@@ -32,10 +32,10 @@ class RBFSampler(TransformerMixin, BaseEstimator):
32
32
33
33
Parameters
34
34
----------
35
- gamma : float
35
+ gamma : float, default=1.0
36
36
Parameter of RBF kernel: exp(-gamma * x^2)
37
37
38
- n_components : int
38
+ n_components : int, default=100
39
39
Number of Monte Carlo samples per original feature.
40
40
Equals the dimensionality of the computed feature space.
41
41
@@ -146,10 +146,10 @@ class SkewedChi2Sampler(TransformerMixin, BaseEstimator):
146
146
147
147
Parameters
148
148
----------
149
- skewedness : float
149
+ skewedness : float, default=1.0
150
150
"skewedness" parameter of the kernel. Needs to be cross-validated.
151
151
152
- n_components : int
152
+ n_components : int, default=100
153
153
number of Monte Carlo samples per original feature.
154
154
Equals the dimensionality of the computed feature space.
155
155
@@ -455,7 +455,7 @@ class Nystroem(TransformerMixin, BaseEstimator):
455
455
456
456
Parameters
457
457
----------
458
- kernel : string or callable, default=" rbf"
458
+ kernel : string or callable, default=' rbf'
459
459
Kernel map to be approximated. A callable should accept two arguments
460
460
and the keyword arguments passed to this object as kernel_params, and
461
461
should return a floating point number.
@@ -477,7 +477,7 @@ class Nystroem(TransformerMixin, BaseEstimator):
477
477
Additional parameters (keyword arguments) for kernel function passed
478
478
as callable object.
479
479
480
- n_components : int
480
+ n_components : int, default=100
481
481
Number of features to construct.
482
482
How many data points will be used to construct the mapping.
483
483
0 commit comments