@@ -2378,6 +2378,7 @@ def fit(self, X, y):
2378
2378
Returns
2379
2379
-------
2380
2380
self : object
2381
+ Fitted estimator.
2381
2382
2382
2383
Notes
2383
2384
-----
@@ -2527,7 +2528,7 @@ class MultiTaskLasso(MultiTaskElasticNet):
2527
2528
If set to 'random', a random coefficient is updated every iteration
2528
2529
rather than looping over features sequentially by default. This
2529
2530
(setting to 'random') often leads to significantly faster convergence
2530
- especially when tol is higher than 1e-4
2531
+ especially when tol is higher than 1e-4.
2531
2532
2532
2533
Attributes
2533
2534
----------
@@ -2563,6 +2564,19 @@ class MultiTaskLasso(MultiTaskElasticNet):
2563
2564
2564
2565
.. versionadded:: 1.0
2565
2566
2567
+ See Also
2568
+ --------
2569
+ Lasso: Linear Model trained with L1 prior as regularizer (aka the Lasso).
2570
+ MultiTaskLasso: Multi-task L1/L2 Lasso with built-in cross-validation.
2571
+ MultiTaskElasticNet: Multi-task L1/L2 ElasticNet with built-in cross-validation.
2572
+
2573
+ Notes
2574
+ -----
2575
+ The algorithm used to fit the model is coordinate descent.
2576
+
2577
+ To avoid unnecessary memory duplication the X and y arguments of the fit
2578
+ method should be directly passed as Fortran-contiguous numpy arrays.
2579
+
2566
2580
Examples
2567
2581
--------
2568
2582
>>> from sklearn import linear_model
@@ -2574,19 +2588,6 @@ class MultiTaskLasso(MultiTaskElasticNet):
2574
2588
[0. 0.94592424]]
2575
2589
>>> print(clf.intercept_)
2576
2590
[-0.41888636 -0.87382323]
2577
-
2578
- See Also
2579
- --------
2580
- MultiTaskLasso : Multi-task L1/L2 Lasso with built-in cross-validation
2581
- Lasso
2582
- MultiTaskElasticNet
2583
-
2584
- Notes
2585
- -----
2586
- The algorithm used to fit the model is coordinate descent.
2587
-
2588
- To avoid unnecessary memory duplication the X and y arguments of the fit
2589
- method should be directly passed as Fortran-contiguous numpy arrays.
2590
2591
"""
2591
2592
2592
2593
def __init__ (
0 commit comments