@@ -103,12 +103,15 @@ def get_absolute_airmass(airmass_relative, pressure=101325.):
103
103
The calculation for absolute airmass (:math:`AM_a`) is
104
104
105
105
.. math::
106
- AM_a = AM_r \frac{pressure}{101325}
106
+ AM_a = AM_r \frac{P}{101325}
107
+
108
+ where :math:`AM_r` is relative air mass at sea level an d:math:`P` is
109
+ atmospheric pressure.
107
110
108
111
Parameters
109
112
----------
110
113
airmass_relative : numeric
111
- The airmass at sea- level. [unitless]
114
+ The airmass at sea level. [unitless]
112
115
113
116
pressure : numeric, default 101325
114
117
Atmospheric pressure. [Pa]
@@ -134,7 +137,7 @@ def get_relative_airmass(zenith, model='kastenyoung1989'):
134
137
'''
135
138
Calculate relative (not pressure-adjusted) airmass at sea level.
136
139
137
- The ``model`` variable allows selection of different airmass models.
140
+ Parameter ``model`` allows selection of different airmass models.
138
141
139
142
Parameters
140
143
----------
@@ -167,10 +170,9 @@ def get_relative_airmass(zenith, model='kastenyoung1989'):
167
170
168
171
Notes
169
172
-----
170
- Some models use the apparent (refraction-adjusted) zenith angle while
171
- other models use the true (not refraction-adjusted) zenith angle. See
172
- model descriptions to determine which type of zenith angle is
173
- required. Apparent zenith angles should be calculated at sea level.
173
+ Some models use apparent (refraction-adjusted) zenith angle while
174
+ other models use true (not refraction-adjusted) zenith angle. Apparent
175
+ zenith angles should be calculated at sea level.
174
176
175
177
References
176
178
----------
@@ -247,26 +249,26 @@ def gueymard94_pw(temp_air, relative_humidity):
247
249
248
250
.. math::
249
251
250
- w = 0.1 H_v \rho_v
252
+ Pw = 0.1 H_v \rho_v
251
253
252
254
using Eq. 2 in [2]_
253
255
254
256
.. math::
255
257
256
258
\rho_v = 216.7 R_H e_s /T
257
259
258
- :math:`H_v` is the apparant water vapor scale height (km). The
259
- expression for :math:`H_v` is Eq. 4 in [2]_:
260
+ :math:`Pw` is the precipitable water (cm), :math:`H_v` is the apparent
261
+ water vapor scale height (km) and :math:`\rho_v` is the surface water
262
+ vapor density (g/m^3). . The expression for :math:`H_v` is Eq. 4 in [2]_:
260
263
261
264
.. math::
262
265
263
266
H_v = 0.4976 + 1.5265 \frac{T}{273.15}
264
267
+ \exp \left(13.6897 \frac{T}{273.15}
265
268
- 14.9188 \left( \frac{T}{273.15} \right)^3 \right)
266
269
267
- :math:`\rho_v` is the surface water vapor density (g/m^3). In the
268
- expression :math:`\rho_v`, :math:`e_s` is the saturation water vapor
269
- pressure (millibar). The expression for :math:`e_s` is Eq. 1 in [3]_
270
+ In the expression for :math:`\rho_v`, :math:`e_s` is the saturation water
271
+ vapor pressure (millibar). The expression for :math:`e_s` is Eq. 1 in [3]_
270
272
271
273
.. math::
272
274
@@ -277,9 +279,9 @@ def gueymard94_pw(temp_air, relative_humidity):
277
279
Parameters
278
280
----------
279
281
temp_air : numeric
280
- ambient air temperature at the surface. [C]
282
+ ambient air temperature :math:`T` at the surface. [C]
281
283
relative_humidity : numeric
282
- relative humidity at the surface. [%]
284
+ relative humidity :math:`R_H` at the surface. [%]
283
285
284
286
Returns
285
287
-------
@@ -326,24 +328,24 @@ def first_solar_spectral_correction(pw, airmass_absolute,
326
328
Spectral mismatch modifier based on precipitable water and absolute
327
329
(pressure-adjusted) airmass.
