10000 RMDL/Examples at master · kk7nc/RMDL · GitHub
[go: up one dir, main page]

Skip to content

Latest commit

 

History

History

Examples

Results

Image Classification

  • MNIST Dataset

    • The MNIST database contains 60,000 training images and 10,000 testing images.
  • CIFAR-10 Dataset

    • The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images.

MNIST annd CIFAR-10

Methods MNIST CIFAR-10
Deep L2-SVM 0.87 11.9
Maxout Network 0.94 11.68
BinaryConnect 1.29 9.90
PCANet-1 0.62 21.33
gcForest 0.74 31.00
RMDL (3 RDLs) 0.51 9.89
RMDL (9 RDLs) 0.41 9.1
RMDL (15 RDLs) 0.21 8.74
RMDL (30 RDLs) 0.18 8.79

Text Classification

Web of Science Dataset annd Reuters-21578

WOS-5,736 WOS-11,967 WOS-46,985 Reuters-21578
Deep Neural Networks (DNN) 86.15 80.02 66.95 85.3
Convolutional Neural Netwroks (CNN) 88.68 83.29 70.46 86.3
Recurrent Neural Networks (DNN) 89.46 83.96 72.12 88.4
Naive Bayesian Classifier 78.14 68.8 46.2 83.6
Support Vector Machine (SVM) 85.54 80.65 67.56 86.9
Support Vector Machine (SVM using TF-IDF) 88.24 83.16 70.22 88.93
Stacking Support Vector Machine 85.68 79.45 71.81 NA
HDLTex 90.42 86.07 76.58 NA
RMDL (3 RDLs) 90.86 87.39 78.39 89.10
RMDL (9 RDLs) 92.60 90.65 81.92 90.36
RMDL (15 RDLs) 92.66 91.01 81.86 89.91
RMDL (30 RDLs) 93.57 91.59 82.42 90.69

20NewsGroup and IMDB

Methods IMDB 20NewsGroup
Deep Neural Networks (DNN) 88.55 86.5
Convolutional Neural Netwroks (CNN) 87.44 82.91
Recurrent Neural Networks (RNN) 88.59 83.75
Naive Bayesian Classifier (NBC) 83.19 81.67
Support Vector Machine (SVM) 87.97 84.57
Support Vector Machine (SVM using TF-IDF) 88.45 86
RMDL (3 RDLs) 89.91 86.73
RMDL (9 RDLs) 90.13 87.62
RMDL (15 RDLs) 90.79 87.91

Face Recognition

The Database of Faces (The Olivetti Faces Dataset)

  • he files are in PGM format, and can conveniently be viewed on UNIX (TM) systems using the 'xv' program. The size of each image is 92x112 pixels, with 256 grey levels per pixel. The images are organised in 40 directories (one for each subject), which have names of the form sX, where X indicates the subject number (between 1 and 40). In each of these directories, there are ten different images of that subject, which have names of the form Y.pgm, where Y is the image number for that subject (between 1 and 10).

The Olivetti Faces Dataset

Methods 5 Images 7 Images 9 Images
gcForest 91.00 96.67 97.50
Random Forest 91.00 93.33 95.00
Convolutional Neural Netwroks 86.50 91.67 95.00
SVM (rbf kernel) 80.50 82.50 85.00
k-nearest neighbors (kNN) 76.00 83.33 92.50
Deep Neural Networks (DNN) 85.50 90.84 92.5
RMDL (3 RDL) 93.50 96.67 97.5
RMDL (9 RDL) 93.50 98.34 97.5
RMDL (15 RDL) 94.50 96.67 97.5
RMDL (30 RDL) 95.00 98.34 100.00

Error and Comments:

Send an email to kk7nc@virginia.edu

Citation

@inproceedings{Kowsari2018RMDL,
title={RMDL: Random Multimodel Deep Learning for Classification},
author={Kowsari, Kamran and Heidarysafa, Mojtaba and Brown, Donald E. and Jafari Meimandi, Kiana and Barnes, Laura E.},
booktitle={Proceedings of the 2018 International Conference on Information System and Data Mining},
year={2018},
organization={ACM}
}
0