@@ -82,28 +82,28 @@ minimum and maximum colorbar extensions.
82
82
Set default bounding box in matplotlibrc
83
83
------------------------------------------
84
84
85
- Two new defaults are available in the matplotlibrc configuration file.
86
- These are savefig.bbox, which can be set to 'standard' or 'tight,' and
87
- savefig.pad_inches, which controls the bounding box padding.
85
+ Two new defaults are available in the matplotlibrc configuration file:
86
+ `` savefig.bbox `` , which can be set to 'standard' or 'tight', and
87
+ `` savefig.pad_inches `` , which controls the bounding box padding.
88
88
89
89
90
90
New Boxplot Functionality
91
91
-------------------------
92
92
93
93
Users can now incorporate their own methods for computing the median and its
94
- confidence intervals into the boxplot method. For every column of data passed
95
- to boxplot, the user can specify an accompanying median and confidence
96
- interval.
97
- :meth: ` matplotlib.axes.boxplot `
98
- .. plot :: examples /pylab_examples/boxplot_demo3.py
94
+ confidence intervals into the :meth: ` ~matplotlib.axes. boxplot` method. For
95
+ every column of data passed to boxplot, the user can specify an accompanying
96
+ median and confidence interval.
97
+
98
+ .. plot :: mpl_examples /pylab_examples/boxplot_demo3.py
99
99
100
100
101
101
New RC parameter functionality
102
102
------------------------------
103
103
104
- Matthew Emmett added a function and a context manager to help manage
105
- RC parameters: :func: `~matplotlib.rc_file ` and
106
- :class: ` ~matplotlib.rc_context `. To load RC paramters from a file::
104
+ Matthew Emmett added a function and a context manager to help manage RC
105
+ parameters: :func: `~matplotlib.rc_file ` and :class: ` ~matplotlib.rc_context `.
106
+ To load RC parameters from a file::
107
107
108
108
>>> mpl.rc_file('mpl.rc')
109
109
@@ -113,6 +113,21 @@ To temporarily use RC parameters::
113
113
>>> ...
114
114
115
115
116
+ Streamplot
117
+ ----------
118
+
119
+ Tom Flannaghan and Tony Yu have added a new
120
+ :meth: `~matplotlib.pyplot.streamplot ` function to plot the streamlines of
121
+ a vector field. This has been a long-requested feature and complements the
122
+ existing :meth: `~matplotlib.pyplot.quiver ` function for plotting vector fields.
123
+ In addition to simply plotting the streamlines of the vector field,
124
+ :meth: `~matplotlib.pyplot.streamplot ` allows users to map the colors and/or
125
+ line widths of the streamlines to a separate parameter, such as the speed or
126
+ local intensity of the vector field.
127
+
128
+ .. plot :: mpl_examples/pylab_examples/streamplot_demo.py
129
+
130
+
116
131
.. _whats-new-1-1 :
117
132
118
133
new in matplotlib-1.1
0 commit comments