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ABSTRACT

This work presents a deep comparison between some of the latest Lambert’s problem solvers from
both an analytical and a performance point of view. Each algorithm is analyzed considering its
iteration variable, the numerical root finder used, the initial guess and the final velocity vectors
construction. The performance results are provided in the form of contour figures relating the
required iterations for a particular combination of the non-dimensional time of flight and transfer
angle. In addition, the time required per iteration and total one are included to retrieve a full
insight of algorithm’s overall performance.

1 INTRODUCTION

The boundary value problem (BVP) in the context
of the restricted two-body dynamics is known as
the Lambert’s problem. It states to find for the
orbit which connects two known position vectors,
~r1 and ~r2, being known the time of flight between
them, ∆t, under gravitational field of strength µ.

Figure 1: Geometry of the problem as seen from
an inertial frame centered in the attractor body.

The problem was originally posed by Johann
Heinrich Lambert, in a letter sent to Leonhard
Euler, after publishing his book [1] about comets’
orbits and their properties. Since its formulation,
many popular scientific figures, such us Lagrange
or Gauss, have addressed this famous astrody-
namics problem, devising a lot of different ap-
proaches to solve for it.

Lambert’s problem (sometimes referred to as
Euler-Lambert or Gauss problem one) gained
popularity during the 60’s due to its applica-
tions in inter-planetary trajectory design, mission
analysis and intercepting maneuvers. Since this
decade, a plethora of solutions has been devised
in the form of computer algorithms. In fact, the
problem still remains of interest, as dozens of ar-
ticles about it have been published over the last
20 years. Therefore, because of the amount of
available solvers, a comparison is needed in or-
der to identify which ones perform the best under
given conditions.

These kind of comparisons were previously car-
ried out by Klumpp [2] in the 90s and De la Torre
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[3] more recently. Therefore, the goal of this re-
port is to expand these analysis by including some
of the latest published algorithms, Avanzini 2008
[4] and Arora 2013 [5], and compare them against
the most robust and accurate ones: Gooding 1990
[6] and Izzo 2015 [7].

All the solvers presented in this report, together
with the performance comparison framework,
have been exposed as a Python package under the
name of lamberthub1. This will be useful for fu-
ture authors when implementing their new solu-
tions and comparing them against already devised
ones, making sure no additional performance is
introduced because of the selected programming
language.

2 STATE OF THE ART

To understand the time evolution of modern Lam-
bert’s problem algorithms, it is important to rec-
ognize the different approaches developed during
the last decades to address the problem. In this
section, a brief refresh on such timeline is pre-
sented.

2.1 The Lancaster-Gooding-Izzo approach

We might establish the origin of modern Lam-
bert’s problem solvers with the publication of
Lancaster’s article [8] about a universal formu-
lation for solving the problem, which extended
also to the multi-revolution case. Lancaster re-
lated the non-dimensional transfer time, denoted
by T , with an independent variable, named x,
for a particular transfer angle parameter, q. The
main advantage of his method was the bounding
of the solution in different regions, being elliptic
for values of x < 1, parabolic when x = 1 and
hyperbolic for x > 1.

The original approach formulated by Lancaster
setup the basis for Gooding’s algorithm [6]. This
routine improved previous one by working out
an accurate initial guess and taking advantage of
its bounded solutions. Gooding carried out a full

analysis on his own method convergence, deter-
mining that no more than three iterations were re-
quired to achieve absolute tolerances near 10−13

floating point value. This routine was found to
be the most robust one (see Klumpp’s analysis
[2]) and thus, it was selected for this performance
comparison.

Just a few years ago, Izzo developed a new algo-
rithm based on previous authors’ solutions. This
solver followed again Lancaster’s approach but
included a last step in which a new indepen-
dent variable, ξ, was introduced. This change
of variable translated into a simpler implementa-
tion, since the new time of flight curves presented
a smooth evolution for zero revolution transfers.
Izzo realized again that the initial guess becomes
important for a faster convergence to the solution,
and devised an algorithm more simpler (from the
implementation point of view) than the one pro-
posed by Gooding. This last fact made it one of
the most popular Lambert solvers as of today, be-
ing used in several astrodynamics and orbital me-
chanics software [9] [10]. Because of all these
facts, Izzo’s solver was included in this analysis
too.

2.2 The Bate-Vallado-Arora approach

Another path of solutions was born after Bate
introduced a new solver in his book [11] about
fundamental astronomy. The notation selected
for the independent variable was z, being related
with the eccentric and hyperbolic anomalies such
that z = ∆E and −z = ∆F . Although this
method also makes use of the universal formulae
as the Lancaster-Gooding-Izzo branch, it diverges
in the way of bounding the solution.

