8000 Converting http to https (3)... (#12302) · lithuak/scikit-learn@f4e7d2b · GitHub
[go: up one dir, main page]

Skip to content

Commit f4e7d2b

Browse files
TakingItCasualogrisel
authored andcommitted
Converting http to https (3)... (scikit-learn#12302)
1 parent b020f62 commit f4e7d2b

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

61 files changed

+112
-112
lines changed

benchmarks/bench_covertype.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -34,10 +34,10 @@
3434
S. Shalev-Shwartz, Y. Singer, N. Srebro - In Proceedings of ICML '07.
3535
3636
* `"Training Linear SVMs in Linear Time"
37-
<www.cs.cornell.edu/People/tj/publications/joachims_06a.pdf>`_
37+
<https://www.cs.cornell.edu/people/tj/publications/joachims_06a.pdf>`_
3838
T. Joachims - In SIGKDD '06
3939
40-
[1] http://archive.ics.uci.edu/ml/datasets/Covertype
40+
[1] https://archive.ics.uci.edu/ml/datasets/Covertype
4141
4242
"""
4343
from __future__ import division, print_function

doc/about.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -99,14 +99,14 @@ full-time. It also hosts coding sprints and other events.
9999
:align: center
100100
:target: https://www.inria.fr
101101

102-
`Paris-Saclay Center for Data Science <http://www.datascience-paris-saclay.fr>`_
102+
`Paris-Saclay Center for Data Science <https://www.datascience-paris-saclay.fr/>`_
103103
funded one year for a developer to work on the project full-time
104104
(2014-2015) and 50% of the time of Guillaume Lemaitre (2016-2017).
105105

106106
.. image:: images/cds-logo.png
107107
:width: 200pt
108108
:align: center
109-
:target: http://www.datascience-paris-saclay.fr
109+
:target: https://www.datascience-paris-saclay.fr/
110110

111111
`NYU Moore-Sloan Data Science Environment <https://cds.nyu.edu/mooresloan/>`_
112112
funded Andreas Mueller (2014-2016) to work on this project. The Moore-Sloan Data Science
@@ -118,14 +118,14 @@ Environment also funds several students to work on the project part-time.
118118
:target: https://cds.nyu.edu/mooresloan/
119119

120120

121-
`Télécom Paristech <http://www.telecom-paristech.com>`_ funded Manoj Kumar (2014),
121+
`Télécom Paristech <https://www.telecom-paristech.fr/>`_ funded Manoj Kumar (2014),
122122
Tom Dupré la Tour (2015), Raghav RV (2015-2017), Thierry Guillemot (2016-2017)
123123
and Albert Thomas (2017) to work on scikit-learn.
124124

125125
.. image:: themes/scikit-learn/static/img/telecom.png
126126
:width: 100pt
127127
:align: center
128-
:target: http://www.telecom-paristech.fr/
128+
:target: https://www.telecom-paristech.fr/
129129

130130

131131
`Columbia University <https://columbia.edu/>`_ funds Andreas Müller since 2016.

doc/glossary.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@ General Concepts
170170
:class:`~sklearn.preprocessing.OneHotEncoder` can be used to
171171
one-hot encode categorical features.
172172
See also :ref:`preprocessing_categorical_features` and the
173-
`http://contrib.scikit-learn.org/categorical-encoding
173+
`https://contrib.scikit-learn.org/categorical-encoding/
174174
<category_encoders>`_ package for tools related to encoding
175175
categorical features.
176176

doc/modules/clustering.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -286,7 +286,7 @@ small, as shown in the example and cited reference.
286286
.. topic:: References:
287287

288288
* `"Web Scale K-Means clustering"
289-
<http://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf>`_
289+
<https://www.eecs.tufts.edu/~dsculley/papers/fastkmeans.pdf>`_
290290
D. Sculley, *Proceedings of the 19th international conference on World
291291
wide web* (2010)
292292

@@ -445,7 +445,7 @@ works well for a small number of clusters but is not advised when using
445445
many clusters.
446446

447447
For two clusters, it solves a convex relaxation of the `normalised
448-
cuts <http://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf>`_ problem on
448+
cuts <https://people.eecs.berkeley.edu/~malik/papers/SM-ncut.pdf>`_ problem on
449449
the similarity graph: cutting the graph in two so that the weight of the
450450
edges cut is small compared to the weights of the edges inside each
451451
cluster. This criteria is especially interesting when working on images:
@@ -1008,7 +1008,7 @@ the user is advised
10081008

