diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 72dd9fe72fd..a56d64d08ce 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -17,15 +17,17 @@ env: jobs: check-format: if: github.event_name == 'pull_request' - runs-on: ubuntu-20.04 + runs-on: ubuntu-22.04 steps: - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: distribution: 'adopt' java-version: '17' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 + with: + fetch-depth: 0 - name: Build project run: | gcc --version @@ -35,7 +37,7 @@ jobs: run: | mvn spotless:check -Pjdk17 -B -U -e prepare: - runs-on: ubuntu-20.04 + runs-on: ubuntu-22.04 outputs: repositoryUrl: ${{ steps.repository.outputs.repositoryUrl }} steps: @@ -51,7 +53,7 @@ jobs: echo "Staging repository created: $STAGING_REPOSITORY_ID" echo "::set-output name=stagingRepositoryId::$STAGING_REPOSITORY_ID" - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Extract distribution repository URL id: repository run: | @@ -62,42 +64,25 @@ jobs: fi echo "Repository URL: $REPOSITORY_URL" echo "::set-output name=repositoryUrl::$REPOSITORY_URL" -# linux-arm64: -# runs-on: linux-arm64-ubuntu2204 -# needs: prepare -# strategy: -# matrix: -# ext: [""] -# steps: -# - name: Install environment -# run: | -# sudo apt update -# sudo apt install -y curl wget unzip tar git gcc g++ maven default-jdk -# - name: Checkout repository -# uses: actions/checkout@v1 -# - name: Build project -# run: | -# gcc --version -# mvn -version -# echo "ossrh${{ secrets.CI_DEPLOY_USERNAME }}${{ secrets.CI_DEPLOY_PASSWORD }}" > $HOME/.m2/settings.xml -# mvn clean install -pl '!tensorflow-framework' -B -U -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} -# - name: Deploy native artifact -# if: env.DEPLOY_RELEASE == 'true' || env.DEPLOY_SNAPSHOT == 'true' -# run: mvn -f tensorflow-core/tensorflow-core-native/pom.xml deploy:deploy-file@native-only -B -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} -Durl=${{ needs.prepare.outputs.repositoryUrl }} - linux-x86_64: - runs-on: ubuntu-20.04 + linux-arm64: + runs-on: ubuntu-2204-arm64-2c needs: prepare strategy: matrix: - ext: ["", -gpu] + ext: [""] steps: + - name: Install environment + run: | + sudo apt update + sudo apt install -y curl wget unzip tar git gcc g++ - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: - distribution: 'adopt' - java-version: '11' + distribution: 'zulu' + java-version: '17' + architecture: 'aarch64' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Build project run: | gcc --version @@ -107,44 +92,44 @@ jobs: - name: Deploy native artifact if: env.DEPLOY_RELEASE == 'true' || env.DEPLOY_SNAPSHOT == 'true' run: mvn -f tensorflow-core/tensorflow-core-native/pom.xml deploy:deploy-file@native-only -B -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} -Durl=${{ needs.prepare.outputs.repositoryUrl }} - macosx-arm64: - runs-on: macos-14 + linux-x86_64: + runs-on: ubuntu-22.04 needs: prepare strategy: matrix: - ext: [""] + ext: ["", -gpu] steps: - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: - distribution: 'zulu' - java-version: '17' - architecture: 'arm64' + distribution: 'adopt' + java-version: '11' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Build project run: | - clang --version + gcc --version mvn -version echo "ossrh${{ secrets.CI_DEPLOY_USERNAME }}${{ secrets.CI_DEPLOY_PASSWORD }}" > $HOME/.m2/settings.xml mvn clean install -pl '!tensorflow-framework' -B -U -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} - name: Deploy native artifact if: env.DEPLOY_RELEASE == 'true' || env.DEPLOY_SNAPSHOT == 'true' run: mvn -f tensorflow-core/tensorflow-core-native/pom.xml deploy:deploy-file@native-only -B -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} -Durl=${{ needs.prepare.outputs.repositoryUrl }} - macosx-x86_64: - runs-on: macos-12 + macosx-arm64: + runs-on: macos-14 needs: prepare strategy: matrix: ext: [""] steps: - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: - distribution: 'adopt' - java-version: '11' + distribution: 'zulu' + java-version: '17' + architecture: 'arm64' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Build project run: | clang --version @@ -155,7 +140,7 @@ jobs: if: env.DEPLOY_RELEASE == 'true' || env.DEPLOY_SNAPSHOT == 'true' run: mvn -f tensorflow-core/tensorflow-core-native/pom.xml deploy:deploy-file@native-only -B -e -Djavacpp.platform=${{ github.job }} -Djavacpp.platform.extension=${{ matrix.ext }} -Durl=${{ needs.prepare.outputs.repositoryUrl }} windows-x86_64: - runs-on: windows-2019 + runs-on: windows-2022 needs: prepare strategy: matrix: @@ -169,16 +154,16 @@ jobs: set "EXT=${{ matrix.ext }}" echo %JAVA_HOME% - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: distribution: 'adopt' java-version: '11' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Build project shell: cmd run: | - call "C:\Program Files (x86)\Microsoft Visual Studio\2019\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" amd64 + call "C:\Program Files\Microsoft Visual Studio\2022\Enterprise\VC\Auxiliary\Build\vcvarsall.bat" amd64 set "PATH=C:\msys64\usr\bin;%PATH%" echo Shorten work paths to prevent Bazel from reaching MAX_PATH limit mkdir C:\tmp @@ -202,16 +187,16 @@ jobs: if ERRORLEVEL 1 exit /b deploy: if: ${{ github.event_name == 'push' && (github.ref == 'refs/heads/master' || github.ref == 'refs/heads/staging') }} # DEPLOY_SNAPSHOT (releases should be signed and deployed manually from local machine) - needs: [linux-x86_64, macosx-x86_64, windows-x86_64, macosx-arm64] #, linux-arm64] - runs-on: ubuntu-20.04 + needs: [linux-x86_64, windows-x86_64, macosx-arm64, linux-arm64] + runs-on: ubuntu-22.04 steps: - name: Configure Java - uses: actions/setup-java@v2 + uses: actions/setup-java@v5 with: distribution: 'adopt' java-version: '11' - name: Checkout repository - uses: actions/checkout@v1 + uses: actions/checkout@v6 - name: Build project run: | java -version diff --git a/.gitignore b/.gitignore index cb95fc014f9..d9e902d7d9e 100644 --- a/.gitignore +++ b/.gitignore @@ -64,3 +64,6 @@ gradleBuild # Deployment Files settings.xml pom.xml.asc + +# Docs +docs/docs/apidocs/ \ No newline at end of file diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 2e4871f89c1..9da8b9603aa 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -15,8 +15,7 @@ For dependencies, we can use anything compliant with [this list](https://opensou ## Building -To build all the artifacts locally, simply invoke the command `mvn install` at the root of this repository (or the Maven command of your choice). It is also -possible to build artifacts with support for CUDA® by adding the `-Djavacpp.platform.extension=-gpu` argument to the Maven command. +To build all the artifacts locally, simply invoke the command `mvn install` at the root of this repository (or the Maven command of your choice). ### JDK 16+ @@ -35,7 +34,7 @@ This can be done in `.mvn/jvm.config` or `MAVEN_OPTS`. ### Native Builds By default, the build will attempt to download the existing TensorFlow binaries from the web for the platform it is running on (so you need to have an active internet connection). -If such binaries are not available for your platform, you will need to build the TensorFlow runtime library from sources, by appending the `-Dnative.build` argument to your Maven +If such binaries are not available for your platform, you will need to build the TensorFlow runtime library from sources, by appending the `-Pnative-build` argument to your Maven command. This requires a valid environment for building TensorFlow, including the [bazel](https://bazel.build/) build tool and a few Python dependencies (please read [TensorFlow documentation](https://www.tensorflow.org/install/source) for more details). Note that building from sources can take multiple hours on a regular laptop. @@ -79,11 +78,11 @@ To upgrade the version of TensorFlow that is embedded within TensorFlow Java, pl ### Upgrading TensorFlow Native Library 1. Download locally the archive of the tensorflow release at https://github.com/tensorflow/tensorflow/archive/refs/tags/vX.X.X.tar.gz -2. Compute the SHA sum using the shell command `sha256sum ` +2. Compute the SHA sum using the shell command `shasum -a 256 ` 3. Update `urls`, `sha256` and `strip_prefix` fields of the `org_tensorflow` archive rule in Bazel [workspace](https://github.com/tensorflow/java/blob/master/tensorflow-core/tensorflow-core-native/WORKSPACE#L19) 4. Extract the archive in a temporary folder 5. Copy the content of `tensorflow-x.x.x/.bazelrc` file to `tensorflow-core/tensorflow-core-native/tensorflow.bazelrc` under TensorFlow Java source tree -6. Copy the content of `tensorflow-x.x.x/WORKSPACE` after the "###### Copy content of..." notice if `tensorflow-core/tensorflow-core-native/WORKSPACE`, read notice for more details +6. Copy the content of `tensorflow-x.x.x/WORKSPACE` after the "###### Copy content of..." notice to `tensorflow-core/tensorflow-core-native/WORKSPACE`, read notice for more details 7. Copy the content of `tensorflow-x.x.x/.bazelversion` file to `tensorflow-core/tensorflow-core-native/.bazelversion` 8. Validate that options in `tensorflow-core/tensorflow-core-native/.bazelrc` are still accurate or update them accordingly 9. Update URLs of existing TensorFlow binaries in the `tensorflow-core/tensorflow-core-native/scripts/dist_download` script diff --git a/MIGRATING.md b/MIGRATING.md index 1fc2c1d7620..ac7276eba99 100644 --- a/MIGRATING.md +++ b/MIGRATING.md @@ -49,6 +49,24 @@ The Java Module (jigsaw) names has been updated to drop the leading `org.`, as f - `tensorflow-core-native` : `tensorflow.nativelib` - `tensorflow-framework` : `tensorflow.framework` (was `org.tensorflow.framework` before) +### GPU Support + +Previous versions of TF Java were building a `tensorflow-core-platform-gpu` artifact upon which application could depend +on to include any TensorFlow native library that GPU support enabled. Since TensorFlow has removed its support of GPU +on all platforms other than Linux, we removed our platform JAR in favour of simply adding a dependency on the +`linux-x86_64-gpu` native artifact. +```xml + + org.tensorflow + tensorflow-core-native + 1.0.0 + linux-x86_64-gpu + +``` +Please note that including this dependency won't work if your application also depends on `tensorflow-core-platform`. If +you need to support more platforms than Linux, you should include the other `tensorflow-core-native` dependencies +separately (see the [README](README.md) file). + ### Session Run Result In versions before 0.4.0 `Session.Runner.run` and `TensorFunction.call` returned a `List`. In newer versions @@ -58,8 +76,9 @@ individually. ### Proto Definitions Moved -Some proto definitions under `org.tensorflow.proto` have been moved to a different location under the same package. You will need to reimport these -proto bindings to match the new location. Your IDE should easily be able to do this for you. +Some proto definitions under `org.tensorflow.proto` have been moved to a different location under the same (`org.tensorflow.proto`) package. +Certain classes have moved packages, for example, `org.tensorflow.proto.example.Feature` to `org.tensorflow.proto.Feature`. +You will need to reimport these proto bindings to match the new location. Your IDE should easily be able to do this for you. ## Migrating to 0.3.0 diff --git a/README.md b/README.md index 27d70114685..e1d1e080bcb 100644 --- a/README.md +++ b/README.md @@ -44,39 +44,48 @@ See [CONTRIBUTING.md](CONTRIBUTING.md#building). ## Using Maven Artifacts There are two options for adding TensorFlow Java as a dependency to your Maven project: with individual dependencies -for each targeted platforms or with a single dependency that target them all. +for each targeted platform or with a single dependency that targets them all. ### Individual dependencies With this option, you must first add a dependency to `tensorflow-core-api` and then one or multiple dependencies to `tensorflow-core-native` with a classifier targeting a specific platform. This option is preferred as -it minimize the size of your application by only including the TensorFlow builds you need, at the cost of being more +it minimizes the size of your application by only including the TensorFlow builds you need, at the cost of being more restrictive. While TensorFlow Java can be compiled for [multiple platforms](https://github.com/tensorflow/java/blob/master/tensorflow-core/pom.xml#L54), -only binaries for the followings are being **supported and distributed** by this project: +only binaries for the following are being **supported and distributed** by this project: - `linux-x86_64`: Linux platforms on Intel/AMD chips - `linux-x86_64-gpu`: Linux platforms on Intel/AMD chips with Cuda GPU support -- `macosx-x86_64`: MacOS X platforms on Intel/AMD chips +- `linux-arm64`: Linux platforms on Arm chips - `macosx-arm64`: MacOS X platforms on Apple Silicon chips - `windows-x86_64`: Windows platforms on Intel/AMD chips +Binaries for `macosx-x86_64` are available for TF-Java 1.0 series releases and earlier, they were dropped from +TF-Java 1.1 and newer as they are no longer supported or released by Google. + For example, for building a JAR that uses TensorFlow and is targeted to be deployed only on Linux systems with no GPU support, you should add the following dependencies: ```xml org.tensorflow tensorflow-core-api - 1.0.0-rc.1 + 1.1.0 org.tensorflow tensorflow-core-native - 1.0.0-rc.1 + 1.1.0 linux-x86_64 ``` +Or Gradle: +```groovy +def tfVersion = '1.1.0' +implementation "org.tensorflow:tensorflow-core-api:$tfVersion" +implementation "org.tensorflow:tensorflow-core-native:$tfVersion:linux-x86_64" +``` On the other hand, if you plan to deploy your JAR on more platforms, you need additional native dependencies as follows: @@ -84,37 +93,49 @@ native dependencies as follows: org.tensorflow tensorflow-core-api - 1.0.0-rc.1 + 1.1.0 org.tensorflow tensorflow-core-native - 1.0.0-rc.1 + 1.1.0 linux-x86_64-gpu org.tensorflow tensorflow-core-native - 1.0.0-rc.1 + 1.1.0 macosx-arm64 org.tensorflow tensorflow-core-native - 1.0.0-rc.1 + 1.1.0 windows-x86_64 ``` +Or Gradle: +```groovy +def tfVersion = '1.1.0' +implementation "org.tensorflow:tensorflow-core-api:$tfVersion" +implementation "org.tensorflow:tensorflow-core-native:$tfVersion:linux-x86_64-gpu" +implementation "org.tensorflow:tensorflow-core-native:$tfVersion:macosx-arm64" +implementation "org.tensorflow:tensorflow-core-native:$tfVersion:windows-x86_64" +``` Only one dependency can be added per platform, meaning that you cannot add native dependencies to both `linux-x86_64` and `linux-x86_64-gpu` within the same project. +To use an NVIDIA GPU, you need to install the NVIDIA device driver, CUDA Toolkit, and cuDNN. +For Ubuntu 24.04, you can install them with the following command: +```sudo apt install -y nvidia-driver-550 nvidia-cuda-toolkit nvidia-cudnn``` + ### Single dependency In some cases, it might be preferable to add a single dependency that includes transitively all the artifacts required to run TensorFlow Java on any [supported platforms](README.md#individual-dependencies) -- `tensorflow-core-platform`: Includes `tensorflow-core-api`, plus native artifacts for `linux-x86_64`, `macosx-arm64`, `macosx-x86_64` and `windows-x86_64` +- `tensorflow-core-platform`: Includes `tensorflow-core-api`, plus native artifacts for `linux-x86_64`, `linux-x86_64-arm64`, `macosx-arm64` and `windows-x86_64` For example, to run TensorFlow Java on any CPU platform for which a binary is being distributed by this project, you can simply add this dependency to your application: @@ -122,9 +143,13 @@ simply add this dependency to your application: org.tensorflow tensorflow-core-platform - 1.0.0-rc.1 + 1.1.0 ``` +Or Gradle: +```groovy +implementation "org.tensorflow:tensorflow-core-platform:1.1.0" +``` Be aware though that the builds of TensorFlow are quite voluminous and including too many native dependencies may significantly increase the size of your application. So it is good practice to limit your dependencies to @@ -135,7 +160,7 @@ the conventions