8000 Save predictions in diabetes_y_pred (#8241) · maskani-moh/scikit-learn@4b48580 · GitHub
[go: up one dir, main page]

Skip to content

Commit 4b48580

Browse files
davidroblesmaskani-moh
authored andcommitted
Save predictions in diabetes_y_pred (scikit-learn#8241)
- No need for `regr.predict(diabetes_X_test)` to run multiple times. - Use `sklearn.metrics.mean_squared_error`. - Use `sklearn.metrics.r2_score`, instead of `regr.score`, which runs `regr.predict` again.
1 parent 0d0f978 commit 4b48580

File tree

1 file changed

+7
-4
lines changed

1 file changed

+7
-4
lines changed

examples/linear_model/plot_ols.py

Lines changed: 7 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -26,6 +26,7 @@
2626
import matplotlib.pyplot as plt
2727
import numpy as np
2828
from sklearn import datasets, linear_model
29+
from sklearn.metrics import mean_squared_error, r2_score
2930

3031
# Load the diabetes dataset
3132
diabetes = datasets.load_diabetes()
@@ -48,18 +49,20 @@
4849
# Train the model using the training sets
4950
regr.fit(diabetes_X_train, diabetes_y_train)
5051

52+
# Make predictions using the testing set
53+
diabetes_y_pred = regr.predict(diabetes_X_test)
54+
5155
# The coefficients
5256
print('Coefficients: \n', regr.coef_)
5357
# The mean squared error
5458
print("Mean squared error: %.2f"
55-
% np.mean((regr.predict(diabetes_X_test) - diabetes_y_test) ** 2))
59+
% mean_squared_error< 7C2E span class="x x-last">(diabetes_y_test, diabetes_y_pred))
5660
# Explained variance score: 1 is perfect prediction
57-
print('Variance score: %.2f' % regr.score(diabetes_X_test, diabetes_y_test))
61+
print('Variance score: %.2f' % r2_score(diabetes_y_test, diabetes_y_pred))
5862

5963
# Plot outputs
6064
plt.scatter(diabetes_X_test, diabetes_y_test, color='black')
61-
plt.plot(diabetes_X_test, regr.predict(diabetes_X_test), color='blue',
62-
linewidth=3)
65+
plt.plot(diabetes_X_test, diabetes_y_pred, color='blue', linewidth=3)
6366

6467
plt.xticks(())
6568
plt.yticks(())

0 commit comments

Comments
 (0)
0