10091009
* Tian Zhang, Raghu Ramakrishnan, Maron Livny
10101010
BIRCH: An efficient data clustering method for large databases.
1011-
http://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
1011+
https://www.cs.sfu.ca/CourseCentral/459/han/papers/zhang96.pdf
10121012

10131013
* Roberto Perdisci
10141014
JBirch - Java implementation of BIRCH clustering algorithm
@@ -1144,7 +1144,7 @@ random labelings by defining the adjusted Rand index as follows:
11441144
.. topic:: References
11451145

11461146
* `Comparing Partitions
1147-
<http://link.springer.com/article/10.1007%2FBF01908075>`_
1147+
<https://link.springer.com/article/10.1007%2FBF01908075>`_
11481148
L. Hubert and P. Arabie, Journal of Classification 1985
11491149

11501150
* `Wikipedia entry for the adjusted Rand index
@@ -1483,7 +1483,7 @@ mean of homogeneity and completeness**:
14831483
.. topic:: References
14841484

14851485
* `V-Measure: A conditional entropy-based external cluster evaluation
1486-
measure <http://aclweb.org/anthology/D/D07/D07-1043.pdf>`_
1486+
measure <https://aclweb.org/anthology/D/D07/D07-1043.pdf>`_
14871487
Andrew Rosenberg and Julia Hirschberg, 2007
14881488

14891489
.. [B2011] `Identication and Characterization of Events in Social Media

doc/modules/compose.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -380,7 +380,7 @@ ColumnTransformer for heterogeneous data
380380
Many datasets contain features of different types, say text, floats, and dates,
381381
where each type of feature requires separate preprocessing or feature
382382
extraction steps. Often it is easiest to preprocess data before applying
383-
scikit-learn methods, for example using `pandas <http://pandas.pydata.org/>`__.
383+
scikit-learn methods, for example using `pandas <https://pandas.pydata.org/>`__.
384384
Processing your data before passing it to scikit-learn might be problematic for
385385
one of the following reasons:
386386

@@ -395,7 +395,7 @@ transformations for different columns of the data, within a
395395
:class:`~sklearn.pipeline.Pipeline` that is safe from data leakage and that can
396396
be parametrized. :class:`~sklearn.compose.ColumnTransformer` works on
397397
arrays, sparse matrices, and
398-
`pandas DataFrames <http://pandas.pydata.org/pandas-docs/stable/>`__.
398+
`pandas DataFrames <https://pandas.pydata.org/pandas-docs/stable/>`__.
399399

400400
To each column, a different transformation can be applied, such as
401401
preprocessing or a specific feature extraction method::

doc/modules/covariance.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -264,7 +264,7 @@ paper. It is the same algorithm as in the R ``glasso`` package.
264264
.. topic:: References:
265265

266266
* Friedman et al, `"Sparse inverse covariance estimation with the
267-
graphical lasso" <http://biostatistics.oxfordjournals.org/content/9/3/432.short>`_,
267+
graphical lasso" <https://biostatistics.oxfordjournals.org/content/9/3/432.short>`_,
268268
Biostatistics 9, pp 432, 2008
269269

270270
.. _robust_covariance:

doc/modules/cross_validation.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -422,7 +422,7 @@ fold cross validation should be preferred to LOO.
422422
* R. Bharat Rao, G. Fung, R. Rosales, `On the Dangers of Cross-Validation. An Experimental Evaluation
423423
<https://people.csail.mit.edu/romer/papers/CrossVal_SDM08.pdf>`_, SIAM 2008;
424424
* G. James, D. Witten, T. Hastie, R Tibshirani, `An Introduction to
425-
Statistical Learning <http://www-bcf.usc.edu/~gareth/ISL>`_, Springer 2013.
425+
Statistical Learning <https://www-bcf.usc.edu/~gareth/ISL/>`_, Springer 2013.
426426

427427

428428
Leave P Out (LPO)

doc/modules/decomposition.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -270,10 +270,10 @@ factorization, while larger values shrink many coefficients to zero.
270270
.. topic:: References:
271271

