@@ -4077,15 +4077,6 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4077
4077
"""
4078
4078
Make a hexagonal binning plot.
4079
4079
4080
- Call signature::
4081
-
4082
- hexbin(x, y, C = None, gridsize = 100, bins = None,
4083
- xscale = 'linear', yscale = 'linear',
4084
- cmap=None, norm=None, vmin=None, vmax=None,
4085
- alpha=None, linewidths=None, edgecolors='none'
4086
- reduce_C_function = np.mean, mincnt=None, marginals=True
4087
- **kwargs)
4088
-
4089
4080
Make a hexagonal binning plot of *x* versus *y*, where *x*,
4090
4081
*y* are 1-D sequences of the same length, *N*. If *C* is *None*
4091
4082
(the default), this is a histogram of the number of occurences
@@ -4098,112 +4089,113 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
4098
4089
specified, it must also be a 1-D sequence of the same length
4099
4090
as *x* and *y*.)
4100
4091
4101
- *x*, *y* and/or *C* may be masked arrays, in which case only
4102
- unmasked points will be plotted.
4103
-
4104
- Optional keyword arguments:
4105
-
4106
- *gridsize*: [ 100 | integer ]
4107
- The number of hexagons in the *x*-direction, default is
4108
- 100. The corresponding number of hexagons in the
4109
- *y*-direction is chosen such that the hexagons are
4110
- approximately regular. Alternatively, gridsize can be a
4111
- tuple with two elements specifying the number of hexagons
4112
- in the *x*-direction and the *y*-direction.
4092
+ Parameters
4093
+ ----------
4094
+ x, y : array or masked array
4113
4095
4114
- *bins*: [ *None* | 'log' | integer | sequence ]
4115
- If *None*, no binning is applied; the color of each hexagon
4116
- directly corresponds to its count value.
4096
+ C : array or masked array, optional, default is *None*
4117
4097
4118
- If 'log', use a logarithmic scale for the color
4119
- map. Internally, :math:`log_{10}(i+1)` is used to
4120
- determine the hexagon color.
4098
+ gridsize : int or (int, int), optional, default is 100
4099
+ The number of hexagons in the *x*-direction, default is
4100
+ 100. The corresponding number of hexagons in the
4101
+ *y*-direction is chosen such that the hexagons are
4102
+ approximately regular. Alternatively, gridsize can be a
4103
+ tuple with two elements specifying the number of hexagons
4104
+ in the *x*-direction and the *y*-direction.
4121
4105
4122
- If an integer, divide the counts in the specified number
4123
- of bins, and color the hexagons accordingly.
4106
+ bins : {'log'} or int or sequence, optional, default is *None*
4107
+ If *None*, no binning is applied; the color of each hexagon
4108
+ directly corresponds to its count value.
4124
4109
4125
- If a sequence of values, the values of the lower bound of
4126
- the bins to be used.
4110
+ If 'log', use a logarithmic scale for the color
4111
+ map. Internally, :math:`log_{10}(i+1)` is used to
4112
+ determine the hexagon color.
4127
4113
4128
- *xscale*: [ 'linear' | 'log' ]
4129
- Use a linear or log10 scale on the horizontal axis .
4114
+ If an integer, divide the counts in the specified number
4115
+ of bins, and color the hexagons accordingly .
4130
4116
4131
- *yscale*: [ 'linear' | 'log' ]
4132
- Use a linear or log10 scale on the vertical axis .
4117
+ If a sequence of values, the values of the lower bound of
4118
+ the bins to be used .
4133
4119
4134
- *mincnt*: [ *None* | a positive integer ]
4135
- If not *None*, only display cells with more than *mincnt*
4136
- number of points in the cell
4120
+ xscale : {'linear', 'log'}, optional, default is 'linear'
4121
+ Use a linear or log10 scale on the horizontal axis.
4137
4122
4138
- *marginals*: [ *True* | *False* ]
4139
- if marginals is *True*, plot the marginal density as
4140
- colormapped rectagles along the bottom of the x-axis and
4141
- left of the y-axis
4123
+ yscale : {'linear', 'log'}, optional, default is 'linear'
4124
+ Use a linear or log10 scale on the vertical axis.
4142
4125
4143
- *extent*: [ *None* | scalars (left, right, bottom, top) ]
4144
- The limits of the bins. The default assigns the limits
4145
- based on *gridsize*, *x*, *y*, *xscale* and *yscale*.
4126
+ mincnt : int > 0, optional, default is *None*
4127
+ If not *None*, only display cells with more than *mincnt*
4128
+ number of points in the cell
4146
4129
4147
- If *xscale* or *yscale* is set to 'log', the limits are
4148
- expected to be the exponent for a power of 10. E.g. for
4149
- x-limits of 1 and 50 in 'linear' scale and y-limits
4150
- of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
4130
+ marginals : bool, optional, default is *False*
4131
+ if marginals is *True*, plot the marginal density as
4132
+ colormapped rectagles along the bottom of the x-axis and
4133
+ left of the y-axis
4151
4134
4152
- Other keyword arguments controlling color mapping and normalization
4153
- arguments:
4135
+ extent : scalar, optional, default is *None*
4136
+ The limits of the bins. The default assigns the limits
4137
+ based on *gridsize*, *x*, *y*, *xscale* and *yscale*.
