|
| 1 | +""" |
| 2 | +实现一种随机图,在随机图上实现对最小生成树的抽样过程, |
| 3 | +由抽样过程实现蒙特卡罗方法计算最小生成树权值的数学期望估计, |
| 4 | +比较估计结果的准确性 |
| 5 | +
|
| 6 | +步骤: |
| 7 | +1. 实现算法产生 n 顶点随机图的生成 |
| 8 | + 输入:n |
| 9 | + 输出:一个 n 顶点随机图,任意两个顶点之间边的权值均匀分布于 (0, 1) |
| 10 | +2. 调用第 1 步实现的算法,实现对 n 顶点图的均匀抽样 |
| 11 | +3. 在抽样样本上计算最小生成树并计算其权值的数学期望 |
| 12 | +4. 在第 2 步和第 3 步的基础上,建立 n 与最小生成树权值数学期望之间的关系 |
| 13 | +5. 对 n = 16, 32, 64, 128, 256, 512, 1024,... 展开实验,考察算法运行时间的变化, |
| 14 | + 并检验所建立的关系的一般性 |
| 15 | +6. 尝试用理论分析解释实验结果 |
| 16 | +7. 撰写实验报告 |
| 17 | +""" |
| 18 | + |
| 19 | +from graph import * |
| 20 | +import time |
| 21 | +import matplotlib.pyplot as plt |
| 22 | +from mpmath import zeta |
| 23 | + |
| 24 | +def main(): |
| 25 | + n_list = np.arange(16, 1040, 16) |
| 26 | + iter_num = 10 |
| 27 | + runtimes = [] |
| 28 | + mst_weights = [] |
| 29 | + |
| 30 | + g = RandomGraph(8) |
| 31 | + g.randomize() |
| 32 | + ret = g.prim() |
| 33 | + print() |
| 34 | + |
| 35 | + # for n in n_list: |
| 36 | + # graph = RandomGraph(n) |
| 37 | + # mst_weight = 0 |
| 38 | + # |
| 39 | + # start_time = time.time() |
| 40 | + # for _ in range(iter_num): |
| 41 | + # graph.randomize() |
| 42 | + # mst_weight += graph.prim() |
| 43 | + # end_time = time.time() |
| 44 | + # |
| 45 | + # runtimes.append((end_time - start_time)/iter_num) |
| 46 | + # mst_weights.append(mst_weight/iter_num) |
| 47 | + # |
| 48 | + # fig = plt.figure(dpi=400) |
| 49 | + # ax = fig.add_subplot(111) |
| 50 | + # ax.plot(n_list, runtimes, label='runtime') |
| 51 | + # ax.set_ylabel('Runtime (s)') |
| 52 | + # ax.set_xlabel('Vertex num n') |
| 53 | + # ax.set_title('Runtime of Prim Algorithm') |
| 54 | + # plt.show() |
| 55 | + # |
| 56 | + # fig = plt.figure(dpi=400) |
| 57 | + # ax = fig.add_subplot(111) |
| 58 | + # ax.plot(n_list, mst_weights, label='mst_weights') |
| 59 | + # Apery_const = zeta(3) # Apery's constant |
| 60 | + # ax.plot([0, n_list[-1]], [Apery_const, Apery_const], linestyle='--', c='gray') |
| 61 | + # ax.set_ylabel('Mean weight of MST') |
| 62 | + # ax.set_xlabel('Vertex num n') |
| 63 | + # ax.set_title('Relation between n and mean weight of MST') |
| 64 | + # ax.set_ylim(1.0, 1.4) |
| 65 | + # plt.show() |
| 66 | + |
| 67 | + |
| 68 | +if __name__ == '__main__': |
| 69 | + main() |
0 commit comments