established on this page: ### Snapshots Snapshots of TensorFlow Java artifacts are automatically distributed after each update in the code. To use them, you need -to add Sonatype OSS repository in your pom.xml, like the following +to add Sonatype OSS repository in your `pom.xml`, like the following ```xml @@ -152,28 +177,45 @@ to add Sonatype OSS repository in your pom.xml, like the following org.tensorflow tensorflow-core-platform - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT ``` +Or Gradle: +```groovy +repositories { + mavenCentral() + maven { + url = uri("https://oss.sonatype.org/content/repositories/snapshots") + } +} + +dependencies { + // Example of dependency, see section above for more options + implementation "org.tensorflow:tensorflow-core-platform:1.2.0-SNAPSHOT" +} +``` ## TensorFlow/Java Version Support This table shows the mapping between TensorFlow, TensorFlow Java and minimum supported Java versions. | TensorFlow Java Version | TensorFlow Version | Minimum Java Version | -|-------------------------|--------------------| --------------- | -| 0.2.0 | 2.3.1 | 8 | -| 0.3.0 | 2.4.1 | 8 | -| 0.3.1 | 2.4.1 | 8 | -| 0.3.2 | 2.4.1 | 8 | -| 0.3.3 | 2.4.1 | 8 | -| 0.4.0 | 2.7.0 | 8 | -| 0.4.1 | 2.7.1 | 8 | -| 0.4.2 | 2.7.4 | 8 | -| 0.5.0 | 2.10.1 | 11 | -| 1.0.0-rc.1 | 2.16.1 | 11 | -| 1.0.0-SNAPSHOT | 2.16.1 | 11 | +|-------------------------|--------------------|----------------------| +| 0.2.0 | 2.3.1 | 8 | +| 0.3.0 | 2.4.1 | 8 | +| 0.3.1 | 2.4.1 | 8 | +| 0.3.2 | 2.4.1 | 8 | +| 0.3.3 | 2.4.1 | 8 | +| 0.4.0 | 2.7.0 | 8 | +| 0.4.1 | 2.7.1 | 8 | +| 0.4.2 | 2.7.4 | 8 | +| 0.5.0 | 2.10.1 | 11 | +| 1.0.0-rc.1 | 2.16.1 | 11 | +| 1.0.0-rc.2 | 2.16.2 | 11 | +| 1.0.0 | 2.16.2 | 11 | +| 1.1.0 | 2.18.0 | 11 | +| 1.2.0-SNAPSHOT | 2.18.0 | 11 | ## How to Contribute? diff --git a/docs/_toc.yaml b/docs/_toc.yaml old mode 100644 new mode 100755 diff --git a/docs/docs/assets/tensorflow.svg b/docs/docs/assets/tensorflow.svg new file mode 100644 index 00000000000..c0778626d66 --- /dev/null +++ b/docs/docs/assets/tensorflow.svg @@ -0,0 +1 @@ + diff --git a/docs/index.md b/docs/docs/index.md old mode 100644 new mode 100755 similarity index 59% rename from docs/index.md rename to docs/docs/index.md index 47ad1385a1e..c9fcbf53e7e --- a/docs/index.md +++ b/docs/docs/index.md @@ -1,14 +1,5 @@ # TensorFlow for Java - - - -
- View on TensorFlow.org - - View GitHub repository -
- TensorFlow Java can run on any JVM for building, training and running machine learning models. It comes with a series of utilities and frameworks that help achieve most of the tasks common to data scientists and developers working in this domain. Java and other JVM languages, such as Scala or Kotlin, are @@ -26,21 +17,19 @@ migrated from Bazel to Maven, which is more familiar for most Java developers. The following describes the layout of the repository and its different artifacts: -* [tensorflow-core](https://github.com/tensorflow/java/tree/master/tensorflow-core) - * All artifacts that build up the core language bindings of TensorFlow for Java - * Intended audience: projects that provide their own APIs or frameworks on top of - TensorFlow and just want a thin layer to access the TensorFlow runtime from the JVM - -* [tensorflow-framework](https://github.com/tensorflow/java/tree/master/tensorflow-framework) - * Primary API for building and training neural networks with TensorFlow - * Intended audience: neural network developers +### [tensorflow-core](https://github.com/tensorflow/java/tree/master/tensorflow-core) + * **Intended audience**: developers who wants to deploy a TensorFlow model on a JVM for inference. Also for projects + that provide their own APIs or frameworks on top of TensorFlow and just want a thin layer to access the TensorFlow runtime from the JVM. + * All artifacts that make up the core language bindings of TensorFlow for Java. -* [ndarray](https://github.com/tensorflow/java-ndarray) - * Generic utility library for n-dimensional data I/O operations - * Used by TensorFlow but does not depend on TensorFlow - * Intended audience: any developer who needs a Java n-dimensional array implementation, whether or not they - use it with TensorFlow +### [tensorflow-framework](https://github.com/tensorflow/java/tree/master/tensorflow-framework) + * **Intended audience**: neural network developers. + * Primary API for building and training neural networks with TensorFlow. +### [ndarray](https://github.com/tensorflow/java-ndarray) + * **Intended audience**: any developer who needs a Java n-dimensional array implementation, whether or not they use it with TensorFlow. + * Generic utility library for n-dimensional data I/O operations. + * Used by TensorFlow but does not depend on TensorFlow. ## Communication diff --git a/docs/install.md b/docs/docs/install.md old mode 100644 new mode 100755 similarity index 86% rename from docs/install.md rename to docs/docs/install.md index e5378fcfd67..2fe676e956a --- a/docs/install.md +++ b/docs/docs/install.md @@ -8,20 +8,26 @@ Kotlin, are frequently used in large and small enterprises all over the world, which makes TensorFlow Java a strategic choice for adopting machine learning at a large scale. -Caution: The TensorFlow Java API is *not* covered by the TensorFlow -[API stability guarantees](https://www.tensorflow.org/guide/versions). +Note: Starting from version 1.0.0, the TensorFlow Java project follows the +[TensorFlow API stability guarantees](https://www.tensorflow.org/guide/versions#api_stability). +However, as these bindings are downstream of the TensorFlow C API, users should +be aware that stability is subject to the evolution of the upstream TensorFlow core. ## Requirements -TensorFlow Java runs on Java 8 and above, and supports out-of-the-box the +TensorFlow Java runs on Java 11 and above, and supports out-of-the-box the following platforms: -* Ubuntu 16.04 or higher; 64-bit, x86 -* macOS 10.12.6 (Sierra) or higher; 64-bit, x86 -* Windows 7 or higher; 64-bit, x86 +* Ubuntu 20.04 or higher; 64-bit, x86 +* Ubuntu 22.04 or higher; 64-bit, arm +* macOS 14 or higher; 64-bit, arm +* Windows 10 or higher; 64-bit, x86 -*Note: To use TensorFlow on Android, see -[TensorFlow Lite](https://tensorflow.org/lite)* +TensorFlow Java 1.0 series and earlier releases also have binaries for: + +* macOS 12 or higher; 64-bit, x86 + +*Note: To use TensorFlow on Android, see [LiteRT](https://tensorflow.org/lite)* ## Versions @@ -41,8 +47,7 @@ TensorFlow Java to your project. The easiest one is to add a dependency on the Core API and the native dependencies it requires to run on all supported platforms. -You can also select the `tensorflow-core-platform-gpu` extension instead, which -supports CUDA® on Linux and Windows platforms. +To include CUDA® support for Linux x86, select the `tensorflow-core-native:linux-x86_64-gpu` artifact. In addition, a separate dependency on the `tensorflow-framework` library can be added to benefit from a rich set of utilities for TensorFlow-based machine @@ -58,7 +63,7 @@ For example, org.tensorflow tensorflow-core-platform - 1.0.0-rc.1 + 1.1.0 ``` @@ -101,7 +106,7 @@ snapshots repository in your `pom.xml`. org.tensorflow tensorflow-core-platform - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT ``` @@ -118,7 +123,7 @@ repositories { } dependencies { - compile group: 'org.tensorflow', name: 'tensorflow-core-platform', version: '1.0.0-rc.1' + compile group: 'org.tensorflow', name: 'tensorflow-core-platform', version: '1.0.0' } ``` @@ -164,7 +169,7 @@ add the TensorFlow dependency to the project's `pom.xml` file: org.tensorflow tensorflow-core-platform - 1.0.0-rc.1 + 1.1.0 diff --git a/docs/docs/references.md b/docs/docs/references.md new file mode 100644 index 00000000000..524b23dc675 --- /dev/null +++ b/docs/docs/references.md @@ -0,0 +1,8 @@ +--- +hide: + - navigation + - toc + - title +--- +# + \ No newline at end of file diff --git a/docs/docs/stylesheets/extra.css b/docs/docs/stylesheets/extra.css new file mode 100644 index 00000000000..70aefe6843e --- /dev/null +++ b/docs/docs/stylesheets/extra.css @@ -0,0 +1,14 @@ +:root > * { + /*--md-primary-fg-color: #EE782F;*/ + /*--md-primary-fg-color--light: #455960;*/ + /*--md-primary-fg-color--dark: #90030C;*/ +} + +.md-typeset h1, .md-typeset h2 { + font-weight: 800; + letter-spacing: -.01em; +} + +.md-sidebar--primary { + display: none; +} \ No newline at end of file diff --git a/tools/build_java_api_docs.py b/docs/legacy_tools/build_java_api_docs.py similarity index 56% rename from tools/build_java_api_docs.py rename to docs/legacy_tools/build_java_api_docs.py index 5eadafc276d..77d3ba80f31 100644 --- a/tools/build_java_api_docs.py +++ b/docs/legacy_tools/build_java_api_docs.py @@ -13,6 +13,13 @@ # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== + +###################################################################################################################### +# IMPORTANT: Files in legacy_tools are no longer used to generate the TensorFlow-Java API docs as there are unfixed issues +# when using DocLava outside of the Google environment. We are keeping these for reference in case they are useful later. +###################################################################################################################### + + """Generate TensorFlow Java reference docs for TensorFlow.org.""" from __future__ import absolute_import from __future__ import division @@ -21,6 +28,9 @@ import pathlib import shutil import tempfile +import io +import requests +import zipfile from git import Repo from absl import app @@ -29,14 +39,29 @@ from tensorflow_docs.api_generator import gen_java FLAGS = flags.FLAGS + NDARRAY_VERSION = 'v1.0.0' +JAVACPP_VERSION = '1.5.11' +PROTOBUF_VERSION = 'v3.21.9' + +# __file__ is the path to this file +TOOLS_DIR = pathlib.Path(__file__).resolve().parent +DOCS_DIR = TOOLS_DIR.parent +REPO_ROOT = DOCS_DIR.parent +DOC_OUTPUT_DIR = DOCS_DIR.joinpath("output") + +SECTION_LABELS = { + 'org.tensorflow': 'Core', + 'org.tensorflow.ndarray': 'NdArray', + 'org.tensorflow.framework': 'Framework', +} # These flags are required by infrastructure, not all of them are used. -flags.DEFINE_string('output_dir', '/tmp/java_api/', +flags.DEFINE_string('output_dir', f"{DOC_OUTPUT_DIR}", ("Use this branch as the root version and don't" ' create in version directory')) -flags.DEFINE_string('site_path', 'java/api_docs/java', +flags.DEFINE_string('site_path', 'api_docs/', 'Path prefix in the _toc.yaml') flags.DEFINE_string('code_url_prefix', None, @@ -46,20 +71,15 @@ 'search_hints', True, '[UNUSED] Include metadata search hints in the generated files') -# __file__ is the path to this file -TOOLS_DIR = pathlib.Path(__file__).resolve().parent -REPO_ROOT = TOOLS_DIR.parent - -def checkout_ndarray(): - repo_url = 'https://github.com/tensorflow/java-ndarray' - local_repo_path = REPO_ROOT/'ndarray' +def checkout_repo(repo_url: str, target_dir_name: str, version: str): + local_repo_path = f"{REPO_ROOT}/{target_dir_name}" if not pathlib.Path(local_repo_path).exists(): local_repo = Repo.clone_from(repo_url, local_repo_path) else: local_repo = Repo(local_repo_path) local_repo.remotes['origin'].fetch() - local_repo.git.checkout(NDARRAY_VERSION) + local_repo.git.checkout(version) def overlay(from_root, to_root): @@ -74,25 +94,36 @@ def overlay(from_root, to_root): def main(unused_argv): - checkout_ndarray() + checkout_repo('https://github.com/tensorflow/java-ndarray', 'ndarray', NDARRAY_VERSION) + checkout_repo('https://github.com/bytedeco/javacpp', 'javacpp', JAVACPP_VERSION) + response = requests.get('https://repo1.maven.org/maven2/com/google/protobuf/protobuf-java/3.21.9/protobuf-java-3.21.9-sources.jar') + with zipfile.ZipFile(io.BytesIO(response.content)) as z: + z.extractall(f"{REPO_ROOT}/protobuf") + response = requests.get('https://repo1.maven.org/maven2/org/osgi/osgi.annotation/8.1.0/osgi.annotation-8.1.0-sources.jar') + with zipfile.ZipFile(io.BytesIO(response.content)) as z: + z.extractall(f"{REPO_ROOT}/osgi") + merged_source = pathlib.Path(tempfile.mkdtemp()) (merged_source / 'java/org').mkdir(parents=True) - shutil.copytree(REPO_ROOT/'tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/', merged_source/'java/org/tensorflow') overlay(REPO_ROOT/'tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow', merged_source/'java/org/tensorflow') - shutil.copytree(REPO_ROOT/'tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto', merged_source/'java/org/tensorflow/proto') - shutil.copytree(REPO_ROOT/'tensorflow-core/tensorflow-core-native/src/main/java/org/tensorflow/exceptions', merged_source/'java/org/tensorflow/exceptions') - shutil.copytree(REPO_ROOT/'tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api', merged_source/'java/org/tensorflow/internal/c_api') + overlay(REPO_ROOT/'tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow', merged_source/'java/org/tensorflow') + overlay(REPO_ROOT/'tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/', merged_source/'java/org/tensorflow/') + overlay(REPO_ROOT/'tensorflow-core/tensorflow-core-native/src/main/java/org/tensorflow/', merged_source/'java/org/tensorflow/') shutil.copytree(REPO_ROOT/'tensorflow-framework/src/main/java/org/tensorflow/framework', merged_source/'java/org/tensorflow/framework') shutil.copytree(REPO_ROOT/'ndarray/ndarray/src/main/java/org/tensorflow/ndarray', merged_source/'java/org/tensorflow/ndarray') + shutil.copytree(REPO_ROOT/'javacpp/src/main/java/org/bytedeco', merged_source/'java/org/bytedeco') + shutil.copytree(REPO_ROOT/'protobuf/com/', merged_source/'java/com') + shutil.copytree(REPO_ROOT/'osgi/org/osgi', merged_source/'java/org/osgi') gen_java.gen_java_docs( package='org.tensorflow', source_path=merged_source / 'java', output_dir=pathlib.Path(FLAGS.output_dir), site_path=pathlib.Path(FLAGS.site_path), + section_labels=SECTION_LABELS, # Uncomment for local testing: - # script_path=pathlib.Path(REPO_ROOT/'tools/run-javadoc-for-tf-local.sh'), + script_path=pathlib.Path(TOOLS_DIR, 'run-javadoc-for-tf-local.sh'), ) diff --git a/docs/legacy_tools/requirements.txt b/docs/legacy_tools/requirements.txt new file mode 100644 index 00000000000..4435ca4d4a9 --- /dev/null +++ b/docs/legacy_tools/requirements.txt @@ -0,0 +1,8 @@ +###################################################################################################################### +# IMPORTANT: Files in legacy_tools are no longer used to generate the TensorFlow-Java API docs as there are unfixed issues +# when using DocLava outside of the Google environment. We are keeping these for reference in case they are useful later. +###################################################################################################################### + +GitPython +requests +tensorflow-docs \ No newline at end of file diff --git a/tools/run-javadoc-for-tf-local.sh b/docs/legacy_tools/run-javadoc-for-tf-local.sh similarity index 83% rename from tools/run-javadoc-for-tf-local.sh rename to docs/legacy_tools/run-javadoc-for-tf-local.sh index 59239b78141..97d59ddfd6e 100644 --- a/tools/run-javadoc-for-tf-local.sh +++ b/docs/legacy_tools/run-javadoc-for-tf-local.sh @@ -1,4 +1,10 @@ #!