@@ -861,7 +861,7 @@ class LinearModelCV(six.with_metaclass(ABCMeta, LinearModel)):
861
861
@abstractmethod
862
862
def __init__ (self , eps = 1e-3 , n_alphas = 100 , alphas = None , fit_intercept = True ,
863
863
normalize = False , precompute = 'auto' , max_iter = 1000 , tol = 1e-4 ,
864
- copy_X = True , cv = None , verbose = False ):
864
+ copy_X = True , cv = None , verbose = False , positive = False ):
865
865
self .eps = eps
866
866
self .n_alphas = n_alphas
867
867
self .alphas = alphas
@@ -873,6 +873,7 @@ def __init__(self, eps=1e-3, n_alphas=100, alphas=None, fit_intercept=True,
873
873
self .copy_X = copy_X
874
874
self .cv = cv
875
875
self .verbose = verbose
876
+ self .positive = positive
876
877
877
878
def fit (self , X , y ):
878
879
"""Fit linear model with coordinate descent
@@ -1051,6 +1052,9 @@ class LassoCV(LinearModelCV, RegressorMixin):
1051
1052
verbose : bool or integer
1052
1053
amount of verbosity
1053
1054
1055
+ positive : bool, optional
1056
+ If positive, restrict regression coefficients to be positive
1057
+
1054
1058
Attributes
1055
1059
----------
1056
1060
``alpha_`` : float
@@ -1101,12 +1105,12 @@ class LassoCV(LinearModelCV, RegressorMixin):
1101
1105
1102
1106
def __init__ (self , eps = 1e-3 , n_alphas = 100 , alphas = None , fit_intercept = True ,
1103
1107
normalize = False , precompute = 'auto' , max_iter = 1000 , tol = 1e-4 ,
1104
- copy_X = True , cv = None , verbose = False ):
1108
+ copy_X = True , cv = None , verbose = False , positive = False ):
1105
1109
super (LassoCV , self ).__init__ (
1106
1110
eps = eps , n_alphas = n_alphas , alphas = alphas ,
1107
1111
fit_intercept = fit_intercept , normalize = normalize ,
1108
1112
precompute = precompute , max_iter = max_iter , tol = tol , copy_X = copy_X ,
1109
- cv = cv , verbose = verbose )
1113
+ cv = cv , verbose = verbose , positive = positive )
1110
1114
1111
1115
1112
1116
class ElasticNetCV (LinearModelCV , RegressorMixin ):
0 commit comments