deleted**][insertion-deletion] from DataFrame and higher dimensional
38-
objects
39-
- Automatic and explicit [**data alignment**][alignment]: objects can
40-
be explicitly aligned to a set of labels, or the user can simply
41-
ignore the labels and let `Series`, `DataFrame`, etc. automatically
42-
align the data for you in computations
43-
- Powerful, flexible [**group by**][groupby] functionality to perform
44-
split-apply-combine operations on data sets, for both aggregating
34+
- Easy handling of [**missing data**][missing-data] (represented as `NaN`) in floating point as well as non-floating point data
35+
- Size mutability: columns can be [**inserted and deleted**][insertion-deletion] from DataFrame and higher dimensional objects
36+
- Automatic and explicit [**data alignment**][alignment]: objects can be explicitly aligned to a set of labels, or the user can simply
37+
ignore the labels and let `Series`, `DataFrame`, etc. automatically align the data for you in computations
38+
- Powerful, flexible [**group by**][groupby] functionality to perform split-apply-combine operations on data sets, for both aggregating
4539
and transforming data
46-
- Make it [**easy to convert**][conversion] ragged,
47-
differently-indexed data in other Python and NumPy data structures
40+
- Make it [**easy to convert**][conversion] ragged, differently-indexed data in other Python and NumPy data structures
4841
into DataFrame objects
49-
- Intelligent label-based [**slicing**][slicing], [**fancy
50-
indexing**][fancy-indexing], and [**subsetting**][subsetting] of
42+
- Intelligent label-based [**slicing**][slicing], [**fancy indexing**][fancy-indexing], and [**subsetting**][subsetting] of
5143
large data sets
52-
- Intuitive [**merging**][merging] and [**joining**][joining] data
53-
sets
54-
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of
55-
data sets
56-
- [**Hierarchical**][mi] labeling of axes (possible to have multiple
57-
labels per tick)
58-
- Robust IO tools for loading data from [**flat files**][flat-files]
59-
(CSV and delimited), [**Excel files**][excel], [**databases**][db],
44+
- Intuitive [**merging**][merging] and [**joining**][joining] datasets
45+
- Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of datasets
46+
- [**Hierarchical**][mi] labeling of axes (possible to have multiple labels per tick)
47+
- Robust IO tools for loading data from [**flat files**][flat-files] (CSV and delimited), [**Excel files**][excel], [**databases**][db],
6048
and saving/loading data from the ultrafast [**HDF5 format**][hdfstore]
61-
- [**Time series**][timeseries]-specific functionality: date range
62-
generation and frequency conversion, moving window statistics,
49+
- [**Time series**][timeseries]-specific functionality: date range generation and frequency conversion, moving window statistics,
6350
moving window linear regressions, date shifting and lagging, etc.
6451

6552

@@ -92,50 +79,27 @@ Pandas have two core data structure components, and all operations are based on
9279

