@@ -223,9 +223,9 @@ def _set_cmap(self, cmap):
223223 in_init = self ._cmap is None
224224 cmap_obj = _ensure_cmap (cmap , accept_multivariate = True )
225225 if not in_init :
226- if self .norm .n_output != cmap_obj .n_variates :
226+ if self .norm .n_variables != cmap_obj .n_variates :
227227 raise ValueError (f"The colormap { cmap } does not support "
228- f"{ self .norm .n_output } variates as required by "
228+ f"{ self .norm .n_variables } variates as required by "
229229 f"the { type (self .norm )} on this Colorizer" )
230230 self ._cmap = cmap_obj
231231 if not in_init :
@@ -253,7 +253,7 @@ def set_clim(self, vmin=None, vmax=None):
253253
254254 .. ACCEPTS: (vmin: float, vmax: float)
255255 """
256- if self .norm .n_input == 1 :
256+ if self .norm .n_variables == 1 :
257257 if vmax is None :
258258 try :
259259 vmin , vmax = vmin
@@ -580,7 +580,7 @@ def set_array(self, A):
580580 self ._A = None
581581 return
582582
583- A = _ensure_multivariate_data (A , self .norm .n_input )
583+ A = _ensure_multivariate_data (A , self .norm .n_variables )
584584
585585 A = cbook .safe_masked_invalid (A , copy = True )
586586 if not np .can_cast (A .dtype , float , "same_kind" ):
@@ -784,7 +784,7 @@ def _ensure_norm(norm, n_variates=1):
784784 norm = colors .MultiNorm ([norm ]* n_variates )
785785 else : # multiple string or objects
786786 norm = colors .MultiNorm (norm )
787- if isinstance (norm , colors .Normalize ) and norm .n_output == n_variates :
787+ if isinstance (norm , colors .Normalize ) and norm .n_variables == n_variates :
788788 return norm
789789 raise ValueError (
790790 "Invalid norm for multivariate colormap with "
@@ -857,20 +857,20 @@ def _ensure_cmap(cmap, accept_multivariate=False):
857857 return cm .colormaps [cmap_name ]
858858
859859
860- def _ensure_multivariate_data (data , n_input ):
860+ def _ensure_multivariate_data (data , n_variables ):
861861 """
862- Ensure that the data has dtype with n_input .
863- Input data of shape (n_input , n, m) is converted to an array of shape
864- (n, m) with data type np.dtype(f'{data.dtype}, ' * n_input )
862+ Ensure that the data has dtype with n_variables .
863+ Input data of shape (n_variables , n, m) is converted to an array of shape
864+ (n, m) with data type np.dtype(f'{data.dtype}, ' * n_variables )
865865 Complex data is returned as a view with dtype np.dtype('float64, float64')
866866 or np.dtype('float32, float32')
867- If n_input is 1 and data is not of type np.ndarray (i.e. PIL.Image),
867+ If n_variables is 1 and data is not of type np.ndarray (i.e. PIL.Image),
868868 the data is returned unchanged.
869869 If data is None, the function returns None
870870
871871 Parameters
872872 ----------
873- n_input : int
873+ n_variables : int
874874 - number of variates in the data
875875 data : np.ndarray, PIL.Image or None
876876
@@ -880,7 +880,7 @@ def _ensure_multivariate_data(data, n_input):
7440
880 880 """
881881
882882 if isinstance (data , np .ndarray ):
883- if len (data .dtype .descr ) == n_input :
883+ if len (data .dtype .descr ) == n_variables :
884884 # pass scalar data
885885 # and already formatted data
886886 return data
@@ -896,8 +896,8 @@ def _ensure_multivariate_data(data, n_input):
896896 reconstructed [descriptor [0 ]][data .mask ] = np .ma .masked
897897 return reconstructed
898898
899- if n_input > 1 and len (data ) == n_input :
900- # convert data from shape (n_input , n, m)
899+ if n_variables > 1 and len (data ) == n_variables :
900+ # convert data from shape (n_variables , n, m)
901901 # to (n,m) with a new dtype
902902 data = [np .ma .array (part , copy = False ) for part in data ]
903903 dt = np .dtype (', ' .join ([f'{ part .dtype } ' for part in data ]))
@@ -915,15 +915,15 @@ def _ensure_multivariate_data(data, n_input):
915915 if data is None :
916916 return data
917917
918- if n_input == 1 :
918+ if n_variables == 1 :
919919 # PIL.Image also gets passed here
920920 return data
921921
922- elif n_input == 2 :
922+ elif n_variables == 2 :
923923 raise ValueError ("Invalid data entry for multivariate data. The data"
924924 " must contain complex numbers, or have a first dimension 2,"
925925 " or be of a dtype with 2 fields" )
926926 else :
927927 raise ValueError ("Invalid data entry for multivariate data. The shape"
928- f" of the data must have a first dimension { n_input } "
929- f" or be of a dtype with { n_input } fields" )
928+ f" of the data must have a first dimension { n_variables } "
929+ f" or be of a dtype with { n_variables } fields" )
0 commit comments