- Overview
- Installation
- Writing MCP Servers
- Writing MCP Clients
- MCP Primitives
- Documentation
- Contributing
- License
The Model Context Protocol allows applications to provide context for LLMs in a standardized way, separating the concerns of providing context from the actual LLM interaction. This Python SDK implements the full MCP specification, making it easy to:
- Build MCP clients that can connect to any MCP server
- Create MCP servers that expose resources, prompts and tools
- Use standard transports like stdio and SSE
- Handle all MCP protocol messages and lifecycle events
We recommend the use of uv to manage your Python projects:
uv add mcp
Alternatively, add mcp to your requirements.txt
:
pip install mcp
# or add to requirements.txt
pip install -r requirements.txt
The MCP Python SDK provides two ways to implement servers:
FastMCP provides a high-level, Pythonic interface for building MCP servers quickly and easily. It handles all the compl B324 ex protocol details so you can focus on building great tools:
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("Demo")
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers"""
return a + b
@mcp.resource("greeting://{name}")
def get_greeting(name: str) -> str:
"""Get a personalized greeting"""
return f"Hello, {name}!"
FastMCP features:
- Simple, decorator-based API
- Automatic type handling and validation
- Built-in support for async functions
- Progress reporting and logging
- Resource templating
- Image handling
For more control, you can use the low-level server implementation directly. This gives you full access to the protocol and allows you to customize every aspect of your server:
from mcp.server.lowlevel import Server, NotificationOptions
from mcp.server.models import InitializationOptions
import mcp.server.stdio
import mcp.types as types
# Create a server instance
server = Server("example-server")
@server.list_prompts()
async def handle_list_prompts() -> list[types.Prompt]:
return [
types.Prompt(
name="example-prompt",
description="An example prompt template",
arguments=[
types.PromptArgument(
name="arg1",
description="Example argument",
required=True
)
]
)
]
@server.get_prompt()
async def handle_get_prompt(
name: str,
arguments: dict[str, str] | None
) -> types.GetPromptResult:
if name != "example-prompt":
raise ValueError(f"Unknown prompt: {name}")
return types.GetPromptResult(
description="Example prompt",
messages=[
types.PromptMessage(
role="user",
content=types.TextContent(
type="text",
text="Example prompt text"
)
)
]
)
async def run():
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="example",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
)
)
)
if __name__ == "__main__":
import asyncio
asyncio.run(run())
The SDK provides a high-level client interface for connecting to MCP servers:
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client
# Create server parameters for stdio connection
server_params = StdioServerParameters(
command="python", # Executable
args=["example_server.py"], # Optional command line arguments
env=None # Optional environment variables
)
async def run():
async with stdio_client(server_params) as (read, write):
async with ClientSession(read, write) as session:
# Initialize the connection
await session.initialize()
# List available prompts
prompts = await session.list_prompts()
# Get a prompt
prompt = await session.get_prompt("example-prompt", arguments={"arg1": "value"})
# List available resources
resources = await session.list_resources()
# List available tools
tools = await session.list_tools()
# Read a resource
resource = await session.read_resource("file://some/path")
# Call a tool
result = await session.call_tool("tool-name", arguments={"arg1": "value"})
if __name__ == "__main__":
import asyncio
asyncio.run(run())
The MCP protocol defines three core primitives that servers can implement:
Primitive | Control | Description | Example Use |
---|---|---|---|
Prompts | User-controlled | Interactive templates invoked by user choice | Slash commands, menu options |
Resources | Application-controlled | Contextual data managed by the client application | File contents, API responses |
Tools | Model-controlled | Functions exposed to the LLM to take actions | API calls, data updates |
MCP servers declare capabilities during initialization:
Capability | Feature Flag | Description |
---|---|---|
prompts |
listChanged |
Prompt template management |
resources |
subscribe listChanged |
Resource exposure and updates |
tools |
listChanged |
Tool discovery and execution |
logging |
- | Server logging configuration |
completion |
- | Argument completion suggestions |
- Model Context Protocol documentation
- Model Context Protocol specification
- Officially supported servers
We are passionate about supporting contributors of all levels of experience and would love to see you get involved in the project. See the contributing guide to get started.
This project is licensed under the MIT License - see the LICENSE file for details.