For the case of Bate’s algorithm, the independent
variable can grow up to any multiple of 2π, be-
ing related thus with the number of revolutions as
z = 2πM , where M ∈ [0,∞) is the number of
revolutions. As a final comment on this method,
Bate did not employed any particular initial guess
for its formulation neither imposed a root finder.

1lamberthub source code: https://github.com/jorgepiloto/lamberthub
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However, years later, Vallado developed a new
routine on top Bate’s one, which can be found in
his popular book [12]. This solver was still based
on the universal formulation, although the inde-
pendent variable was renamed to ψ. In addition,
Vallado also pointed out that bisection is a more
robust root finder for the algorithm despite requir-
ing more iterations, for particular cases.

The latest proposed algorithm within this branch
is the routine devised by Arora [5]. Motivated by
the work of Bate, this new formulation introduced
a cosine transformation for the eccentric anomaly
such that cos (∆E) = k2 − 1, where k is the in-
dependent variable in this case. A relation with
the hyperbolic anomaly was also established, so
a bounded solution was achieved by Arora. He
also extended the method to the multi-revolution
case, and a similar figure to the one presented
originally by Lancaster was obtained. Neverthe-
less, the main feature of this method, as opposite
to other modern routines, is the procedure when
solving for the initial guess. This last reason,
together with the fact of being the latest of his
branch, made us to select it for the performance
comparison work.

2.3 The Avanzini-He-Wen approach

Another modern approach was started by
Avanzini after he published a very simple Lam-
bert’ solver [4]. This modern approach was based
on the conservation of the projection of the eccen-
tricity vector, ~e, into the chord one, ~c = ~r2 − ~r1.
The property seems to be introduced in the litera-
ture for the first time by Battin [13]. Only draw-
back about Avanzini’s solver is that he did not ex-
tend it to the multi-revolution case. Nevertheless,
since this analysis is limited to the zero-revolution
(direct arc transfer) analysis, this solver was de-
cided to be included in this work because of being
the first one of its class.

Some years later, He [14] expanded Avanzini’s
algorithm to the multi-revolution case. In addi-
tion, He provided the derivative of the Kepler’s
equation with respect to (w.r.t.) the transverse ec-

centricity component. Avanzini assumed a step-
integration for the numerical root solver as it will
be explained in detail in the next section.

The last work on this branch seems to be per-
formed by Wen [15], who gave a full analysis on
the available eccentricity-based methods and in-
troduced additional proofs on the analytical be-
haviour of the time derivative w.r.t. the transverse
eccentricity component.

2.4 A note about GPU-accelerated solvers

To conclude the state of the art analysis, it must
be pointed out that interest has increased about
the acceleration of Lambert’s problem solvers via
Graphical Processing Units (GPUs). Different ar-
ticles [16] [17] [18] studying the application of
these devices have been published during the last
years. Therefore, another performance compari-
son could be based on the feasibility of a solver
to be paralleled in GPUs. Nevertheless, this com-
parison is out of the scope of this work.

3 ALGORITHMS ANALYSIS

In this section, a review on each one of the se-
lected algorithms is presented, so a comparison
from an analytical point of view is achieved.
Common parts have been identified, such us
the iteration variable (usually called the free-
parameter), the initial guess together with the nu-
merical root finder and finally, the way in which
velocity vectors are obtained. In addition, curves
relating the time of flight as function of the free-
parameter are introduced for each one of the al-
gorithms.

Although attached figures might include multi-
revolution regions, the analysis focuses is only
focused in direct transfer angles, meaning that
initial guess study is restricted also to the direct
transfer problem. Table 1 is provided as a resume
and for quick analytical comparisons.
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3.1 Gooding’s algorithm

As introduced in previous section, Gooding’s al-
gorithm was built on top of Lancaster’s one and
makes use of the universal formulation. The in-
dependent variable was named x and related with
the semi-major axis via x2 = 1 − s/2a, being
a the orbit’s semi-major axis, avoiding the sin-
gularity present in other methods when the orbit
is parabolic, as x = 1 when a = ∞. The non-
dimensional time of flight for this algorithm was
originall defined as τ =

√
(8µ/s3)∆t, being the

semi-perimeter s = (r1 + r2 + c)/2.

Figure 2: Gooding’s time of flight as function of
the independent variable, computed for ρ = 2.
Dashed lines show the limit of the solution re-
gions.

