|
| 1 | +""" |
| 2 | +=================== |
| 3 | +Packed-bubble chart |
| 4 | +=================== |
| 5 | +
|
| 6 | +Create a packed-bubble chart to represent scalar data. |
| 7 | +The presented algorithm tries to move all bubbles as close to the center of |
| 8 | +mass as possible while avoiding some collisions by moving around colliding |
| 9 | +objects. In this example we plot the market share of different desktop |
| 10 | +browsers. |
| 11 | +(source: https://gs.statcounter.com/browser-market-share/desktop/worldwidev) |
| 12 | +""" |
| 13 | + |
| 14 | +import numpy as np |
| 15 | +import matplotlib.pyplot as plt |
| 16 | + |
| 17 | +browser_market_share = { |
| 18 | + 'browsers': ['firefox', 'chrome', 'safari', 'edge', 'ie', 'opera'], |
| 19 | + 'market_share': [8.61, 69.55, 8.36, 4.12, 2.76, 2.43], |
| 20 | + 'color': ['#5A69AF', '#579E65', '#F9C784', '#FC944A', '#F24C00', '#00B825'] |
| 21 | +} |
| 22 | + |
| 23 | + |
| 24 | +class BubbleChart: |
| 25 | + def __init__(self, area, bubble_spacing=0): |
| 26 | + """ |
| 27 | + Setup for bubble collapse. |
| 28 | +
|
| 29 | + Parameters |
| 30 | + ---------- |
| 31 | + area : array-like |
| 32 | + Area of the bubbles. |
| 33 | + bubble_spacing : float, default: 0 |
| 34 | + Minimal spacing between bubbles after collapsing. |
| 35 | +
|
| 36 | + Notes |
| 37 | + ----- |
| 38 | + If "area" is sorted, the results might look weird. |
| 39 | + """ |
| 40 | + area = np.asarray(area) |
| 41 | + r = np.sqrt(area / np.pi) |
| 42 | + |
| 43 | + self.bubble_spacing = bubble_spacing |
| 44 | + self.bubbles = np.ones((len(area), 4)) |
| 45 | + self.bubbles[:, 2] = r |
| 46 | + self.bubbles[:, 3] = area |
| 47 | + self.maxstep = 2 * self.bubbles[:, 2].max() + self.bubble_spacing |
| 48 | + self.step_dist = self.maxstep / 2 |
| 49 | + |
| 50 | + # calculate initial grid layout for bubbles |
| 51 | + length = np.ceil(np.sqrt(len(self.bubbles))) |
| 52 | + grid = np.arange(length) * self.maxstep |
| 53 | + gx, gy = np.meshgrid(grid, grid) |
| 54 | + self.bubbles[:, 0] = gx.flatten()[:len(self.bubbles)] |
| 55 | + self.bubbles[:, 1] = gy.flatten()[:len(self.bubbles)] |
| 56 | + |
| 57 | + self.com = self.center_of_mass() |
| 58 | + |
| 59 | + def center_of_mass(self): |
| 60 | + return np.average( |
| 61 | + self.bubbles[:, :2], axis=0, weights=self.bubbles[:, 3] |
| 62 | + ) |
| 63 | + |
| 64 | + def center_distance(self, bubble, bubbles): |
| 65 | + return np.hypot(bubble[0] - bubbles[:, 0], |
| 66 | + bubble[1] - bubbles[:, 1]) |
| 67 | + |
| 68 | + def outline_distance(self, bubble, bubbles): |
| 69 | + center_distance = self.center_distance(bubble, bubbles) |
| 70 | + return center_distance - bubble[2] - \ |
| 71 | + bubbles[:, 2] - self.bubble_spacing |
| 72 | + |
| 73 | + def check_collisions(self, bubble, bubbles): |
| 74 | + distance = self.outline_distance(bubble, bubbles) |
| 75 | + return len(distance[distance < 0]) |
| 76 | + |
| 77 | + def collides_with(self, bubble, bubbles): |
| 78 | + distance = self.outline_distance(bubble, bubbles) |
| 79 | + idx_min = np.argmin(distance) |
| 80 | + return idx_min if type(idx_min) == np.ndarray else [idx_min] |
| 81 | + |
| 82 | + def collapse(self, n_iterations=50): |
| 83 | + """ |
| 84 | + Move bubbles to the center of mass. |
| 85 | +
|
| 86 | + Parameters |
| 87 | + ---------- |
| 88 | + n_iterations : int, default: 50 |
| 89 | + Number of moves to perform. |