272272
.. [Mrl09] `"Online Dictionary Learning for Sparse Coding"
273-
<http://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
273+
<https://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
274274
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009
275275
.. [Jen09] `"Structured Sparse Principal Component Analysis"
276-
<www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf>`_
276+
<https://www.di.ens.fr/~fbach/sspca_AISTATS2010.pdf>`_
277277
R. Jenatton, G. Obozinski, F. Bach, 2009
278278
279279
@@ -289,7 +289,7 @@ where :math:`k` is a user-specified parameter.
289289
When truncated SVD is applied to term-document matrices
290290
(as returned by ``CountVectorizer`` or ``TfidfVectorizer``),
291291
this transformation is known as
292-
`latent semantic analysis <http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
292+
`latent semantic analysis <https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
293293
(LSA), because it transforms such matrices
294294
to a "semantic" space of low dimensionality.
295295
In particular, LSA is known to combat the effects of synonymy and polysemy
@@ -354,7 +354,7 @@ compensating for LSA's erroneous assumptions about textual data.
354354
* Christopher D. Manning, Prabhakar Raghavan and Hinrich Schütze (2008),
355355
*Introduction to Information Retrieval*, Cambridge University Press,
356356
chapter 18: `Matrix decompositions & latent semantic indexing
357-
<http://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
357+
<https://nlp.stanford.edu/IR-book/pdf/18lsi.pdf>`_
358358

359359

360360
.. _DictionaryLearning:
@@ -495,7 +495,7 @@ extracted from part of the image of a raccoon face looks like.
495495
.. topic:: References:
496496

497497
* `"Online dictionary learning for sparse coding"
498-
<http://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
498+
<https://www.di.ens.fr/sierra/pdfs/icml09.pdf>`_
499499
J. Mairal, F. Bach, J. Ponce, G. Sapiro, 2009
500500

501501
.. _MiniBatchDictionaryLearning:

doc/modules/feature_extraction.rst

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@ otherwise the features will not be mapped evenly to the columns.
207207

208208
* Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola and
209209
Josh Attenberg (2009). `Feature hashing for large scale multitask learning
210-
<http://alex.smola.org/papers/2009/Weinbergeretal09.pdf>`_. Proc. ICML.
210+
<https://alex.smola.org/papers/2009/Weinbergeretal09.pdf>`_. Proc. ICML.
211211

212212
* `MurmurHash3 <https://github.com/aappleby/smhasher>`_.
213213

@@ -409,7 +409,7 @@ identify and warn about some kinds of inconsistencies.
409409

410410
.. [NQY18] J. Nothman, H. Qin and R. Yurchak (2018).
411411
`"Stop Word Lists in Free Open-source Software Packages"
412-
<http://aclweb.org/anthology/W18-2502>`__.
412+
<https://aclweb.org/anthology/W18-2502>`__.
413413
In *Proc. Workshop for NLP Open Source Software*.
414414
415415
.. _tfidf:
@@ -673,7 +673,7 @@ The output is not shown here.
673673

674674
For an introduction to Unicode and character encodings in general,
675675
see Joel Spolsky's `Absolute Minimum Every Software Developer Must Know
676-
About Unicode <http://www.joelonsoftware.com/articles/Unicode.html>`_.
676+
About Unicode <https://www.joelonsoftware.com/articles/Unicode.html>`_.
677677

678678
.. _`ftfy`: https://github.com/LuminosoInsight/python-ftfy
679679

@@ -932,7 +932,7 @@ Some tips and tricks:
932932
scikit-learn codebase, but can be added by customizing either the
933933
tokenizer or the analyzer.
934934
Here's a ``CountVectorizer`` with a tokenizer and lemmatizer using
935-
`NLTK <http://www.nltk.org>`_::
935+
`NLTK <https://www.nltk.org/>`_::
936936

937937
>>> from nltk import word_tokenize # doctest: +SKIP
938938
>>> from nltk.stem import WordNetLemmatizer # doctest: +SKIP

doc/modules/kernel_approximation.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -194,7 +194,7 @@ or store training examples.
194194
.. topic:: References:
195195

196196
.. [RR2007] `"Random features for large-scale kernel machines"
197-
<http://www.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf>`_
197+
<https://www.robots.ox.ac.uk/~vgg/rg/papers/randomfeatures.pdf>`_
198198
Rahimi, A. and Recht, B. - Advances in neural information processing 2007,
199199
.. [LS2010] `"Random Fourier approximations for skewed multiplicative histogram kernels"
200200
<http://www.maths.lth.se/matematiklth/personal/sminchis/papers/lis_dagm10.pdf>`_

doc/modules/linear_model.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -508,7 +508,7 @@ column is always zero.
508508
.. topic:: References:
509509

510510
* Original Algorithm is detailed in the paper `Least Angle Regression
511-
<http://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf>`_
511+
<https://www-stat.stanford.edu/~hastie/Papers/LARS/LeastAngle_2002.pdf>`_
512512
by Hastie et al.
513513

