8000 DOC ensures MultiTaskLasso passes numpydoc validation (#21363) · glemaitre/scikit-learn@a734af1 · GitHub
[go: up one dir, main page]

8000
Skip to content

Commit a734af1

Browse files
felixglushglemaitre
authored andcommitted
DOC ensures MultiTaskLasso passes numpydoc validation (scikit-learn#21363)
1 parent 1d17f94 commit a734af1

File tree

2 files changed

+15
-15
lines changed

2 files changed

+15
-15
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -16,7 +16,6 @@
1616
"MultiLabelBinarizer",
1717
"MultiTaskElasticNet",
1818
"MultiTaskElasticNetCV",
19-
"MultiTaskLasso",
2019
"MultiTaskLassoCV",
2120
"OrthogonalMatchingPursuit",
2221
"OrthogonalMatchingPursuitCV",

sklearn/linear_model/_coordinate_descent.py

Lines changed: 15 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -2378,6 +2378,7 @@ def fit(self, X, y):
23782378
Returns
23792379
-------
23802380
self : object
2381+
Fitted estimator.
23812382
23822383
Notes
23832384
-----
@@ -2527,7 +2528,7 @@ class MultiTaskLasso(MultiTaskElasticNet):
25272528
If set to 'random', a random coefficient is updated every iteration
25282529
rather than looping over features sequentially by default. This
25292530
(setting to 'random') often leads to significantly faster convergence
2530-
especially when tol is higher than 1e-4
2531+
especially when tol is higher than 1e-4.
25312532
25322533
Attributes
25332534
----------
@@ -2563,6 +2564,19 @@ class MultiTaskLasso(MultiTaskElasticNet):
25632564
25642565
.. versionadded:: 1.0
25652566
2567+
See Also
2568+
--------
2569+
Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso).
2570+
MultiTaskLasso: Multi-task L1/L2 Lasso with built-in cross-validation.
2571+
MultiTaskElasticNet: Multi-task L1/L2 ElasticNet with built-in cross-validation.
2572+
2573+
Notes
2574+
-----
2575+
The algorithm used to fit the model is coordinate descent.
2576+
2577+
To avoid unnecessary memory duplication the X and y arguments of the fit
2578+
method should be directly passed as Fortran-contiguous numpy arrays.
2579+
25662580
Examples
25672581
--------
25682582
>>> from sklearn import linear_model
@@ -2574,19 +2588,6 @@ class MultiTaskLasso(MultiTaskElasticNet):
25742588
[0. 0.94592424]]
25752589
>>> print(clf.intercept_)
25762590
[-0.41888636 -0.87382323]
2577-
2578-
See Also
2579-
--------
2580-
MultiTaskLasso : Multi-task L1/L2 Lasso with built-in cross-validation
2581-
Lasso
2582-
MultiTaskElasticNet
2583-
2584-
Notes
2585-
-----
2586-
The algorithm used to fit the model is coordinate descent.
2587-
2588-
To avoid unnecessary memory duplication the X and y arguments of the fit
2589-
method should be directly passed as Fortran-contiguous numpy arrays.
25902591
"""
25912592

25922593
def __init__(

0 commit comments

Comments
 (0)
0