/bin/bash + +###################################################################################################################### +# IMPORTANT: Files in legacy_tools are no longer used to generate the TensorFlow-Java API docs as there are unfixed issues +# when using DocLava outside of the Google environment. We are keeping these for reference in case they are useful later. +###################################################################################################################### + set -ex export JAVA_HOME=/Library/Java/JavaVirtualMachines/zulu-11.jdk/Contents/Home # Or change to any JDK 11 home path @@ -11,12 +17,13 @@ export JAVA_HOME=/Library/Java/JavaVirtualMachines/zulu-11.jdk/Contents/Home # O # $ sudo apt install doclava-aosp #v 6.0.1+r55-1+build1 # # https://unix.stackexchange.com/questions/594841/how-do-i-assign-a-value-to-a-bash-variable-iff-that-variable-is-null-unassigned -DOCLAVA_JAR=${DOCLAVA_JAR:-'lib/doclava.jar'} # Build lib locally +DOCLAVA_JAR=${DOCLAVA_JAR:-'tools/lib/doclava.jar'} # Build lib locally + # Install java clear silver templates with: # # $ sudo apt install libjsilver-aosp-java #v 6.0.1+r55-1+build1 -JSILVER_JAR=${JSILVER_JAR:-'lib/jsilver.jar'} # Build lib locally +JSILVER_JAR=${JSILVER_JAR:-'tools/lib/jsilver.jar'} # Build lib locally ######### DELETE OUTPUT_DIR ################# @@ -56,16 +63,15 @@ for pkg in "${packages[@]}"; do SUBPACKAGES+=" -subpackages ${pkg}" done ( # Capture the return code. it may be non-zero for minor errors. - javadoc \ + /Library/Java/JavaVirtualMachines/zulu-11.jdk/Contents/Home/bin/javadoc \ -sourcepath "${SOURCE_PATH}" \ -docletpath "${DOCLAVA_JAR}:${JSILVER_JAR}" \ -doclet com.google.doclava.Doclava \ - -d "${OUTPUT_DIR}" \ -toroot "${SITE_PATH}"/ \ -yaml _toc.yaml \ -templatedir "${TEMPLATES}" \ -public \ - -devsite \ + -d "${OUTPUT_DIR}" \ ${FEDERATED_PARAMS} \ ${SUBPACKAGES} ) diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml new file mode 100644 index 00000000000..8729bca5af5 --- /dev/null +++ b/docs/mkdocs.yml @@ -0,0 +1,49 @@ +site_name: '' +site_url: https://tensorflow.org +repo_url: https://github.com/tensorflow/java +site_description: Documentation of TensorFlow Java API and tools. +copyright: "© TensorFlow Authors 2025" + +theme: + name: material + logo: assets/tensorflow.svg + features: + - navigation.indexes + - navigation.instant + - navigation.sections + - navigation.tabs + - navigation.tabs.sticky + - toc.follow + palette: + # Palette toggle for automatic mode + - media: "(prefers-color-scheme)" + toggle: + icon: material/brightness-auto + name: Switch to light mode + # Palette toggle for light mode + - media: "(prefers-color-scheme: light)" + scheme: default + primary: white + accent: orange + toggle: + icon: material/brightness-7 + name: Switch to dark mode + # Palette toggle for dark mode + - media: "(prefers-color-scheme: dark)" + scheme: slate + primary: black + accent: orange + toggle: + icon: material/brightness-4 + name: Switch to system preference + +extra_css: + - stylesheets/extra.css + +nav: + - Home: + - index.md + - Install: + - install.md + - References: + - apidocs/index.html diff --git a/pom.xml b/pom.xml index 6ed9e52771b..f7f90275778 100644 --- a/pom.xml +++ b/pom.xml @@ -7,7 +7,7 @@ org.tensorflow tensorflow-java - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT pom TensorFlow Java Parent @@ -49,7 +49,7 @@ true true true - 2.43.0 + 2.46.1 @@ -212,7 +212,7 @@ -Xlint:all -XDcompilePolicy=simple - -Xplugin:ErrorProne + -J--add-opens=jdk.compiler/com.sun.tools.javac.code=ALL-UNNAMED -J--add-opens=jdk.compiler/com.sun.tools.javac.comp=ALL-UNNAMED @@ -546,16 +546,38 @@ maven-javadoc-plugin - 3.6.0 + 3.12.0 + + ./docs/overview.md + + Copyright 2015, 2025 The TensorFlow Authors. All Rights Reserved. + + -Xmaxerrs + 65536 + -Xmaxwarns + 65536 + + false + 256m + 2048m + + https://tensorflow.github.io/java/javadoc-ndarray/v1.0.0/ + https://protobuf.dev/reference/java/api-docs + https://bytedeco.org/javacpp/apidocs + + + + javadoc-site + + javadoc + + attach-javadocs jar - - true - diff --git a/release.sh b/release.sh index 01f99386a71..acd1041d766 100755 --- a/release.sh +++ b/release.sh @@ -34,7 +34,7 @@ fi # To get a shell to poke around the maven artifacts with. if [[ -z "${CMD}" ]] then - CMD="mvn clean deploy -B -e --settings ./settings.xml -Pdeploying -Preleasing -DstagingRepositoryId=${STAGING_SEQ}" + CMD="mvn clean deploy -B -e --settings ./settings.xml -Pdeploying -Preleasing -DstagingRepositoryId=orgtensorflow-${STAGING_SEQ}" fi export GPG_TTY=$(tty) diff --git a/tensorflow-core/pom.xml b/tensorflow-core/pom.xml index d0ea8480f95..14d155dd901 100644 --- a/tensorflow-core/pom.xml +++ b/tensorflow-core/pom.xml @@ -22,7 +22,7 @@ org.tensorflow tensorflow-java - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT tensorflow-core pom @@ -59,7 +59,7 @@ macosx-arm64${javacpp.platform.extension} macosx-x86_64${javacpp.platform.extension} windows-x86_64${javacpp.platform.extension} - 1.5.10 + 1.5.12 diff --git a/tensorflow-core/tensorflow-core-api/pom.xml b/tensorflow-core/tensorflow-core-api/pom.xml index d08f7733cba..59e1703d355 100644 --- a/tensorflow-core/tensorflow-core-api/pom.xml +++ b/tensorflow-core/tensorflow-core-api/pom.xml @@ -6,7 +6,7 @@ org.tensorflow tensorflow-core - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT tensorflow-core-api jar @@ -220,30 +220,6 @@ - - maven-javadoc-plugin - 3.6.0 - - - attach-javadocs - - jar - - - - -Xmaxerrs - 65536 - -Xmaxwarns - 65536 - - false - 256m - 2048m - - - - - org.codehaus.mojo exec-maven-plugin diff --git a/tensorflow-core/tensorflow-core-api/scripts/test_download.sh b/tensorflow-core/tensorflow-core-api/scripts/test_download.sh index 03e4c854285..5d1c2988d7e 100755 --- a/tensorflow-core/tensorflow-core-api/scripts/test_download.sh +++ b/tensorflow-core/tensorflow-core-api/scripts/test_download.sh @@ -5,10 +5,13 @@ DOWNLOAD_FOLDER="$1" case ${PLATFORM:-} in 'linux-x86_64') - TEXT_WHEEL_URL='https://files.pythonhosted.org/packages/c5/ef/5b8270e5665923bda4222f56382d9fbcb7fd6efd5fb8557ad0776848cdff/tensorflow_text-2.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' + TEXT_WHEEL_URL='https://files.pythonhosted.org/packages/f3/73/3a906feb0d71d9353c6fb2363d4052856cc6eff5a78a097b1a6002d4e908/tensorflow_text-2.18.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' ;; - 'macosx-x86_64') - TEXT_WHEEL_URL='https://files.pythonhosted.org/packages/ed/5d/b55f48cdf98a164d293f660748c2501ea828e148250a4cadbb5b0d988735/tensorflow_text-2.16.1-cp311-cp311-macosx_10_9_x86_64.whl' + 'linux-arm64') + TEXT_WHEEL_URL='https://files.pythonhosted.org/packages/8a/9a/ebba9f6274f8b51e5fe1ac2411b8b6bf680a32d10bd6e9c54be1faeec062/tensorflow_text-2.18.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl' + ;; + 'macosx-arm64') + TEXT_WHEEL_URL='https://files.pythonhosted.org/packages/18/b6/8ad233edb0732847db1da538cea941dcccc42f59304ff6fb449676e6dd5a/tensorflow_text-2.18.1-cp311-cp311-macosx_11_0_arm64.whl' ;; *) echo "TensorFlow Text distribution for ${PLATFORM} is not supported for download" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_CheckPinned.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_CheckPinned.pbtxt new file mode 100644 index 00000000000..fff873c9bbf --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_CheckPinned.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "CheckPinned" + endpoint { + name: "CheckPinned" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSize.pbtxt index 91551fab016..3bedfe49d78 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSize.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSize.pbtxt @@ -1,6 +1,6 @@ op { graph_op_name: "ComputeDedupDataSize" - visibility: VISIBLE + visibility: SKIP endpoint { name: "tpu.ComputeDedupDataSize" } diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSizeV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSizeV2.pbtxt new file mode 100644 index 00000000000..af5bdc31f13 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataSizeV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "ComputeDedupDataSizeV2" + endpoint { + name: "tpu.ComputeDedupDataSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMask.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMask.pbtxt index 946eab7e85a..cb0cd71c3f3 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMask.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMask.pbtxt @@ -1,5 +1,5 @@ op { - visibility: VISIBLE + visibility: SKIP graph_op_name: "ComputeDedupDataTupleMask" endpoint { name: "tpu.ComputeDedupDataTupleMask" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMaskV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMaskV2.pbtxt new file mode 100644 index 00000000000..75e34703b13 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ComputeDedupDataTupleMaskV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "ComputeDedupDataTupleMaskV2" + endpoint { + name: "tpu.ComputeDedupDataTupleMask" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToListOfSparseCoreCooTensors.