@@ -1620,6 +1620,15 @@ def _ndcg_sample_scores(y_true, y_score, k=None, ignore_ties=False):
1620
1620
return gain
1621
1621
1622
1622
1623
+ @validate_params (
1624
+ {
1625
+ "y_true" : ["array-like" ],
1626
+ "y_score" : ["array-like" ],
1627
+ "k" : [Interval (Integral , 1 , None , closed = "left" ), None ],
1628
+ "sample_weight" : ["array-like" , None ],
1629
+ "ignore_ties" : ["boolean" ],
1630
+ }
1631
+ )
1623
1632
def ndcg_score (y_true , y_score , * , k = None , sample_weight = None , ignore_ties= False ):
1624
1633
"""Compute Normalized Discounted Cumulative Gain.
1625
1634
@@ -1633,15 +1642,15 @@ def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False
1633
1642
1634
1643
Parameters
1635
1644
----------
1636
- y_true : ndarray of shape (n_samples, n_labels)
1645
+ y_true : array-like of shape (n_samples, n_labels)
1637
1646
True targets of multilabel classification, or true scores of entities
1638
1647
to be ranked. Negative values in `y_true` may result in an output
1639
1648
that is not between 0 and 1.
1640
1649
1641
1650
.. versionchanged:: 1.2
1642
1651
These negative values are deprecated, and will raise an error in v1.4.
1643
1652
1644
- y_score : ndarray of shape (n_samples, n_labels)
1653
+ y_score : array-like of shape (n_samples, n_labels)
1645
1654
Target scores, can either be probability estimates, confidence values,
1646
1655
or non-thresholded measure of decisions (as returned by
1647
1656
"decision_function" on some classifiers).
@@ -1650,7 +1659,7 @@ def ndcg_score(y_true, y_score, *, k=None, sample_weight=None, ignore_ties=False
1650
1659
Only consider the highest k scores in the ranking. If `None`, use all
1651
1660
outputs.
1652
1661
1653
- sample_weight : ndarray of shape (n_samples,), default=None
1662
+ sample_weight : array-like of shape (n_samples,), default=None
1654
1663
Sample weights. If `None`, all samples are given the same weight.
1655
1664
1656
1665
ignore_ties : bool, default=False
0 commit comments