328
330
329
- Estimates a spectral mismatch modifier M representing the effect on
331
+ Estimates a spectral mismatch modifier :math:`M` representing the effect on
330
332
module short circuit current of variation in the spectral
331
- irradiance. M is estimated from absolute (pressure currected) air
333
+ irradiance. :math:`M` is estimated from absolute (pressure currected) air
332
334
mass, :math:`AM_a`, and precipitable water, :math:`Pw`, using the following
333
335
function:
334
336
335
337
.. math::
336
338
337
- M = c_1 + c_2 AM_a + c_3 Pw + c_4 AMa ^{0.5}
338
- + c_5 Pw^{0.5} + c_6 \frac{AMa } {Pw^{0.5}}
339
+ M = c_1 + c_2 AM_a + c_3 Pw + c_4 AM_a ^{0.5}
340
+ + c_5 Pw^{0.5} + c_6 \frac{AM_a } {Pw^{0.5}}
339
341
340
342
Default coefficients are determined for several cell types with
341
343
known quantum efficiency curves, by using the Simple Model of the
342
344
Atmospheric Radiative Transfer of Sunshine (SMARTS) [1]_. Using
343
345
SMARTS, spectrums are simulated with all combinations of AMa and
344
346
Pw where:
345
347
346
- * :math:`0.5 cm <= Pw <= 5 cm `
348
+ * :math:`0.5 \roman{cm} <= Pw <= 5 \roman{cm} `
347
349
* :math:`1.0 <= AM_a <= 5.0`
348
350
* Spectral range is limited to that of CMP11 (280 nm to 2800 nm)
349
351
* spectrum simulated on a plane normal to the sun
@@ -354,7 +356,7 @@ def first_solar_spectral_correction(pw, airmass_absolute,
354
356
applied to fit Eq. 1 to determine the coefficients for each module.
355
357
356
358
Based on the PVLIB Matlab function ``pvl_FSspeccorr`` by Mitchell
357
- Lee and Alex Panchula, at First Solar, 2016 [2]_.
359
+ Lee and Alex Panchula of First Solar, 2016 [2]_.
358
360
359
361
Parameters
360
362
----------
@@ -622,7 +624,8 @@ def angstrom_aod_at_lambda(aod0, lambda0, alpha=1.14, lambda1=700.0):
622
624
Parameters
623
625
----------
624
626
aod0 : numeric
625
- Aerosol optical depth (AOD) measured at known wavelength. [unitless]
627
+ Aerosol optical depth (AOD) measured at wavelength ``lambda0``.
628
+ [unitless]
626
629
lambda0 : numeric
627
630
Wavelength corresponding to ``aod0``. [nm]
628
631
alpha : numeric, default 1.14
@@ -633,7 +636,7 @@ def angstrom_aod_at_lambda(aod0, lambda0, alpha=1.14, lambda1=700.0):
633
636
Returns
634
637
-------
635
638
aod1 : numeric
636
- AOD at desired wavelength, ``lambda1``. [unitless]
639
+ AOD at desired wavelength ``lambda1``. [unitless]
637
640
638
641
See also
639
642
--------
@@ -661,19 +664,19 @@ def angstrom_alpha(aod1, lambda1, aod2, lambda2):
661
664
Parameters
662
665
----------
663
666
aod1 : numeric
664
- First aerosol optical depth. [unitless]
667
+ Aerosol optical depth at wavelength ``lambda1`` . [unitless]
665
668
lambda1 : numeric
666
669
Wavelength corresponding to ``aod1``. [nm]
667
670
aod2 : numeric
668
- Second aerosol optical depth. [unitless]
671
+ Aerosol optical depth at wavelength ``lambda2`` . [unitless]
669
672
lambda2 : numeric
670
673
Wavelength corresponding to ``aod2``. [nm]
671
674
672
675
Returns
673
676
-------
674
677
alpha : numeric
675
- Angstrom :math:`\alpha` exponent for AOD in ``(lambda1, lambda2)``.
676
- [unitless]
678
+ Angstrom :math:`\alpha` exponent for wavelength in
679
+ ``(lambda1, lambda2)``. [unitless]
677
680
678
681
See also
679
682
--------
0 commit comments