8000 Set correct path for Arc · matplotlib/matplotlib@6f4ae90 · GitHub
[go: up one dir, main page]

Skip to content

Commit 6f4ae90

Browse files
committed
Set correct path for Arc
1 parent 65cbdef commit 6f4ae90

File tree

6 files changed

+382
-41
lines changed

6 files changed

+382
-41
lines changed

lib/matplotlib/patches.py

Lines changed: 50 additions & 37 deletions
Original file line numberDiff line numberDiff line change
@@ -1961,6 +1961,9 @@ def __init__(self, xy, width, height, angle=0.0,
19611961

19621962
self.theta1 = theta1
19631963
self.theta2 = theta2
1964+
self._theta1, self._theta2, self._width, self._height = \
1965+
self._theta_stretch()
1966+
self._path = Path.arc(self._theta1, self._theta2)
19641967

19651968
@artist.allow_rasterization
19661969
def draw(self, renderer):
@@ -2013,36 +2016,7 @@ def draw(self, renderer):
20132016

20142017
self._recompute_transform()
20152018

2016-
width = self.convert_xunits(self.width)
2017-
height = self.convert_yunits(self.height)
2018-
2019-
# If the width and height of ellipse are not equal, take into account
2020-
# stretching when calculating angles to draw between
2021-
def theta_stretch(theta, scale):
2022-
theta = np.deg2rad(theta)
2023-
x = np.cos(theta)
2024-
y = np.sin(theta)
2025-
stheta = np.rad2deg(np.arctan2(scale * y, x))
2026-
# arctan2 has the range [-pi, pi], we expect [0, 2*pi]
2027-
return (stheta + 360) % 360
2028-
2029-
theta1 = self.theta1
2030-
theta2 = self.theta2
2031-
2032-
if (
2033-
# if we need to stretch the angles because we are distorted
2034-
width != height
2035-
# and we are not doing a full circle.
2036-
#
2037-
# 0 and 360 do not exactly round-trip through the angle
2038-
# stretching (due to both float precision limitations and
2039-
# the difference between the range of arctan2 [-pi, pi] and
2040-
# this method [0, 360]) so avoid doing it if we don't have to.
2041-
and not (theta1 != theta2 and theta1 % 360 == theta2 % 360)
2042-
):
2043-
theta1 = theta_stretch(self.theta1, width / height)
2044-
theta2 = theta_stretch(self.theta2, width / height)
2045-
2019+
self._update_path()
20462020
# Get width and height in pixels we need to use
20472021
# `self.get_data_transform` rather than `self.get_transform`
20482022
# because we want the transform from dataspace to the
@@ -2051,12 +2025,12 @@ def theta_stretch(theta, scale):
20512025
# `self.get_transform()` goes from an idealized unit-radius
20522026
# space to screen space).
20532027
data_to_screen_trans = self.get_data_transform()
2054-
pwidth, pheight = (data_to_screen_trans.transform((width, height)) -
2055-
data_to_screen_trans.transform((0, 0)))
2028+
pwidth, pheight = (
2029+
data_to_screen_trans.transform((self._width, self._height)) -
2030+
data_to_screen_trans.transform((0, 0)))
20562031
inv_error = (1.0 / 1.89818e-6) * 0.5
20572032

20582033
if pwidth < inv_error and pheight < inv_error:
2059-
self._path = Path.arc(theta1, theta2)
20602034
return Patch.draw(self, renderer)
20612035

20622036
def line_circle_intersect(x0, y0, x1, y1):
@@ -2110,10 +2084,11 @@ def segment_circle_intersect(x0, y0, x1, y1):
21102084
# arctan2 return [-pi, pi), the rest of our angles are in
21112085
# [0, 360], adjust as needed.
21122086
theta = (np.rad2deg(np.arctan2(y, x)) + 360) % 360
2113-
thetas.update(theta[(theta1 < theta) & (theta < theta2)])
2114-
thetas = sorted(thetas) + [theta2]
2115-
last_theta = theta1
2116-
theta1_rad = np.deg2rad(theta1)
2087+
thetas.update(
2088+
theta[(self._theta1 < theta) & (theta < self._theta2)])
2089+
thetas = sorted(thetas) + [self._theta2]
2090+
last_theta = self._theta1
2091+
theta1_rad = np.deg2rad(self._theta1)
21172092
inside = box_path.contains_point(
21182093
(np.cos(theta1_rad), np.sin(theta1_rad))
21192094
)
@@ -2132,6 +2107,44 @@ def segment_circle_intersect(x0, y0, x1, y1):
21322107
# restore original path
21332108
self._path = path_original
21342109

2110+
def _update_path(self):
2111+
# Compute new values and update and set new _path if any value changed
2112+
stretched = self._theta_stretch()
2113+
if any(a != b for a, b in zip(stretched, (self._theta1, self._theta2,
2114+
self._width, self._height))):
2115+
self._theta1, self._theta2, self._width, self._height = stretched
2116+
self._path = Path.arc(self._theta1, self._theta2)
2117+
2118+
def _theta_stretch(self):
2119+
# If the width and height of ellipse are not equal, take into account
2120+
# stretching when calculating angles to draw between
2121+
def theta_stretch(theta, scale):
2122+
theta = np.deg2rad(theta)
2123+
x = np.cos(theta)
2124+
y = np.sin(theta)
2125+
stheta = np.rad2deg(np.arctan2(scale * y, x))
2126+
# arctan2 has the range [-pi, pi], we expect [0, 2*pi]
2127+
return (stheta + 360) % 360
2128+
2129+
width = self.convert_xunits(self.width)
2130+
height = self.convert_yunits(self.height)
2131+
if (
2132+
# if we need to stretch the angles because we are distorted
2133+
width != height
2134+
# and we are not doing a full circle.
2135+
#
2136+
# 0 and 360 do not exactly round-trip through the angle
2137+
# stretching (due to both float precision limitations and
2138+
# the difference between the range of arctan2 [-pi, pi] and
2139+
# this method [0, 360]) so avoid doing it if we don't have to.
2140+
and not (self.theta1 != self.theta2 and
2141+
self.theta1 % 360 == self.theta2 % 360)
2142+
):
2143+
theta1 = theta_stretch(self.theta1, width / height)
2144+
theta2 = theta_stretch(self.theta2, width / height)
2145+
return theta1, theta2, width, height
2146+
return self.theta1, self.theta2, width, height
2147+
21352148

21362149
def bbox_artist(artist, renderer, props=None, fill=True):
21372150
"""
Loading

0 commit comments

Comments
 (0)
0