@@ -26,7 +26,7 @@ def optics(X, min_samples=5, max_eps=np.inf, metric='minkowski',
26
26
p = 2 , metric_params = None , maxima_ratio = .75 ,
27
27
rejection_ratio = .7 , similarity_threshold = 0.4 ,
28
28
significant_min = .003 , min_cluster_size = .005 ,
29
- min_maxima_ratio = 0.001 , algorithm = 'ball_tree ' ,
29
+ min_maxima_ratio = 0.001 , algorithm = 'auto ' ,
30
30
leaf_size = 30 , n_jobs = None ):
31
31
"""Perform OPTICS clustering from vector array
32
32
@@ -133,11 +133,11 @@ def optics(X, min_samples=5, max_eps=np.inf, metric='minkowski',
133
133
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
134
134
Algorithm used to compute the nearest neighbors:
135
135
136
- - 'ball_tree' will use :class:`BallTree` (default)
136
+ - 'ball_tree' will use :class:`BallTree`
137
137
- 'kd_tree' will use :class:`KDTree`
138
138
- 'brute' will use a brute-force search.
139
139
- 'auto' will attempt to decide the most appropriate algorithm
140
- based on the values passed to :meth:`fit` method.
140
+ based on the values passed to :meth:`fit` method. (default)
141
141
142
142
Note: fitting on sparse input will override the setting of
143
143
this parameter, using brute force.
@@ -289,11 +289,11 @@ class OPTICS(BaseEstimator, ClusterMixin):
289
289
algorithm : {'auto', 'ball_tree', 'kd_tree', 'brute'}, optional
290
290
Algorithm used to compute the nearest neighbors:
291
291
292
- - 'ball_tree' will use :class:`BallTree` (default)
292
+ - 'ball_tree' will use :class:`BallTree`
293
293
- 'kd_tree' will use :class:`KDTree`
294
294
- 'brute' will use a brute-force search.
295
295
- 'auto' will attempt to decide the most appropriate algorithm
296
- based on the values passed to :meth:`fit` method.
296
+ based on the values passed to :meth:`fit` method. (default)
297
297
298
298
Note: fitting on sparse input will override the setting of
299
299
this parameter, using brute force.
@@ -357,7 +357,7 @@ def __init__(self, min_samples=5, max_eps=np.inf, metric='minkowski',
357
357
p = 2 , metric_params = None , maxima_ratio = .75 ,
358
358
rejection_ratio = .7 , similarity_threshold = 0.4 ,
359
359
significant_min = .003 , min_cluster_size = .005 ,
360
- min_maxima_ratio = 0.001 , algorithm = 'ball_tree ' ,
360
+ min_maxima_ratio = 0.001 , algorithm = 'auto ' ,
361
361
leaf_size = 30 , n_jobs = None ):
362
362
363
363
self .max_eps = max_eps
0 commit comments