Closed
Description
Bug report
ax.transData returns np.nan for x value if invalid y value is supplied if log yscale
Code for reproduction
import matplotlib.pylab as plt
f = plt.figure()
ax = f.add_subplot(111)
ax.set_yscale('log')
ax.transData.transform([0,0])
Actual outcome
array([ nan, nan])
Expected outcome
array([ 81.5 , nan])
Outcome in mpl 2.0.2 was
array([ 8.16000000e+01, -1.02745008e+05])
There is no real reason both values be nan.
Matplotlib version
- Operating system: Fedora 26, x64
- Matplotlib version: 2.1.0, with pr Allow invalid limits when panning #9363
- Matplotlib backend (
print(matplotlib.get_backend())
): TkAgg - Python version: 3.6.3
- Jupyter version (if applicable):
- Other libraries: mpl 1.13.3