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Abstract. Cellular automata are a famous example of discrete dynamical systems. 
However, more dynamics can be added to such systems by introducing second-order 
rules to modify the base rules of automata. The simplest example of this is using basic 
binary operations on Wolfram numbers of elementary cellular automata (ECA) on each 
step. This may sound very simple, yet it provides us with a wide variety of tools to 
manipulate ECA.

1. The First-Order and Second-Order Rules
In elementary cellular automata (ECA), it is usually convenient to use Wolfram numbers to describe
different rules with a single number. It is assumed that you know how are these numbers 
constructed and what meaning do they have. Throughout this paper, I will only cover these basic 0-
255 ECA rules for simplicity. 
The point of this type of Second-Order ECA (or Dynamic Rule ECA) is to apply a certain 
deterministic rule modification on each step of the system. In this text, I will consider only ECA and
Dynamic Rule ECA, so Second-Order ECA (SOECA) will only mean the latter. 
Starting with a base rule, we will get a different one every step. Here are simple modifications (with
their short notation) that we can apply:

> --- circular bit shift to the right
< --- circular bit shift to the left
+ --- increment the rule
- --- decrement the rule
! --- perform NOT on each bit
| --- flip rule bit-wise

Figure 1: Rule 101> with a singular active central cell as the initial state



Note: + and – are circular arithmetic operators on 8-bit integers, which means that adding 1 to 255 
would result into 0.
It is possible to use these modifications on their own (see fig.1) as well as to combine them in a 
sequence of operations on the rule. This sequence is essentially the second-order rule itself.
Obviously, second-order rules are not associative (meaning that, for instance, “<+” and “+<” are 
not the same). Note that, for example, “>+<” is equal to “++” as “<>” is equal to “” (empty 
rule).

2. Thermodynamics, Entropy, and Chaos

Figure 2: Rule 40++ with a random initial state (more on this pattern later)

Figure 3: Rule 105>>+  with a random initial state



As most of the ECA, SOECA do not behave according to the second law of thermodynamics by 
reducing entropy from a random distribution of cells to the emergence of certain patterns. One of 
the best illustrations of this that I have discovered is rule 105>>+ (see fig.3) which will always end
up with the same multi-line pattern repeating regardless of the initial distribution. Moreover, the 
initial distribution here only controls the number of “segments” in the pattern. Obviously, this 
automaton is not reversible. Thus, this behaviour does not contradict the law, as the law can only be 
applied to reversible systems.
Many other rules, such as 105>>> or 110-|+! (fig.4), on the other hand, do produce some 
chaotic shapes starting with a central active cell.

3. Repetitive (Periodic) Automata
If an automaton repeats its states periodically (fig.3), we call it a first-order repetitive (or 
periodic) automaton. Such automata would have Wolfram class 2. If an automaton repeats its rules
periodically, we call it a second-order repetitive (or periodic) automaton or rule-repetitive 
automaton. This characteristic is only dependent on the second-order rule itself. Important to notice
that an automaton can be second-order repetitive and not first-order repetitive. An example of this 
would be rule  110-|+! (fig.4) that is not state-repetitive but clearly follows a cyclic rule pattern:

110 → 72 → 28 → 38  → 90  → 100 → 56  → 18  → 118 →
80  → 12 → 46 → 74  → 108 → 40  → 26  → 102  → 88 → 
20  → 54 → 82 → 116 → 48  → 10  → 110 → ...

The rule 0>>+ (and consequently any A>>+ rule) is not periodic because it will never go back to 
rule 0 (or A, in the general case).

4. The “++” Pattern and Tree-like Shapes
As shown by figure 2, the 40++ rule has a very intriguing layered pattern to it. This can be 
generalized to any rule A++ where A is between 0 and 255. If we start with one active cell in the 
initial state, it becomes clear that actually, the pattern here is very much like a tree, with some 
branches and layers (fig.5). When we start with a random distribution, these branches can overlap, 

Figure 4: Rule 110-|+!



which results in more complex behaviour. Some rules, however, result in result in longer single 
branches than the others. For example, rules 0++ and 8++ result into branches of length 0 (where 
length is simply the number of iterations the pattern holds), although rule 8++ can give us longer 
branches if we start with a random distribution of active cells. Such patterns cannot be repetitive or 
last forever, since at some point we will get either rule 0 or rule 255. 
Note: other second-order rules besides “++” can also generate similar patterns, see rule 40+.

5. The Effects of “A!”
One of the most property-preserving second-
order rules is “!”. For any rule A, A! has the
same Wolfram class and often even follows a
similar pattern. Rules 30 and 30! can be a good
example of this (fig.6). Though it may not be
obvious at first glance, these rules are very
similar in their structure: expanding ordered
pattern on the left and expanding chaos on the
right. These two areas are separated by a chaotic
imaginary line in both.

Figure 5: Rule 2++; the longest 
possible “++tree” of length 243

Figure 6: Rule 30 (top) and Rule 30! (bottom)



6. Fractal Shapes; “>>|” and “<<|” for Combining
Rules
ECA are also known for producing fractal patterns. SOECA
are no exception and frequently produce patterns similar to
Sierpinski triangles (fig.7). This exact “distorted Sierpinski
triangle” pattern occurs with the same second-order rules 
“>>|” and “<<|” and base rules 15, 60, 195, and 240
because these second-order rules are repetitive with period T
= 1. Shortly speaking: base rules 60 and 195 are responsible
for the triangular patterns, second-order rules are responsible
for a specific rule alternation with rules 15 and 240, while
these, in turn, shift the pattern to the right and/or provide
colour negation.
These “>>|” and “<<|” (and those similar to them) second-
order rules are, in fact, intriguing for their period T = 1. This
is a tool for making alternations between two rules. In the case
described earlier, it combines properties of the two rules that
alternate. We can also combine famous ECA rules 60 and 30
by alternating them. Simple computations show that they are
connected by the second-order rule “<|” with period T = 1.
Therefore, rules 60<| and 30<| are combinations of them
(fig.8).

7. Turing Completeness
Turing completeness of specific 
SOECA with non-empty second-
order rules is yet to be proven. 
However, since it is possible to 
construct a Turing-complete ECA
rule, it should also be possible to 
make one using SOECA. 

Figure 7: : Rule 60>>| or 60>|< 
(top); Rule 60<<| or 60<|> 
(bottom)

Figure 8: Rule 60<|


