@@ -925,11 +925,11 @@ def check_sample_weights_pandas_series(name, estimator_orig):
925
925
[3 , 4 ],
926
926
]
927
927
)
928
- X = pd .DataFrame (_enforce_estimator_tags_X (estimator_orig , X ))
928
+ X = pd .DataFrame (_enforce_estimator_tags_X (estimator_orig , X ), copy = False )
929
929
y = pd .Series ([1 , 1 , 1 , 1 , 2 , 2 , 2 , 2 , 1 , 1 , 2 , 2 ])
930
930
weights = pd .Series ([1 ] * 12 )
931
931
if _safe_tags (estimator , key = "multioutput_only" ):
932
- y = pd .DataFrame (y )
932
+ y = pd .DataFrame (y , copy = False )
933
933
try :
934
934
estimator .fit (X , y , sample_weight = weights )
935
935
except ValueError :
@@ -3218,10 +3218,10 @@ def check_estimators_data_not_an_array(name, estimator_orig, X, y, obj_type):
3218
3218
3219
3219
y_ = np .asarray (y )
3220
3220
if y_ .ndim == 1 :
3221
- y_ = pd .Series (y_ )
3221
+ y_ = pd .Series (y_ , copy = False )
3222
3222
else :
3223
- y_ = pd .DataFrame (y_ )
3224
- X_ = pd .DataFrame (np .asarray (X ))
3223
+ y_ = pd .DataFrame (y_ , copy = False )
3224
+ X_ = pd .DataFrame (np .asarray (X ), copy = False )
3225
3225
3226
3226
except ImportError :
3227
3227
raise SkipTest (
@@ -3897,7 +3897,7 @@ def check_dataframe_column_names_consistency(name, estimator_orig):
3897
3897
n_samples , n_features = X_orig .shape
3898
3898
3899
3899
names = np .array ([f"col_{ i } " for i in range (n_features )])
3900
- X = pd .DataFrame (X_orig , columns = names )
3900
+ X = pd .DataFrame (X_orig , columns = names , copy = False )
3901
3901
3902
3902
if is_regressor (estimator ):
3903
3903
y = rng .normal (size = n_samples )
@@ -3985,7 +3985,7 @@ def check_dataframe_column_names_consistency(name, estimator_orig):
3985
3985
early_stopping_enabled = any (value is True for value in params .values ())
3986
3986
3987
3987
for invalid_name , additional_message in invalid_names :
3988
- X_bad = pd .DataFrame (X , columns = invalid_name )
3988
+ X_bad = pd .DataFrame (X , columns = invalid_name , copy = False )
3989
3989
3990
3990
expected_msg = re .escape (
3991
3991
"The feature names should match those that were passed during fit.\n "
@@ -4094,7 +4094,7 @@ def check_transformer_get_feature_names_out_pandas(name, transformer_orig):
4094
4094
y_ [::2 , 1 ] *= 2
4095
4095
4096
4096
feature_names_in = [f"col{ i } " for i in range (n_features )]
4097
- df = pd .DataFrame (X , columns = feature_names_in )
4097
+ df = pd .DataFrame (X , columns = feature_names_in , copy = False )
4098
4098
X_transform = transformer .fit_transform (df , y = y_ )
4099
4099
4100
4100
# error is raised when `input_features` do not match feature_names_in
@@ -4324,7 +4324,7 @@ def _check_generated_dataframe(name, case, outputs_default, outputs_pandas):
4324
4324
# We always rely on the output of `get_feature_names_out` of the
4325
4325
# transformer used to generate the dataframe as a ground-truth of the
4326
4326
# columns.
4327
- expected_dataframe = pd .DataFrame (X_trans , columns = feature_names_pandas )
4327
+ expected_dataframe = pd .DataFrame (X_trans , columns = feature_names_pandas , copy = False )
4328
4328
4329
4329
try :
4330
4330
pd .testing .assert_frame_equal (df_trans , expected_dataframe )
@@ -4359,7 +4359,7 @@ def check_set_output_transform_pandas(name, transformer_orig):
4359
4359
set_random_state (transformer )
4360
4360
4361
4361
feature_names_in = [f"col{ i } " for i in range (X .shape [1 ])]
4362
- df = pd .DataFrame (X , columns = feature_names_in )
4362
+ df = pd .DataFrame (X , columns = feature_names_in , copy = False )
4363
4363
4364
4364
transformer_default = clone (transformer ).set_output (transform = "default" )
4365
4365
outputs_default = _output_from_fit_transform (transformer_default , name , X , df , y )
@@ -4401,7 +4401,7 @@ def check_global_ouptut_transform_pandas(name, transformer_orig):
4401
4401
set_random_state (transformer )
4402
4402
4403
4403
feature_names_in = [f"col{ i } " for i in range (X .shape [1 ])]
4404
- df = pd .DataFrame (X , columns = feature_names_in )
4404
+ df = pd .DataFrame (X , columns = feature_names_in , copy = False )
4405
4405
4406
4406
transformer_default = clone (transformer ).set_output (transform = "default" )
4407
4407
outputs_default = _output_from_fit_transform (transformer_default , name , X , df , y )
0 commit comments