Gooding’s solver, as opposite to Lancaster one,
introduced the generation of an accurate initial
guess, based on a bi-linear approximation for the
single-revolution case and a more complex proce-
dure based on the minimum transfer time for the
multi-revolution case. In addition, Gooding made
use of Halley’s method to ensure a fast conver-
gence to the solution.The curves for the time of
flight as function of the transfer angle parameter
q and the independent variable are provided in fig-
ure 2. The lines for q = −1 suffer show an slope

change when x = 0 (minimum energy solution).
Lancaster pointed out the necessity of using bi-
section methods within this region, since deriva-
tive based ones fail. However, the initial guess
generated by Gooding already takes into account
this region, not requiring to change the iterative
method at all.

3.2 Avanzini’s algorithm

Avanzini’s algorithm is the very first one exploit-
ing eccentricity as the independent variable to
reach a solution to the problem. Because the or-
bit equation can be expressed as ~e · ~r = p − r,
if evaluated at the two known position vectors, ~r1
and ~r2, it is possible to obtain equation 1:

~e · (~r2 − ~r1) = r1 − r2 (1)

where it can be seen that the projection of the
eccentricity vector along the chord one remains
constant. Hence, by calling the value of the pro-
jection the fundamental eccentricity eF and the
transverse one eT , it is possible to iterate over this
last value to find the time of flight which matches
the actual one. This process is achieved making
use of Kepler’s equation, paying attention to ellip-
tic, parabolic or hyperbolic formulae depending
on the value of |~e| found during a particular iter-
ation. A final mathematical transformation is im-
posed to improve the convergence of the method,
being the new independent variable x. Therefore,
the final expression to be solved is:

τ = f(ρ,∆θ, eT ) (2)

where f is Kepler’s equation evaluated at obser-
vation vectors’ norms ratio ρ = r2/r1, transfer
angle ∆θ and the transverse eccentricity com-
ponent eT . The condition is that the computed
τ matches the current non-dimensional time of
flight τ ? of the observations. In Avanzini’s algo-
rithm, the non-dimensional time of flight is found
to be τ = ∆t

√
µ/r31.

Avanzini bounded the values of eT according to
the transfer angle. This is important, as he did
not provide the explicit time derivative of Ke-
pler’s equation w.r.t. the independent variable,
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constraining the usage of bounded root finders
like bisection or regula-falsi ones. Regarding the
initial guess, no particular approach was followed
and x = 0 value was arbitrarily chosen as the
starting value.

The evolution of the non-dimensional time of
flight as function of the independent variable is
shown in figure 3 for a variety of transfer angles.

Figure 3: Avanzini’s time of flight as function of
the independent variable, for ρ = 2. Evolution for
different non-collinear transfer angles is shown.

3.3 Arora’s algorithm

Arora’s is one of the most recent published
solvers. Its solution originates from Bate’s one
although it makes use of a cosine transformation
to simplify the relation between the independent
variable named k and the time of flight. This
variable is related with the eccentric anomaly
for the elliptic case and also with the hyperbolic
anomaly, for the corresponding orbit geometry.

In addition to the mathematical transformation
proposed, Arora points that a robust initial guess
is crucial if a fast convergence is desired. In fact,
most of Arora’s work is devoted to the explana-
tions about for the initial guess, being the most ex-
tensive up to date. At firts, two major regions are

identified: zero-revolution and multi-revolution
zones (only the first one is considered in this re-
port.)

The first step, for the zero-revolution initial guess,
is to compute the time of flight for a parabolic
orbit by making use of available problem geom-
etry. If the current time of flight is shown to be
greater or lower than parabolic one, the elliptic or
hyperbolic region is selected. After that, a new
region classification applies within previous re-
gions, being the hyperbolic divided into two and
the elliptic having a total of four zones. Tabu-
lated times of flight are provided within original
article, introducing hence a new approach to the
initial guess formulation.

Figure 4: Arora’s time of flight as function of the
independent variable, for ρ = 7.098 (same value
from original report). As opposite to Gooding’s
figure, only shows all possible solutions for a par-
ticular problem geometry.

The root solver used is Halley’s one, similarly to
Gooding, and the construction of velocity vectors
is made via f and g functions. Figure 4, as in pre-
vious algorithms, shows the time of flight against
the independent variable, being adimensionalized
in the same way as with Avanzini solver.
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3.4 Izzo’s algorithm

Izzo’s algorithm is the most modern of the solvers
analyzed in this work. Most of Izzo’s work inher-
its from Lancaster’s one, similarly as Gooding’s
solver. However, a new Lambert invariant named
ξ is introduced depending on the number of revo-
lutions. The mathematical transformation applied
makes the time of flight curves to have a new do-
main going from -∞ up to∞.

