8000 DOC: add a testimonial from JP Morgan (#12555) · jnothman/scikit-learn@6ae46a1 · GitHub
[go: up one dir, main page]

Skip to content

Commit 6ae46a1

Browse files
GaelVaroquauxjnothman
authored andcommitted
DOC: add a testimonial from JP Morgan (scikit-learn#12555)
1 parent b71d7c8 commit 6ae46a1

File tree

2 files changed

+34
-1
lines changed

2 files changed

+34
-1
lines changed

doc/testimonials/images/jpmorgan.png

8.16 KB
Loading

doc/testimonials/testimonials.rst

Lines changed: 34 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -11,7 +11,40 @@ Who is using scikit-learn?
1111

1212
.. to add a testimonials, just XXX
1313
14-
`Spotify <http://www.spotify.com>`_
14+
`J.P.Morgan <https://www.jpmorgan.com>`_
15+
------------------------------------------
16+
17+
.. raw:: html
18+
19+
<div class="logo">
20+
21+
.. image:: images/jpmorgan.png
22+
:width: 120pt
23+
:target: https://www.jpmorgan.com
24+
25+
.. raw:: html
26+
27+
</div>
28+
29+
Scikit-learn is an indispensable part of the Python machine learning
30+
toolkit at JPMorgan. It is very widely used across all parts of the bank
31+
for classification, predictive analytics, and very many other machine
32+
learning tasks. Its straightforward API, its breadth of algorithms, and
33+
the quality of its documentation combine to make scikit-learn
34+
simultaneously very approachable and very powerful.
35+
36+
.. raw:: html
37+
38+
<span class="testimonial-author">
39+
40+
Stephen Simmons, VP, Athena Research, JPMorgan
41+
42+
.. raw:: html
43+
44+
</span>
45+
46+
47+
`Spotify <https://www.spotify.com>`_
1548
------------------------------------
1649

1750
.. raw:: html

0 commit comments

Comments
 (0)
0