-
Notifications
You must be signed in to change notification settings - Fork 231
Open
matplotlib/matplotlib
#19059Description
I have the following code in jupyterlab. This allows me to move a slider and update a graph in realtime. However the framerate is quite low (1fps) if I call fig.canvas.draw(). I therefore tried blitting, however it does not seem to affect the graph. Is this supposed to work with ipympl?
Many thanks for your help.
Environment:
Jupyterlab==1.2.6
ipympl==0.5.6
jupyter labextension list:
@ibqn/jupyterlab-codecellbtn v0.1.3 enabled ok
@jupyter-widgets/jupyterlab-manager v1.1.0 enabled ok
@jupyterlab/google-drive v1.0.0 enabled ok
@jupyterlab/toc v1.0.1 enabled ok
jupyter-matplotlib v0.7.2 enabled ok
jupyterlab-plotly v1.5.2 enabled ok
plotlywidget v1.5.2 enabled ok
import pandas as pd, numpy as np
import time
import matplotlib.pyplot as plt
from ipywidgets import interact, interactive, fixed, interact_manual, Layout, VBox, HBox
import ipywidgets as widgets
from itertools import count
%matplotlib widget
blit = False # False works, True doesn't.
plt.close('all')
plt.ioff()
output = widgets.Output(layout={'width': '700px', 'height': '300px'})
fig, axs= plt.subplots(3, 2, figsize=(10, 8), sharex=True)
fig.canvas.header_visible = False
fig.canvas.toolbar_visible = False
for i in range(3):
axs[i,0].set_ylim(-1.5,1.5)
axs[i,0].set_xlim(0,20)
# index giver
x_value = count()
# expanding dataset
x, y = [], []
# initialise dummy data
[x.append(next(x_value)) for i in range(2)]
[y.append([1]*3) for i in range(2)]
# setup desired and actual angle plots
col_names = ['col1', 'col2', 'col3']
ax_df = pd.DataFrame(index=x,columns=col_names, data=y).plot(subplots=True, ax=axs[:,0])
if blit:
bgs = []
for ax in ax_df:
# cache the background
ax_background = fig.canvas.copy_from_bbox(ax.bbox)
bgs.append(ax_background)
fig.canvas.draw() # initial draw required
# monitor framerate
t_start = time.time()
# event handler
def on_value_changed(change):
with output:
next_x = next(x_value) # generate next x axis value
x.append(next_x)
y.append([change.new]*3)
for i in range(3):
if blit:
# update data
line = ax_df[i].get_lines()[0]
line.set_data(x, pd.DataFrame(y).iloc[:,i])
# restore background
fig.canvas.restore_region(bgs[i])
# redraw just the points
ax_df[i].draw_artist(line)
# fill in the axes rectangle
fig.canvas.blit(ax_df[i].bbox)
else:
# update data
ax_df[i].get_lines()[0].set_data(x, pd.DataFrame(y).iloc[:,i])
# rescale view
ax_df[i].autosc
5755
ale_view(None,'x',None)
ax_df[i].relim()
fig.canvas.flush_events()
if not blit:
fig.canvas.draw() # this slows down framerate, not required for blit
print(f"FPS: {round(next_x/(time.time() - t_start),2)}", end=", ")
sliders = []
int_slider = widgets.FloatSlider(description="test",
min=-1, max=1,
value = 0, continuous_update=True,
orientation="horizontal",
layout=widgets.Layout(width="500px", height="20px"))
int_slider.observe(on_value_changed, names="value")
sliders = widgets.VBox([int_slider, fig.canvas, output])
display(sliders)
Metadata
Metadata
Assignees
Labels
No labels