Figure 5: Izzo’s time of flight as function of the
independent variable, for ρ = 1

For these new set of curves, Izzo selected a
Householder root finder, as opposite to Gooding
and Arora, which made used of Halley’s method.
Izzo claimed this method to be the most benefi-

cial from the iterative point of view. Regarding
the initial guess, a first selection between zero-
revolution and multi-revolution zones is applied.
For the first one, a simple linear approximation is
carried out imposing an asymptotic behaviour.

Finally, the velocity vectors are constructed by
following the radial and tangential formulae. For
this last solver, figure 5 provides, as in previous
cases, the time of flight curves.

3.5 Algorithm’s steps comparison table

All previous algorithms were analyzed consid-
ering common steps followed by any Lambert’s
problem solver: iteration free-parameter, the ini-
tial guess, the root finder and velocity vectors
construction. All the information previously pre-
sented about those is collected within table 1.

Notice that, event if the approach followed for
finding the solution is different, there are common
elements. In particular, it is seen that high-order
numerical methods are desired for a fast conver-
gence of the solution. This is usually followed by
a robust initial guess which ensures that only a
few iterations will be required to achieve accurate
solution values.

In addition, radial and tangential velocity con-
struction is seen to be used by two of the four
methods analyzed in this work, although Avanzini
is the first one from all the cited methods which
outputs the classical orbital elements (COE) for
complete orbit definition.

Table 1: Algorithms fundamental steps comparison

Step
Method

Gooding Avanzini Arora Izzo
Free-parameter x eT k ξ

Initial guess Bi-linear x = 0 Rational formulae Linear approximation
Root finder Halley Regula-falsi Halley Householder

Velocity vectors Radial and tangential COE to RV f and g functions Radial and tangential
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4 PERFORMANCE COMPARISON

In the following sections, the performance com-
parison between Gooding [6], Avanzini [4], Arora
[5] and Izzo [7] is presented. At first, the number
of iterations required for a particular combina-
tion of dimensionless time of flight and transfer
time is presented. However, because these con-
tour plots do not provide a full insight of how
the algorithm performs from the point of view of
time, figures indicating the time per iteration and
the total computation time are also provided.

This analysis was performed imposing that the
final radius is twice in length as the initial one
(i.e ρ = 2). Its direction was computed by gener-
ating all the values associated with a linear span
of transfer angles between 0 and 2π. Finally, the
absolute tolerance was selected to be 10−5 and
the relative one 10−7.

The results regarding benchmarking tests are in-
fluenced by the current solvers implementation,
the machine specifications (Thinkpad X230 Intel
Core i5-3320M CPU at 2.60G EndevourOS, in
this case) and additional processes running on it.
To avoid spurious values, several iterations were
performed and average values were computed.

4.1 Number of required iterations

Figures 6, 7, 8 and 9 show the contour maps
were the number of iterations is computed for a
particular combination of the transfer angle and
the non-dimensional time of flight, computed as

τ =
√

(8µ/s3)∆t, similarly to Gooding’s one.

Arora’s algorithm is shown to be the one requir-
ing less iterations, followed by Izzo’s. Good-
ing solver, as noticed by his author, only re-
quires three iterations in many of the cases while
Avanzini’s procedure is shown to need four of
those due to the root-finder used, the regula-falsi
one.

4.2 Time required per iteration and total one

The time per iteration does not consider the one
required for computing the initial guess neither
the velocity construction one. Only the time be-
tween the start and end of the iterative process is
measured. Results are provided within figures 10,
11, 12 and 13.

The fastest time per iteration is achieved by
Gooding’s solver, followed by Izzo’s, Arora’s and
Avanzini’s solvers in this order. Gooding, Arora
and Izzo solver require more time if the region
is near τ = π/2 or below this value. Regarding
Avanzini one, the regula-falsi method is the cause
of such a big time per iteration.

Finally, although strongly influenced by the algo-
rithms implementation, the total required time is
also considered just to complete the whole perfor-
mance analysis. This time is measured since the
solver function is called till the velocity vectors
are returned. Results are collected in figures 14,
15, 16 and 17, being summarized in table 2, were
Izzo’s solver is found to be the fastest one.

