|
26 | 26 | import matplotlib.pyplot as plt
|
27 | 27 | import numpy as np
|
28 | 28 | from sklearn import datasets, linear_model
|
| 29 | +from sklearn.metrics import mean_squared_error, r2_score |
29 | 30 |
|
30 | 31 | # Load the diabetes dataset
|
31 | 32 | diabetes = datasets.load_diabetes()
|
|
48 | 49 | # Train the model using the training sets
|
49 | 50 | regr.fit(diabetes_X_train, diabetes_y_train)
|
50 | 51 |
|
| 52 | +# Make predictions using the testing set |
| 53 | +diabetes_y_pred = regr.predict(diabetes_X_test) |
| 54 | + |
51 | 55 | # The coefficients
|
52 | 56 | print('Coefficients: \n', regr.coef_)
|
53 | 57 | # The mean squared error
|
54 | 58 | print("Mean squared error: %.2f"
|
55 |
| - % np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2)) |
| 59 | + % mean_squared_error<
7C2E
span class="x x-last">(diabetes_y_test, diabetes_y_pred)) |
56 | 60 | # Explained variance score: 1 is perfect prediction
|
57 |
| -print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test)) |
| 61 | +print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred)) |
58 | 62 |
|
59 | 63 | # Plot outputs
|
60 | 64 | plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
|
61 |
| -plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue', |
62 |
| - linewidth=3) |
| 65 | +plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3) |
63 | 66 |
|
64 | 67 | plt.xticks(())
|
65 | 68 | plt.yticks(())
|
|
0 commit comments