| 90 | + """ |
| 91 | + for _i in range(n_iterations): |
| 92 | + moves = 0 |
| 93 | + for i in range(len(self.bubbles)): |
| 94 | + rest_bub = np.delete(self.bubbles, i, 0) |
| 95 | + # try to move directly towards the center of mass |
| 96 | + # direction vector from bubble to the center of mass |
| 97 | + dir_vec = self.com - self.bubbles[i, :2] |
| 98 | + |
| 99 | + # shorten direction vector to have length of 1 |
| 100 | + dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec)) |
| 101 | + |
| 102 | + # calculate new bubble position |
| 103 | + new_point = self.bubbles[i, :2] + dir_vec * self.step_dist |
| 104 | + new_bubble = np.append(new_point, self.bubbles[i, 2:4]) |
| 105 | + |
| 106 | + # check whether new bubble collides with other bubbles |
| 107 | + if not self.check_collisions(new_bubble, rest_bub): |
| 108 | + self.bubbles[i, :] = new_bubble |
| 109 | + self.com = self.center_of_mass() |
| 110 | + moves += 1 |
| 111 | + else: |
| 112 | + # try to move around a bubble that you collide with |
| 113 | + # find colliding bubble |
| 114 | + for colliding in self.collides_with(new_bubble, rest_bub): |
| 115 | + # calculate direction vector |
| 116 | + dir_vec = rest_bub[colliding, :2] - self.bubbles[i, :2] |
| 117 | + dir_vec = dir_vec / np.sqrt(dir_vec.dot(dir_vec)) |
| 118 | + # calculate orthagonal vector |
| 119 | + orth = np.array([dir_vec[1], -dir_vec[0]]) |
| 120 | + # test which direction to go |
| 121 | + new_point1 = (self.bubbles[i, :2] + orth * |
| 122 | + self.step_dist) |
| 123 | + new_point2 = (self.bubbles[i, :2] - orth * |
| 124 | + self.step_dist) |
| 125 | + dist1 = self.center_distance( |
| 126 | + self.com, np.array([new_point1])) |
| 127 | + dist2 = self.center_distance( |
| 128 | + self.com, np.array([new_point2])) |
| 129 | + new_point = new_point1 if dist1 < dist2 else new_point2 |
| 130 | + new_bubble = np.append(new_point, self.bubbles[i, 2:4]) |
| 131 | + if not self.check_collisions(new_bubble, rest_bub): |
| 132 | + self.bubbles[i, :] = new_bubble |
| 133 | + self.com = self.center_of_mass() |
| 134 | + |
| 135 | + if moves / len(self.bubbles) < 0.1: |
| 136 | + self.step_dist = self.step_dist / 2 |
| 137 | + |
| 138 | + def plot(self, ax, labels, colors): |
| 139 | + """ |
| 140 | + Draw the bubble plot. |
| 141 | +
|
| 142 | + Parameters |
| 143 | + ---------- |
| 144 | + ax : matplotlib.axes.Axes |
| 145 | + labels : list |
| 146 | + Labels of the bubbles. |
| 147 | + colors : list |
| 148 | + Colors of the bubbles. |
| 149 | + """ |
| 150 | + for i in range(len(self.bubbles)): |
| 151 | + circ = plt.Circle( |
| 152 | + self.bubbles[i, :2], self.bubbles[i, 2], color=colors[i]) |
| 153 | + ax.add_patch(circ) |
| 154 | + ax.text(*self.bubbles[i, :2], labels[i], |
| 155 | + horizontalalignment='center', verticalalignment='center') |
| 156 | + |
| 157 | + |
| 158 | +bubble_chart = BubbleChart(area=browser_market_share['market_share'], |
| 159 | + bubble_spacing=0.1) |
| 160 | + |
| 161 | +bubble_chart.collapse() |
| 162 | + |
| 163 | +fig, ax = plt.subplots(subplot_kw=dict(aspect="equal")) |
| 164 | +bubble_chart.plot( |
| 165 | + ax, browser_market_share['browsers'], browser_market_share['color']) |
| 166 | +ax.axis("off") |
| 167 | +ax.relim() |
| 168 | +ax.autoscale_view() |
| 169 | +ax.set_title('Browser market share') |
| 170 | + |
| 171 | +plt.show() |
0 commit comments