8000 Migliorato esempio di uso della funzione Train e Predict, con un picc… · mathcoding/Programmazione2@aab872c · GitHub
[go: up one dir, main page]

Skip to content

Commit aab872c

Browse files
committed
Migliorato esempio di uso della funzione Train e Predict, con un piccolo campione di dati di test
1 parent f745853 commit aab872c

File tree

4 files changed

+90
-14
lines changed

4 files changed

+90
-14
lines changed

Assignments/hw2/compito_131313.py

Lines changed: 47 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,47 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Fri Apr 21 17:59:25 2017
4+
5+
@author: gualandi
6+
"""
7+
8+
def NomeCognome():
9+
return "Kunta Kid 131313"
10+
11+
def sex2int(x):
12+
""" Converti sesso"""
13+
try:
14+
return int(x=='male')
15+
except:
16+
return -1
17+
18+
def Train(Xs):
19+
def ConvertInput(data):
20+
data['Sex'] = data['Sex'].apply(sex2int)
21+
return data
22+
23+
def FilterInput(data):
24+
data = data[data['Sex'] >= 0]
25+
return data
26+
27+
def Predict(x_test):
28+
x_test = ConvertInput(x_test)
29+
30+
# Se avete fatto un fitting qui dovete richiamare il
31+
# metodo per fare le previsioni
32+
y_pred = [sex for sex in x_test['Sex']]
33+
34+
return y_pred
35+
36+
# Parte principale della funzione 'Train'
37+
38+
# Elabora i dati
39+
Xs = ConvertInput(Xs)
40+
Xs = FilterInput(Xs)
41+
42+
# Fitting dei dati con il vostro metodo scelto
43+
44+
# Esempio insignificanti: sopravvivono solo i maschi
45+
# NO FITTING
46+
47+
return Predict

Assignments/hw2/compito_MATRICOLA.py

Lines changed: 0 additions & 14 deletions
This file was deleted.

Assignments/hw2/test.csv

Lines changed: 10 additions & 0 deletions
< 10000 div data-testid="addition diffstat" class="DiffSquares-module__diffSquare--h5kjy DiffSquares-module__addition--jeNtt">
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,10 @@
1+
PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2+
892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q
3+
893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S
4+
894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q
5+
895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S
6+
896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S
7+
897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S
8+
898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q
9+
899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S
10+
900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C

Assignments/hw2/test.py

Lines changed: 33 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,33 @@
1+
# -*- coding: utf-8 -*-
2+
"""
3+
Created on Fri Apr 21 12:08:27 2017
4+
5+
@author: gualandi
6+
"""
7+
8+
import pandas as pd
9+
import csv
10+
11+
from sklearn.metrics import accuracy_score
12+
13+
#------------------------------------------
14+
# MAIN ENTRY POINT
15+
#------------------------------------------
16+
if __name__ == "__main__":
17+
18+
from compito_131313 import *
19+
20+
print(NomeCognome())
21+
22+
df = pd.read_csv('train.csv')
23+
24+
P = Train(df)
25+
26+
dt = pd.read_csv('test.csv')
27+
y_pred = P(dt)
28+
29+
with open('solution.csv','w') as csv_file:
30+
writer = csv.writer(csv_file, delimiter=',', lineterminator='\n')
31+
writer.writerow(['PassengerId','Survived'])
32+
for i,p in zip(dt['PassengerId'], y_pred):
33+
writer.writerow([i,p])

0 commit comments

Comments
 (0)
0