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToListOfSparseCoreCooTensors.pbtxt new file mode 100644 index 00000000000..99d2ebea438 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToListOfSparseCoreCooTensors.pbtxt @@ -0,0 +1,7 @@ +op { + graph_op_name: "ConvertToListOfSparseCoreCooTensors" + visibility: VISIBLE + endpoint { + name: "sparse.ConvertToListOfSparseCoreCooTensors" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToSparseCoreCsrWrappedCooTensor.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToSparseCoreCsrWrappedCooTensor.pbtxt new file mode 100644 index 00000000000..6b78c0b216c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_ConvertToSparseCoreCsrWrappedCooTensor.pbtxt @@ -0,0 +1,7 @@ +op { + graph_op_name: "ConvertToSparseCoreCsrWrappedCooTensor" + visibility: VISIBLE + endpoint { + name: "sparse.ConvertToSparseCoreCsrWrappedCooTensor" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbedding.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbedding.pbtxt index bb76cd12973..5a5262fbe5a 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbedding.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbedding.pbtxt @@ -1,5 +1,5 @@ op { - visibility: VISIBLE + visibility: SKIP graph_op_name: "FinalizeTPUEmbedding" endpoint { name: "tpu.FinalizeTPUEmbedding" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbeddingV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbeddingV2.pbtxt new file mode 100644 index 00000000000..7a8840309e4 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_FinalizeTPUEmbeddingV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "FinalizeTPUEmbeddingV2" + endpoint { + name: "tpu.FinalizeTPUEmbedding" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_GetStatsFromListOfSparseCoreCooTensors.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_GetStatsFromListOfSparseCoreCooTensors.pbtxt new file mode 100644 index 00000000000..11a2b9eccba --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_GetStatsFromListOfSparseCoreCooTensors.pbtxt @@ -0,0 +1,7 @@ +op { + graph_op_name: "GetStatsFromListOfSparseCoreCooTensors" + visibility: VISIBLE + endpoint { + name: "sparse.GetStatsFromListOfSparseCoreCooTensors" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_GetTpuTaskId.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_GetTpuTaskId.pbtxt new file mode 100644 index 00000000000..1072689506c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_GetTpuTaskId.pbtxt @@ -0,0 +1,7 @@ +op { + graph_op_name: "GetTpuTaskId" + visibility: VISIBLE + endpoint { + name: "tpu.GetTpuTaskId" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_GlobalShuffleDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_GlobalShuffleDataset.pbtxt new file mode 100644 index 00000000000..ed286d3ae31 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_GlobalShuffleDataset.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "GlobalShuffleDataset" + endpoint { + name: "data.GlobalShuffleDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_IndexFlatMapDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_IndexFlatMapDataset.pbtxt new file mode 100644 index 00000000000..682904a7504 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_IndexFlatMapDataset.pbtxt @@ -0,0 +1,7 @@ +op { + graph_op_name: "IndexFlatMapDataset" + visibility: VISIBLE + endpoint { + name: "data.IndexFlatMapDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_IteratorGetModelProto.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_IteratorGetModelProto.pbtxt new file mode 100644 index 00000000000..588803255e0 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_IteratorGetModelProto.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "IteratorGetModelProto" + endpoint { + name: "data.IteratorGetModelProto" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_SortListOfSparseCoreCooTensors.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_SortListOfSparseCoreCooTensors.pbtxt new file mode 100644 index 00000000000..9a8176098c2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_SortListOfSparseCoreCooTensors.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "SortListOfSparseCoreCooTensors" + endpoint { + name: "sparse.SortListOfSparseCoreCooTensors" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_UpdateTaskIdAndGlobalCoreArray.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_UpdateTaskIdAndGlobalCoreArray.pbtxt new file mode 100644 index 00000000000..0a1285c8357 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_UpdateTaskIdAndGlobalCoreArray.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "UpdateTaskIdAndGlobalCoreArray" + endpoint { + name: "tpu.UpdateTaskIdAndGlobalCoreArray" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_WeightedFlatMapDataset.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_WeightedFlatMapDataset.pbtxt new file mode 100644 index 00000000000..6f879a98257 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_WeightedFlatMapDataset.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "WeightedFlatMapDataset" + endpoint { + name: "data.WeightedFlatMapDataset" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaCallModule.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaCallModule.pbtxt index ae152ae6245..b195d388983 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaCallModule.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaCallModule.pbtxt @@ -1,6 +1,6 @@ op { graph_op_name: "XlaCallModule" - visibility: HIDDEN + visibility: VISIBLE endpoint { name: "xla.XlaCallModule" } diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivations.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivations.pbtxt index 5022c15fd1c..1a1fdb0c423 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivations.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivations.pbtxt @@ -1,5 +1,5 @@ op { - visibility: VISIBLE + visibility: SKIP graph_op_name: "XlaRecvTPUEmbeddingActivations" endpoint { name: "xla.XlaRecvTPUEmbeddingActivations" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivationsV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivationsV2.pbtxt new file mode 100644 index 00000000000..d02f42c4bbf --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingActivationsV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaRecvTPUEmbeddingActivationsV2" + endpoint { + name: "xla.XlaRecvTPUEmbeddingActivations" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationData.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationData.pbtxt index 0cf0987c1c1..9c376f0820c 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationData.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationData.pbtxt @@ -1,5 +1,5 @@ op { - visibility: VISIBLE + visibility: SKIP graph_op_name: "XlaRecvTPUEmbeddingDeduplicationData" endpoint { name: "xla.XlaRecvTPUEmbeddingDeduplicationData" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationDataV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationDataV2.pbtxt new file mode 100644 index 00000000000..43a55d29adc --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaRecvTPUEmbeddingDeduplicationDataV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaRecvTPUEmbeddingDeduplicationDataV2" + endpoint { + name: "xla.XlaRecvTPUEmbeddingDeduplicationData" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradients.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradients.pbtxt index b8fd705c59e..3fae92d46d9 100644 --- a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradients.pbtxt +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradients.pbtxt @@ -1,5 +1,5 @@ op { - visibility: VISIBLE + visibility: SKIP graph_op_name: "XlaSendTPUEmbeddingGradients" endpoint { name: "xla.XlaSendTPUEmbeddingGradients" diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradientsV2.