@@ -699,16 +699,15 @@ def entropy(y, bins):
699699 x = mu + sigma * randn(200000)
700700 Sanalytic = 0.5 * ( 1.0 + log(2*pi*sigma**2.0) )
701701 """
702- n ,bins = np .histogram (y , bins )
702+ n , bins = np .histogram (y , bins )
703703 n = n .astype (np .float_ )
704704
705705 n = np .take (n , np .nonzero (n )[0 ]) # get the positive
706706
707707 p = np .divide (n , len (y ))
708708
709- delta = bins [1 ]- bins [0 ]
710- S = - 1.0 * np .sum (p * log (p )) + log (delta )
711- #S = -1.0*np.sum(p*log(p))
709+ delta = bins [1 ] - bins [0 ]
710+ S = - 1.0 * np .sum (p * np .log (p )) + np .log (delta )
712711 return S
713712
714713def normpdf (x , * args ):
@@ -722,22 +721,20 @@ def levypdf(x, gamma, alpha):
722721
723722 N = len (x )
724723
725- if N % 2 != 0 :
724+ if N % 2 != 0 :
726725 raise ValueError ('x must be an event length array; try\n ' + \
727726 'x = np.linspace(minx, maxx, N), where N is even' )
728727
728+ dx = x [1 ] - x [0 ]
729729
730- dx = x [ 1 ] - x [ 0 ]
730+ f = 1 / ( N * dx ) * np . arange ( - N / 2 , N / 2 , np . float_ )
731731
732+ ind = np .concatenate ([np .arange (N / 2 , N , int ),
733+ np .arange (0 , N / 2 , int )])
734+ df = f [1 ] - f [0 ]
735+ cfl = np .exp (- gamma * np .absolute (2 * np .pi * f ) ** alpha )
732736
733- f = 1 / (N * dx )* np .arange (- N / 2 , N / 2 , np .float_ )
734-
735- ind = np .concatenate ([np .arange (N / 2 , N , int ),
736- np .arange (0 , N / 2 , int )])
737- df = f [1 ]- f [0 ]
738- cfl = exp (- gamma * np .absolute (2 * pi * f )** alpha )
739-
740- px = np .fft .fft (np .take (cfl ,ind )* df ).astype (np .float_ )
737+ px = np .fft .fft (np .take (cfl , ind ) * df ).astype (np .float_ )
741738 return np .take (px , ind )
742739
743740
@@ -1458,7 +1455,6 @@ def splitfunc(x):
14581455 else :
14591456 row = [converterseq [j ](val )
14601457 for j ,val in enumerate (splitfunc (line ))]
1461- thisLen = len (row )
14621458 X .append (row )
14631459
14641460 X = np .array (X , dtype )
@@ -1511,7 +1507,6 @@ def splitfunc(x):
15111507
15121508"""
15131509
1514- import operator
15151510import math
15161511
15171512
@@ -1533,7 +1528,7 @@ def exp_safe(x):
15331528 """
15341529
15351530 if type (x ) is np .ndarray :
1536- return exp (np .clip (x ,exp_safe_MIN ,exp_safe_MAX ))
1531+ return np . exp (np .clip (x ,exp_safe_MIN ,exp_safe_MAX ))
15371532 else :
15381533 return math .exp (x )
15391534
@@ -1817,7 +1812,6 @@ def rec_drop_fields(rec, names):
18171812 """
18181813
18191814 names = set (names )
1820- Nr = len (rec )
18211815
18221816 newdtype = np .dtype ([(name , rec .dtype [name ]) for name in rec .dtype .names
18231817 if name not in names ])
@@ -2146,8 +2140,6 @@ def csv2rec(fname, comments='#', skiprows=0, checkrows=0, delimiter=',',
21462140
21472141 import dateutil .parser
21482142 import datetime
2149- parsedate = dateutil .parser .parse
2150-
21512143
21522144 fh = cbook .to_filehandle (fname )
21532145
@@ -2780,6 +2772,8 @@ def griddata(x,y,z,xi,yi,interp='nn'):
27802772 if xi .ndim == 1 :
27812773 xi ,yi = np .meshgrid (xi ,yi )
27822774 # triangulate data
2775+ # FIXME delaunay is not imported here, and depends on the
2776+ # scipy.spatial packages; Scipy is not a dependency of matplotlib.
27832777 tri = delaunay .Triangulation (x ,y )
27842778 # interpolate data
27852779 if interp == 'nn' :
@@ -2938,7 +2932,6 @@ def stineman_interp(xi,x,y,yp=None):
29382932 x = np .asarray (x , np .float_ )
29392933 y = np .asarray (y , np .float_ )
29402934 assert x .shape == y .shape
2941- N = len (y )
29422935
29432936 if yp is None :
29442937 yp = slopes (x ,y )
0 commit comments