@@ -387,6 +387,10 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):
387
387
stack_method_ : list of str
388
388
The method used by each base estimator.
389
389
390
+ See Also
391
+ --------
392
+ StackingRegressor : Stack of estimators with a final regressor.
393
+
390
394
Notes
391
395
-----
392
396
When `predict_proba` is used by each estimator (i.e. most of the time for
@@ -424,7 +428,6 @@ class StackingClassifier(ClassifierMixin, _BaseStacking):
424
428
... )
425
429
>>> clf.fit(X_train, y_train).score(X_test, y_test)
426
430
0.9...
427
-
428
431
"""
429
432
430
433
def __init__ (
@@ -477,6 +480,7 @@ def fit(self, X, y, sample_weight=None):
477
480
Returns
478
481
-------
479
482
self : object
483
+ Returns a fitted instance of estimator.
480
484
"""
481
485
check_classification_targets (y )
482
486
self ._le = LabelEncoder ().fit (y )
@@ -509,8 +513,7 @@ def predict(self, X, **predict_params):
509
513
510
514
@if_delegate_has_method (delegate = "final_estimator_" )
511
515
def predict_proba (self , X ):
512
- """Predict class probabilities for X using
513
- `final_estimator_.predict_proba`.
516
+ """Predict class probabilities for `X` using the final estimator.
514
517
515
518
Parameters
516
519
----------
@@ -529,8 +532,7 @@ def predict_proba(self, X):
529
532
530
533
@if_delegate_has_method (delegate = "final_estimator_" )
531
534
def decision_function (self , X ):
532
- """Predict decision function for samples in X using
533
- `final_estimator_.decision_function`.
535
+ """Decision function for samples in `X` using the final estimator.
534
536
535
537
Parameters
536
538
----------
0 commit comments