Table 2: Performance comparison average results

Method Average iterations Time per iteration Total time Iteration workload
Gooding 1990 2.57 23.78 µs/iter 754.83 µs 8.10 %
Avanzini 2008 4.46 153.23 µs/iter 2679.74 µs 25.50 %

Arora 2013 2.06 37.80 µs/iter 558.50 µs 13.94 %
Izzo 2015 2.32 36.37 µs/iter 441.29 µs 19.12 %
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Figure 6: Gooding’s algorithm does not exceed
more than three iterations. In fact, original rou-
tine imposed this as the number of iterations by
default, without letting user to select a particular
value of them.

Figure 7: Avanzini’s solver requires a greater
number of iterations when compared to the rest
of solvers. The central region seems to converge
quickly while outer regions require more steps to
be solved.

Figure 8: Arora’s algorithm shows a uniform
number of iterations, around two, while corner
regions are seen to require up to three. It re-
quires the lowest number of average iterations of
all solvers.

Figure 9: Izzo’s solver takes only between two
to three iterations in the majority of the cases.
However, it shows an increase up to four of them
when the non-dimensional time of flight close is
to τ = π/2.
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Figure 10: The algorithm developed by Good-
ing seems to require more time of computation
when the solution holds the non-dimensional
time close to τ = π/2 although it performs very
quickly.

Figure 11: The high time required per iteration in
Avanzini’s routine is directly related to the root-
finder used, that is, the regula-falsi method. In
addition, the center region shows a lower perfor-
mance.

Figure 12: Arora’s solver shows an increase in
the required iteration time for times of flight be-
low τ = π/2 and in the regions located within
the corner values.

Figure 13: The algorithm by Izzo shows an sta-
ble iteration time, although suffers from a time
increase in the lower region of the figure, simi-
larly to other solvers.
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Figure 14: Gooding’s total time of computation
is seen to be uniform all over the combinations
between transfer angle and non-dimensional
time. Despite requiring a low number of itera-
tions, its total mean time is relatively high.

Figure 15: The amount of time required for the
solver to retrieve the solution is probably a com-
bination of non-existent initial guess, the numer-
ical method used and the current implementa-
tion.

Figure 16: Arora’s solver presents a uniform and
low computation time for the whole problem.
However, when compared to its previous figures,
it can be seen that most of the time is consumed
during the initial guess computation.

Figure 17: Izzo’s shows highest time perfor-
mance when addressing the whole problem. The
total time of computation is seen to be the lowest
one when compared to the rest of the solvers. It
also shows an stable behaviour.
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5 RESULTS AND CONCLUSION

With all the results about the number of required
iterations, the time per iteration and the total one,
it is possible now to present a variety of con-
clusions on all these modern Lambert’s problem
solvers.

5.1 Effects of the initial guess and root-solver

Recalling table 1 and solver’s required time per
iteration figures, it can be concluded that a robust
initial guess followed by a high-order root solver
leads to a low time per iteration required, increas-
ing solver’s performance.

In fact, the routines developed by Gooding and
Arora implemented a 2nd order method (Halley’s
one) while Izzo makes use of a 3rd order solver
(Householder). All these routines are seen to
require a very low time per iteration, while the
regula-falsi method employed by Avanzini sig-
nificantly reduces performance.

5.2 About the iteration workload

From the data presented in the iteration workload
column (see table 2) and taking into account the
total one, it can be stated that Izzo’s algorithm
performs the best, as it combines a low total com-
putation time, much of which is devoted to the
iteration process.

Although Avanzini’s solver is seen to have the
highest iteration workload, this is due to the low
rate of convergence produced by its root finder.
Regarding Gooding’s and Arora’s solvers, the
percentage is lower, as the computation of the ini-
tial guess requires more time.

5.3 Conclusion

Being collected and analyzed all the results, it
is seen that methods based on the universal for-
mulation presented in this work show a better
performance than those using the eccentricity so-
lution path.

A robust initial guess in combination with a high
order root finder leads to a low time per iteration.
However, special attention needs to be payed to
the initial guess generation. If the subroutine em-
ployed is too complex, the total computation time
will increase together with the implementation
costs.

The algorithms presented within this work can be
sorted in performance as follows: Izzo, Arora,
Gooding and Avanzini.

However, previous solvers are just an small set all
the available ones. Therefore, this analysis might
be extended including more solvers or new solu-
tion approaches. In addition, additional scenarios,
such us the multi-revolution case could be ana-
lyzed, taking advantage of all the different tools
provided by this work.
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