8000 [ML] ELSER crashes in local serverless setup · Issue #106206 · elastic/elasticsearch · GitHub
[go: up one dir, main page]

Skip to content
[ML] ELSER crashes in local serverless setup #106206
@jonathan-buttner

Description

@jonathan-buttner

Description

When interacting with ELSER in serverless locally it crashes when attempting to perform inference.

Steps to reproduce

  • Ensure docker is setup and running
  1. Checkout kibana and bootstrap it
  2. Start elasticsearch serverless locally: yarn es serverless --projectType=security --ssl
  3. Start kibana locally yarn start --serverless=security --ssl
  4. Download elser
  5. Deploy elser via the inference API
PUT _inference/sparse_embedding/elser
{
  "service": "elser",
  "service_settings": {
    "model_id": ".elser_model_2",
    "num_allocations": 1,
    "num_threads": 1
  },
  "task_settings": {}
}
  1. Add an ingest processor
PUT _ingest/pipeline/elser
{
  "processors": [
    {
      "inference": {
        "model_id": "elser",
        "input_output": [
            {
                "input_field": "content",
                "output_field": "text_embedding"
            }
        ]
      }
    },
    {
      "set": {
        "field": "timestamp",
        "value": "{{_ingest.timestamp}}"
      }
    }
  ]
}
  1. Attempt to perform inference
POST _ingest/pipeline/elser/_simulate
{
  "docs": [
    {
      "_source": {
             "content": "hello" 
      }
    }]
}
  1. Retrieve the stats from the trained models api to observe that the process has crashed
            "routing_state": {
              "routing_state": "failed",
              "reason": """inference process crashed due to reason [[my-elser-model] pytorch_inference/659 process stopped unexpectedly: Fatal error: 'si_signo 11, si_code: 1, si_errno: 0, address: 0xffff83b20140, library: /lib/aarch64-linux-gnu/libc.so.6, base: 0xffff83a13000, normalized address: 0x10d140', version: 8.14.0-SNAPSHOT (build 38a5b0ec077958)
]"""
            },

Metadata

Metadata

Assignees

Labels

:mlMachine learning>bugFeature:NLPFeatures and issues around NLPTeam:MLMeta label for the ML team

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions

    0