514514

@@ -547,7 +547,7 @@ previously chosen dictionary elements.
547547

548548
.. topic:: References:
549549

550-
* http://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
550+
* https://www.cs.technion.ac.il/~ronrubin/Publications/KSVD-OMP-v2.pdf
551551

552552
* `Matching pursuits with time-frequency dictionaries
553553
<http://blanche.polytechnique.fr/~mallat/papiers/MallatPursuit93.pdf>`_,
@@ -710,7 +710,7 @@ ARD is also known in the literature as *Sparse Bayesian Learning* and
710710

711711
.. [1] Christopher M. Bishop: Pattern Recognition and Machine Learning, Chapter 7.2.1
712712
713-
.. [2] David Wipf and Srikantan Nagarajan: `A new view of automatic relevance determination <http://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf>`_
713+
.. [2] David Wipf and Srikantan Nagarajan: `A new view of automatic relevance determination <https://papers.nips.cc/paper/3372-a-new-view-of-automatic-relevance-determination.pdf>`_
714714
715715
.. [3] Michael E. Tipping: `Sparse Bayesian Learning and the Relevance Vector Machine <http://www.jmlr.org/papers/volume1/tipping01a/tipping01a.pdf>`_
716716

doc/modules/manifold.rst

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -343,7 +343,7 @@ The overall complexity of spectral embedding is
343343

344344
* `"Laplacian Eigenmaps for Dimensionality Reduction
345345
and Data Representation"
346-
<http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf>`_
346+
<https://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf>`_
347347
M. Belkin, P. Niyogi, Neural Computation, June 2003; 15 (6):1373-1396
348348

349349

@@ -461,15 +461,15 @@ order to avoid that, the disparities :math:`\hat{d}_{ij}` are normalized.
461461
.. topic:: References:
462462

463463
* `"Modern Multidimensional Scaling - Theory and Applications"
464-
<http://www.springer.com/fr/book/9780387251509>`_
464+
<https://www.springer.com/fr/book/9780387251509>`_
465465
Borg, I.; Groenen P. Springer Series in Statistics (1997)
466466

467467
* `"Nonmetric multidimensional scaling: a numerical method"
468-
<http://link.springer.com/article/10.1007%2FBF02289694>`_
468+
<https://link.springer.com/article/10.1007%2FBF02289694>`_
469469
Kruskal, J. Psychometrika, 29 (1964)
470470

471471
* `"Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis"
472-
<http://link.springer.com/article/10.1007%2FBF02289565>`_
472+
<https://link.springer.com/article/10.1007%2FBF02289565>`_
473473
Kruskal, J. Psychometrika, 29, (1964)
474474

475475
.. _t_sne:
@@ -561,7 +561,7 @@ is a tradeoff between performance and accuracy. Larger angles imply that we
561561
can approximate larger regions by a single point, leading to better speed
562562
but less accurate results.
563563

564-
`"How to Use t-SNE Effectively" <http://distill.pub/2016/misread-tsne/>`_
564+
`"How to Use t-SNE Effectively" <https://distill.pub/2016/misread-tsne/>`_
565565
provides a good discussion of the effects of the various parameters, as well
566566
as interactive plots to explore the effects of different parameters.
567567

doc/modules/metrics.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -63,7 +63,7 @@ is equivalent to :func:`linear_kernel`, only slower.)
6363

6464
* C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to
6565
Information Retrieval. Cambridge University Press.
66-
http://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html
66+
https://nlp.stanford.edu/IR-book/html/htmledition/the-vector-space-model-for-scoring-1.html
6767

6868
.. _linear_kernel:
6969

@@ -149,7 +149,7 @@ Manhattan distance between the input vectors.
149149

150150
It has proven useful in ML applied to noiseless data.
151151
See e.g. `Machine learning for quantum mechanics in a nutshell
152-
<http://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/>`_.
152+
<https://onlinelibrary.wiley.com/doi/10.1002/qua.24954/abstract/>`_.
153153

154154
.. _chi2_kernel:
155155

doc/modules/model_evaluation.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -775,7 +775,7 @@ binary classification and multilabel indicator format.
775775
.. topic:: References:
776776

