12
12
from sklearn .mixture import BayesianGaussianMixture
13
13
from sklearn .mixture ._bayesian_mixture import _log_dirichlet_norm , _log_wishart_norm
14
14
from sklearn .mixture .tests .test_gaussian_mixture import RandomData
15
- from sklearn .utils ._array_api import get_namespace
16
15
from sklearn .utils ._testing import (
17
16
assert_almost_equal ,
18
17
assert_array_equal ,
@@ -260,7 +259,6 @@ def test_compare_covar_type():
260
259
rand_data = RandomData (rng , scale = 7 )
261
260
X = rand_data .X ["full" ]
262
261
n_components = rand_data .n_components
263
- xp , _ = get_namespace (X )
264
262
265
263
for prior_type in PRIOR_TYPE :
266
264
# Computation of the full_covariance
@@ -273,7 +271,7 @@ def test_compare_covar_type():
273
271
tol = 1e-7 ,
274
272
)
275
273
bgmm ._check_parameters (X )
276
- bgmm ._initialize_parameters (X , np .random .RandomState (0 ), xp = xp )
274
+ bgmm ._initialize_parameters (X , np .random .RandomState (0 ))
277
275
full_covariances = (
278
276
bgmm .covariances_ * bgmm .degrees_of_freedom_ [:, np .newaxis , np .newaxis ]
279
277
)
@@ -288,7 +286,7 @@ def test_compare_covar_type():
288
286
tol = 1e-7 ,
289
287
)
290
288
bgmm ._check_parameters (X )
291
- bgmm ._initialize_parameters (X , np .random .RandomState (0 ), xp = xp )
289
+ bgmm ._initialize_parameters (X , np .random .RandomState (0 ))
292
290
293
291
tied_covariance = bgmm .covariances_ * bgmm .degrees_of_freedom_
294
292
assert_almost_equal (tied_covariance , np .mean (full_covariances , 0 ))
@@ -303,7 +301,7 @@ def test_compare_covar_type():
303
301
tol = 1e-7 ,
304
302
)
305
303
bgmm ._check_parameters (X )
306
- bgmm ._initialize_parameters (X , np .random .RandomState (0 ), xp = xp )
304
+ bgmm ._initialize_parameters (X , np .random .RandomState (0 ))
307
305
308
306
diag_covariances = bgmm .covariances_ * bgmm .degrees_of_freedom_ [:, np .newaxis ]
309
307
assert_almost_equal (
@@ -320,7 +318,7 @@ def test_compare_covar_type():
320
318
tol = 1e-7 ,
321
319
)
322
320
bgmm ._check_parameters (X )
323
- bgmm ._initialize_parameters (X , np .random .RandomState (0 ), xp = xp )
321
+ bgmm ._initialize_parameters (X , np .random .RandomState (0 ))
324
322
325
323
spherical_covariances = bgmm .covariances_ * bgmm .degrees_of_freedom_
326
324
assert_almost_equal (spherical_covariances , np .mean (diag_covariances , 1 ))
0 commit comments