4154
4138
4155
- *cmap*: [ *None* | Colormap ]
4156
- a :class:`matplotlib.colors.Colormap` instance. If *None*,
4157
- defaults to rc ``image.cmap``.
4139
+ If *xscale* or *yscale* is set to 'log', the limits are
4140
+ expected to be the exponent for a power of 10. E.g. for
4141
+ x-limits of 1 and 50 in 'linear' scale and y-limits
4142
+ of 10 and 1000 in 'log' scale, enter (1, 50, 1, 3).
4158
4143
4159
- *norm*: [ *None* | Normalize ]
4160
- :class:`matplotlib.colors.Normalize` instance is used to
4161
- scale luminance data to 0,1.
4144
+ Order of scalars is (left, right, bottom, top).
4162
4145
4163
- *vmin* / *vmax*: scalar
4164
- *vmin* and *vmax* are used in conjunction with *norm* to normalize
4165
- luminance data. If either are *None*, the min and max of the color
4166
- array *C* is used. Note if you pass a norm instance, your settings
4167
- for *vmin* and *vmax* will be ignored .
4146
+ Other parameters
4147
+ ----------------
4148
+ cmap : object, optional, default is *None*
4149
+ a :class:`matplotlib.colors.Colormap` instance. If *None*,
4150
+ defaults to rc ``image.cmap`` .
4168
4151
4169
- *alpha*: scalar between 0 and 1, or *None*
4170
- the alpha value for the patches
4152
+ norm : object, optional, default is *None*
4153
+ :class:`matplotlib.colors.Normalize` instance is used to
4154
+ scale luminance data to 0,1.
4171
4155
4172
- *linewidths*: [ *None* | scalar ]
4173
- If *None*, defaults to 1.0. Note that this is a tuple, and
4174
- if you set the linewidths argument you must set it as a
4175
- sequence of floats, as required by
4176
- :class:`~matplotlib.collections.RegularPolyCollection` .
4156
+ vmin, vmax : scalar, optional, default is *None*
4157
+ *vmin* and *vmax* are used in conjunction with *norm* to
4158
+ normalize luminance data. If *None*, the min and max of the
4159
+ color array *C* are used. Note if you pass a norm instance
4160
+ your settings for *vmin* and *vmax* will be ignored .
4177
4161
4178
- Other keyword arguments controlling the Collection properties:
4162
+ alpha : scalar between 0 and 1, optional, default is *None*
4163
+ the alpha value for the patches
4179
4164
4180
- *edgecolors*: [ *None* | ``'none'`` | mpl color | color sequence ]
4181
- If ``'none'``, draws the edges in the same color as the fill color.
4182
- This is the default, as it avoids unsightly unpainted pixels
4183
- between the hexagons.
4165
+ linewidths : scalar, optional, default is *None*
4166
+ If *None*, defaults to 1.0.
4184
4167
4185
- If *None*, draws the outlines in the default color.
4168
+ edgecolors : {'none'} or mpl color, optional, default is 'none'
4169
+ If 'none', draws the edges in the same color as the fill color.
4170
+ This is the default, as it avoids unsightly unpainted pixels
4171
+ between the hexagons.
4186
4172
4187
- If a matplotlib color arg or sequence of rgba tuples, draws the
4188
- outlines in the specified color.
4173
+ If *None*, draws outlines in the default color.
4189
4174
4190
- Here are the standard descriptions of all the
4191
- :class:`~matplotlib.collections.Collection` kwargs:
4175
+ If a matplotlib color arg, draws outlines in the specified color.
4192
4176
4193
- %(Collection)s
4177
+ Returns
4178
+ -------
4179
+ object
4180
+ a :class:`~matplotlib.collections.PolyCollection` instance; use
4181
+ :meth:`~matplotlib.collections.PolyCollection.get_array` on
4182
+ this :class:`~matplotlib.collections.PolyCollection` to get
4183
+ the counts in each hexagon.
4194
4184
4195
- The return value is a
4196
- :class:`~matplotlib.collections.PolyCollection` instance; use
4197
- :meth:`~matplotlib.collections.PolyColl
B752
ection.get_array` on
4198
- this :class:`~matplotlib.collections.PolyCollection` to get
4199
- the counts in each hexagon. If *marginals* is *True*, horizontal
4200
- bar and vertical bar (both PolyCollections) will be attached
4201
- to the return collection as attributes *hbar* and *vbar*.
4185
+ If *marginals* is *True*, horizontal
4186
+ bar and vertical bar (both PolyCollections) will be attached
4187
+ to the return collection as attributes *hbar* and *vbar*.
4202
4188
4189
+ Examples
4190
+ --------
4191
+ .. plot:: mpl_examples/pylab_examples/hexbin_demo.py
4203
4192
4204
- **Example:**
4193
+ Notes
4194
+ --------
4195
+ The standard descriptions of all the
4196
+ :class:`~matplotlib.collections.Collection` parameters:
4205
4197
4206
- .. plot:: mpl_examples/pylab_examples/hexbin_demo.py
4198
+ %(Collection)s
4207
4199
4208
4200
"""
4209
4201
0 commit comments