777777
.. [Manning2008] C.D. Manning, P. Raghavan, H. Schütze, `Introduction to Information Retrieval
778-
<http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
778+
<https://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-ranked-retrieval-results-1.html>`_,
779779
2008.
780780
.. [Everingham2010] M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman,
781781
`The Pascal Visual Object Classes (VOC) Challenge
@@ -785,7 +785,7 @@ binary classification and multilabel indicator format.
785785
<http://www.machinelearning.org/proceedings/icml2006/030_The_Relationship_Bet.pdf>`_,
786786
ICML 2006.
787787
.. [Flach2015] P.A. Flach, M. Kull, `Precision-Recall-Gain Curves: PR Analysis Done Right
788-
<http://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
788+
<https://papers.nips.cc/paper/5867-precision-recall-gain-curves-pr-analysis-done-right.pdf>`_,
789789
NIPS 2015.
790790
791791

doc/modules/model_persistence.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -87,4 +87,4 @@ another architecture is not supported.
8787

8888
If you want to know more about these issues and explore other possible
8989
serialization methods, please refer to this
90-
`talk by Alex Gaynor <http://pyvideo.org/video/2566/pickles-are-for-delis-not-software>`_.
90+
`talk by Alex Gaynor <https://pyvideo.org/video/2566/pickles-are-for-delis-not-software>`_.

doc/modules/naive_bayes.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -72,7 +72,7 @@ it is known to be a bad estimator, so the probability outputs from
7272
.. topic:: References:
7373

7474
* H. Zhang (2004). `The optimality of Naive Bayes.
75-
<http://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf>`_
75+
<https://www.cs.unb.ca/~hzhang/publications/FLAIRS04ZhangH.pdf>`_
7676
Proc. FLAIRS.
7777

7878
.. _gaussian_naive_bayes:

doc/modules/neighbors.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -307,7 +307,7 @@ keyword ``algorithm = 'kd_tree'``, and are computed using the class
307307
.. topic:: References:
308308

309309
* `"Multidimensional binary search trees used for associative searching"
310-
<http://dl.acm.org/citation.cfm?doid=361002.361007>`_,
310+
<https://dl.acm.org/citation.cfm?doid=361002.361007>`_,
311311
Bentley, J.L., Communications of the ACM (1975)
312312

313313

doc/modules/neural_networks_unsupervised.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -152,10 +152,10 @@ explore the space more thoroughly.
152152
.. topic:: References:
153153

154154
* `"A fast learning algorithm for deep belief nets"
155-
<http://www.cs.toronto.edu/~hinton/absps/fastnc.pdf>`_
155+
<https://www.cs.toronto.edu/~hinton/absps/fastnc.pdf>`_
156156
G. Hinton, S. Osindero, Y.-W. Teh, 2006
157157

158158
* `"Training Restricted Boltzmann Machines using Approximations to
159159
the Likelihood Gradient"
160-
<http://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf>`_
160+
<https://www.cs.toronto.edu/~tijmen/pcd/pcd.pdf>`_
161161
T. Tieleman, 2008

doc/modules/outlier_detection.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ but regular, observation outside the frontier.
153153
.. topic:: References:
154154

155155
* `Estimating the support of a high-dimensional distribution
156-
<http://dl.acm.org/citation.cfm?id=1119749>`_ Schölkopf,
156+
<https://dl.acm.org/citation.cfm?id=1119749>`_ Schölkopf,
157157
Bernhard, et al. Neural computation 13.7 (2001): 1443-1471.
158158

159159
.. topic:: Examples:

doc/modules/random_projection.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,7 @@ technique for distance based method.
2222
.. topic:: References:
2323

2424
* Sanjoy Dasgupta. 2000.
25-
`Experiments with random projection. <http://cseweb.ucsd.edu/~dasgupta/papers/randomf.pdf>`_
25+
`Experiments with random projection. <https://cseweb.ucsd.edu/~dasgupta/papers/randomf.pdf>`_
2626
In Proceedings of the Sixteenth conference on Uncertainty in artificial
2727
intelligence (UAI'00), Craig Boutilier and Moisés Goldszmidt (Eds.). Morgan
2828
Kaufmann Publishers Inc., San Francisco, CA, USA, 143-151.

doc/modules/tree.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -125,8 +125,8 @@ Using the Iris dataset, we can construct a tree as follows::
125125
>>> clf = clf.fit(iris.data, iris.target)
126126

127127
Once trained, we can export the tree in `Graphviz
128-
<http://www.graphviz.org/>`_ format using the :func:`export_graphviz`
129-
exporter. If you use the `conda <http://conda.io>`_ package manager, the graphviz binaries
128+
<https://www.graphviz.org/>`_ format using the :func:`export_graphviz`
129+
exporter. If you use the `conda <https://conda.io/>`_ package manager, the graphviz binaries
130130
and the python package can be installed with
131131

132132
conda install python-graphviz

0 commit comments

Comments
 (0)
0