9380
## Table of contents 📋
9481

95-
96-
[001_Python_Pandas_DataFrame](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_DataFrame.ipynb)
97-
98-
99-
- [001_Python_Pandas_DataFrame_from_Dictionary](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/001_Python_Pandas_DataFrame_from_Dictionary.ipynb)
100-
101-
- [002_Python_Pandas_DataFrame_from_List](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/002_Python_Pandas_DataFrame_from_List.ipynb)
102-
103-
- [003_Python_Pandas_DataFrame_head()_and_tail()](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/003_Python_Pandas_DataFrame_head()_and_tail().ipynb)
104-
105-
- [004_Python_Pandas_DataFrame_drop_columns](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/004_Python_Pandas_DataFrame_drop_columns.ipynb)
106-
107-
- [005_Python_Pandas_DataFrame_drop_duplicates](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/005_Python_Pandas_DataFrame_drop_duplicates.ipynb)
108-
109-
- [006_Python_Pandas_DataFrame_drop_columns_with_NA](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/006_Python_Pandas_DataFrame_drop_columns_with_NA.ipynb)
110-
111-
- [007_Python_Pandas_DataFrame_rename_columns](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/007_Python_Pandas_DataFrame_rename_columns.ipynb)
112-
113-
- [008_Python_Pandas_DataFrame_to_Python_dictionary](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/008_Python_Pandas_DataFrame_to_Python_dictionary.ipynb)
114-
115-
- [009_Python_Pandas_DataFrame_set_index](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/009_Python_Pandas_DataFrame_set_index.ipynb)
116-
117-
- [010_Python_Pandas_DataFrame_reset_index](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/010_Python_Pandas_DataFrame_reset_index.ipynb)
118-
119-
120-
[002_Python_Pandas_Exercise_1](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/002_Python_Pandas_Exercise_1.ipynb)
121-
122-
123-
[003_Python_Pandas_Exercise_2](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/003_Python_Pandas_Exercise_2.ipynb)
124-
125-
126-
[automobile_data.csv](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/automobile_data.csv)
127-
128-
129-
[pokemon_data.csv](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/pokemon_data.csv)
130-
131-
132-
[Pandas Cheat Sheet Data Wrangling in Python.pdf](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/Pandas%20Cheat%20Sheet%20Data%20Wrangling%20in%20Python.pdf)
133-
134-
135-
[Pandas Cheat Sheet for Data Science in Python.pdf](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/Pandas%20Cheat%20Sheet%20for%20Data%20Science%20in%20Python.pdf)
136-
137-
138-
These are online read-only versions.
82+
| **No.** | **Name** |
83+
| ------- | -------- |
84+
| 01 | **[Python_Pandas_DataFrame](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_DataFrame.ipynb)** |
85+
| | 1.1 **[001_Python_Pandas_DataFrame_from_Dictionary](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/001_Python_Pandas_DataFrame_from_Dictionary.ipynb)** |
86+
| | 1.2 **[Python_Pandas_DataFrame_from_List](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/002_Python_Pandas_DataFrame_from_List.ipynb)** |
87+
| | 1.3 **[Python_Pandas_DataFrame_head()and_tail()](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/003_Python_Pandas_DataFrame_head()_and_tail().ipynb)** |
88+
| | 1.4 **[004_Python_Pandas_DataFrame_drop_columns](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/004_Python_Pandas_DataFrame_drop_columns.ipynb)** |
89+
| | 1.5 **[Python_Pandas_DataFrame_drop_duplicates](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/005_Python_Pandas_DataFrame_drop_duplicates.ipynb)** |
90+
| | 1.6 **[Python_Pandas_DataFrame_drop_columns_with_NA](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/006_Python_Pandas_DataFrame_drop_columns_with_NA.ipynb)** |
91+
| | 1.7 **[Python_Pandas_DataFrame_rename_columns](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/007_Python_Pandas_DataFrame_rename_columns.ipynb)** |
92+
| | 1.8 **[Python_Pandas_DataFrame_to_Python_dictionary](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/008_Python_Pandas_DataFrame_to_Python_dictionary.ipynb)** |
93+
| | 1.9 **[Python_Pandas_DataFrame_set_index](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/009_Python_Pandas_DataFrame_set_index.ipynb)** |
94+
| | 1.10 **[Python_Pandas_DataFrame_reset_index](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/001_Python_Pandas_Methods/010_Python_Pandas_DataFrame_reset_index.ipynb)** |
95+
| 02 | **[Python_Pandas_Exercise_1](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/002_Python_Pandas_Exercise_1.ipynb)
96+
| 03 | **[Python_Pandas_Exercise_2](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/003_Python_Pandas_Exercise_2.ipynb)
97+
| | **[automobile_data.csv](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/automobile_data.csv)
98+
| | **[pokemon_data.csv](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/pokemon_data.csv)
99+
| 04 | **[Pandas Cheat Sheet Data Wrangling in Python.pdf](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/Pandas%20Cheat%20Sheet%20Data%20Wrangling%20in%20Python.pdf)
100+
| 05 | **[Pandas Cheat Sheet for Data Science in Python.pdf](https://github.com/milaan9/10_Python_Pandas_Module/blob/main/Pandas%20Cheat%20Sheet%20for%20Data%20Science%20in%20Python.pdf)
101+
102+
These are online **read-only** versions. However you can "Run ▶" the code **online** by clicking here &#8594; <a href="https://mybinder.org/v2/gh/milaan9/10_Python_Pandas_Module/HEAD"><img src="https://img.shields.io/badge/Open in-binder-579aca.svg?logo=" alt="binder"/></a>
139103

140104
---
141105

0 commit comments

Comments
 (0)
0