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradientsV2.pbtxt new file mode 100644 index 00000000000..26dd3e15d22 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSendTPUEmbeddingGradientsV2.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSendTPUEmbeddingGradientsV2" + endpoint { + name: "xla.XlaSendTPUEmbeddingGradients" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.pbtxt new file mode 100644 index 00000000000..47fcebe1956 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.pbtxt new file mode 100644 index 00000000000..81513ff20af --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.pbtxt new file mode 100644 index 00000000000..20ec6c2fe5b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithCsrInput.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithCsrInput.pbtxt new file mode 100644 index 00000000000..6a1578fae35 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithCsrInput.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithCsrInput" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithCsrInput" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.pbtxt new file mode 100644 index 00000000000..962389ea718 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.pbtxt new file mode 100644 index 00000000000..1854d77d0b6 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulWithStaticBufferSize.pbtxt b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulWithStaticBufferSize.pbtxt new file mode 100644 index 00000000000..aa0f72e074b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/api/api_def_XlaSparseDenseMatmulWithStaticBufferSize.pbtxt @@ -0,0 +1,6 @@ +op { + graph_op_name: "XlaSparseDenseMatmulWithStaticBufferSize" + endpoint { + name: "xla.XlaSparseDenseMatmulWithStaticBufferSize" + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java index 21073274635..5cf8e620d72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/BitwiseOps.java @@ -61,7 +61,6 @@ public final class BitwiseOps { * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code BitwiseAnd} output and operands @@ -91,7 +90,6 @@ public BitwiseAnd bitwiseAnd(Operand x, Operand y) * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code BitwiseOr} output and operands @@ -121,7 +119,6 @@ public BitwiseOr bitwiseOr(Operand x, Operand y) { * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code BitwiseXor} output and operands @@ -172,7 +169,6 @@ public BitwiseXor bitwiseXor(Operand x, Operand y) * tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32)) * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Invert} output and operands * @return a new instance of Invert @@ -212,7 +208,6 @@ public Invert invert(Operand x) { * # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)> * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code LeftShift} output and operands @@ -255,7 +250,6 @@ public LeftShift leftShift(Operand x, Operand y) { * # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)> * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code RightShift} output and operands diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/CollectiveOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/CollectiveOps.java index 23a96e4bfdf..de786dc95fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/CollectiveOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/CollectiveOps.java @@ -49,7 +49,6 @@ public final class CollectiveOps { /** * Mutually exchanges multiple tensors of identical type and shape. * - * @param data type for {@code data} output * @param input The input value * @param communicator The communicator value * @param groupAssignment The groupAssignment value @@ -79,7 +78,6 @@ public CollectiveAssignGroup collectiveAssignGroup(Operand groupAssignme /** * Receives a tensor value broadcast from another device. * - * @param data type for {@code data} output * @param groupSize The groupSize value * @param groupKey The groupKey value * @param instanceKey The instanceKey value @@ -98,7 +96,6 @@ public CollectiveBcastRecv collectiveBcastRecv(Operand data type for {@code data} output * @param input The input value * @param groupSize The groupSize value * @param groupKey The groupKey value @@ -119,7 +116,6 @@ public CollectiveBcastSend collectiveBcastSend(Operand i * collective ops. In this case, keys that are unique at runtime * (e.g. {@code instance_key}) should be used to distinguish collective groups. * - * @param data type for {@code data} output * @param input The input value * @param groupSize The groupSize value * @param groupKey The groupKey value @@ -157,7 +153,6 @@ public CollectiveInitializeCommunicator collectiveInitializeCommunicator(Operand * source_target_pairs={@code [[0,1],[1,2],[2,3],[3,0]]} gets the outputs: * {@code [D, A, B, C]}. * - * @param data type for {@code output} output * @param input The local input to be permuted. Currently only supports float and * bfloat16. * @param sourceTargetPairs A tensor with shape [num_pairs, 2]. @@ -172,7 +167,6 @@ public CollectivePermute collectivePermute(Operand input /** * Mutually reduces multiple tensors of identical type and shape. * - * @param data type for {@code data} output * @param input The input value * @param communicator The communicator value * @param groupAssignment The groupAssignment value @@ -193,7 +187,6 @@ public CollectiveReduce collectiveReduce(Operand input * collective ops. In this case, keys that are unique at runtime * (e.g. {@code instance_key}) should be used to distinguish collective groups. * - * @param data type for {@code data} output * @param input The input value * @param groupSize The groupSize value * @param groupKey The groupKey value diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java index 49f7e238a3f..5a3a14b799e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DataOps.java @@ -59,6 +59,7 @@ import org.tensorflow.op.data.GroupByReducerDataset; import org.tensorflow.op.data.GroupByWindowDataset; import org.tensorflow.op.data.IgnoreErrorsDataset; +import org.tensorflow.op.data.IndexFlatMapDataset; import org.tensorflow.op.data.InitializeTableFromDataset; import org.tensorflow.op.data.InterleaveDataset; import org.tensorflow.op.data.Iterator; @@ -819,6 +820,28 @@ public IgnoreErrorsDataset ignoreErrorsDataset(Operand inputDat return IgnoreErrorsDataset.create(scope, inputDataset, outputTypes, outputShapes, options); } + /** + * The IndexFlatMapDataset operation + * + * @param inputDataset The inputDataset value + * @param mapFuncOtherArgs The mapFuncOtherArgs value + * @param indexMapFuncOtherArgs The indexMapFuncOtherArgs value + * @param outputCardinality The outputCardinality value + * @param mapFunc The value of the mapFunc attribute + * @param indexMapFunc The value of the indexMapFunc attribute + * @param outputTypes The value of the outputTypes attribute + * @param outputShapes The value of the outputShapes attribute + * @param options carries optional attribute values + * @return a new instance of IndexFlatMapDataset + */ + public IndexFlatMapDataset indexFlatMapDataset(Operand inputDataset, + Iterable> mapFuncOtherArgs, Iterable> indexMapFuncOtherArgs, + Operand outputCardinality, ConcreteFunction mapFunc, ConcreteFunction indexMapFunc, + List> outputTypes, List outputShapes, + IndexFlatMapDataset.Options... options) { + return IndexFlatMapDataset.create(scope, inputDataset, mapFuncOtherArgs, indexMapFuncOtherArgs, outputCardinality, mapFunc, indexMapFunc, outputTypes, outputShapes, options); + } + /** * The InitializeTableFromDataset operation * @@ -987,7 +1010,6 @@ public LatencyStatsDataset latencyStatsDataset(Operand inputDat /** * Computes rectified linear gradients for a LeakyRelu operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding LeakyRelu operation. * @param features The features passed as input to the corresponding LeakyRelu operation, * OR the outputs of that operation (both work equivalently). diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java index b50f697f8d5..4ea1efd10db 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DebuggingOps.java @@ -43,7 +43,6 @@ public final class DebuggingOps { * tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf * in the errors it throws. * - * @param data type for {@code output} output * @param tensor The tensor value * @param message Prefix of the error message. * @param data type for {@code CheckNumericsV2} output and operands diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DistributeOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DistributeOps.java index e5a6c71c20a..4f30df6352d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DistributeOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DistributeOps.java @@ -52,7 +52,6 @@ public final class DistributeOps { * num_devices: The number of devices participating in this reduction. * shared_name: Identifier that shared between ops of the same reduction. * - * @param data type for {@code data} output * @param input The input value * @param reduction The value of the reduction attribute * @param numDevices The value of the numDevices attribute @@ -74,7 +73,6 @@ public NcclAllReduce ncclAllReduce(Operand input, Stri * output: The same as input. * shape: The shape of the input tensor. * - * @param data type for {@code output} output * @param input The input value * @param shape The value of the shape attribute * @param data type for {@code NcclBroadcast} output and operands @@ -93,7 +91,6 @@ public NcclBroadcast ncclBroadcast(Operand input, Shap * data: the value of the reduction across all {@code num_devices} devices. * reduction: the reduction operation to perform. * - * @param data type for {@code data} output * @param input The input value * @param reduction The value of the reduction attribute * @param data type for {@code NcclReduce} output and operands diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java index 3ef6847d4f7..42f59c161d7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/DtypesOps.java @@ -69,7 +69,6 @@ public AsString asString(Operand input, AsString.Options... opt /** * Cast x of type SrcT to y of DstT. * - * @param data type for {@code y} output * @param x The x value * @param DstT The value of the DstT attribute * @param options carries optional attribute values @@ -95,7 +94,6 @@ public Cast cast(Operand x, Class DstT, * tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]] * * - * @param data type for {@code out} output * @param real The real value * @param imag The imag value * @param Tout The value of the Tout attribute diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java index 559ffc0d80a..f3fa3e6bbc0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ImageOps.java @@ -93,7 +93,6 @@ public final class ImageOps { * channel and then adjusts each component of each pixel to * {@code (x - mean) * contrast_factor + mean}. * - * @param data type for {@code output} output * @param images Images to adjust. At least 3-D. * @param contrastFactor A float multiplier for adjusting contrast. * @param data type for {@code AdjustContrastv2} output and operands @@ -112,7 +111,6 @@ public AdjustContrast adjustContrast(Operand images, * colors are first mapped into HSV. A delta is then applied all the hue values, * and then remapped back to RGB colorspace. * - * @param data type for {@code output} output * @param images Images to adjust. At least 3-D. * @param delta A float delta to add to the hue. * @param data type for {@code AdjustHue} output and operands @@ -130,7 +128,6 @@ public AdjustHue adjustHue(Operand images, Operand data type for {@code output} output * @param images Images to adjust. At least 3-D. * @param scale A float scale to add to the saturation. * @param data type for {@code AdjustSaturation} output and operands @@ -250,7 +247,6 @@ public CropAndResizeGradBoxes cropAndResizeGradBoxes(Operand grads, /** * Computes the gradient of the crop_and_resize op wrt the input image tensor. * - * @param data type for {@code output} output * @param grads A 4-D tensor of shape {@code [num_boxes, crop_height, crop_width, depth]}. * @param boxes A 2-D tensor of shape {@code [num_boxes, 4]}. The {@code i}-th row of the tensor * specifies the coordinates of a box in the {@code box_ind[i]} image and is specified @@ -357,7 +353,6 @@ public DecodeGif decodeGif(Operand contents) { * first frame that does not occupy the entire canvas, it uses the previous * frame to fill the unoccupied areas. * - * @param data type for {@code image} output * @param contents 0-D. The encoded image bytes. * @param options carries optional attribute values * @return a new instance of DecodeImage, with default output types @@ -384,7 +379,6 @@ public DecodeImage decodeImage(Operand contents, DecodeImage.Op * first frame that does not occupy the entire canvas, it uses the previous * frame to fill the unoccupied areas. * - * @param data type for {@code image} output * @param contents 0-D. The encoded image bytes. * @param dtype The desired DType of the returned Tensor. * @param options carries optional attribute values @@ -438,7 +432,6 @@ public DecodeJpeg decodeJpeg(Operand contents, DecodeJpeg.Options... op *

This op also supports decoding JPEGs and non-animated GIFs since the interface * is the same, though it is cleaner to use {@code tf.io.decode_image}. * - * @param data type for {@code image} output * @param contents 0-D. The PNG-encoded image. * @param options carries optional attribute values * @return a new instance of DecodePng, with default output types @@ -463,7 +456,6 @@ public DecodePng decodePng(Operand contents, DecodePng.Options[ *

This op also supports decoding JPEGs and non-animated GIFs since the interface * is the same, though it is cleaner to use {@code tf.io.decode_image}. * - * @param data type for {@code image} output * @param contents 0-D. The PNG-encoded image. * @param dtype The value of the dtype attribute * @param options carries optional attribute values @@ -487,7 +479,6 @@ public DecodePng decodePng(Operand contents, Cla * the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates). *

Parts of the bounding box may fall outside the image. * - * @param data type for {@code output} output * @param images 4-D with shape {@code [batch, height, width, depth]}. A batch of images. * @param boxes 3-D with shape {@code [batch, num_bounding_boxes, 4]} containing bounding * boxes. @@ -602,7 +593,6 @@ public ExtractGlimpse extractGlimpse(Operand input, Operand si /** * Extract {@code patches} from {@code images} and put them in the "depth" output dimension. * - * @param data type for {@code patches} output * @param images 4-D Tensor with shape {@code [batch, in_rows, in_cols, depth]}. * @param ksizes The size of the sliding window for each dimension of {@code images}. * @param strides How far the centers of two consecutive patches are in @@ -626,7 +616,6 @@ public ExtractImagePatches extractImagePatches(Operand i * Extract the shape information of a JPEG-encoded image. * This op only parses the image header, so it is much faster than DecodeJpeg. * - * @param data type for {@code image_shape} output * @param contents 0-D. The JPEG-encoded image. * @return a new instance of ExtractJpegShape, with default output types */ @@ -638,7 +627,6 @@ public ExtractJpegShape extractJpegShape(Operand contents) { * Extract the shape information of a JPEG-encoded image. * This op only parses the image header, so it is much faster than DecodeJpeg. * - * @param data type for {@code image_shape} output * @param contents 0-D. The JPEG-encoded image. * @param outputType (Optional) The output type of the operation (int32 or int64). * Defaults to int32. @@ -691,7 +679,6 @@ public GenerateBoundingBoxProposals generateBoundingBoxProposals(OperandSee {@code rgb_to_hsv} for a description of the HSV encoding. * - * @param data type for {@code output} output * @param images 1-D or higher rank. HSV data to convert. Last dimension must be size 3. * @param data type for {@code HSVToRGB} output and operands * @return a new instance of HsvToRgb @@ -708,7 +695,6 @@ public HsvToRgb hsvToRgb(Operand images) { * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input * image, the output pixel is set to 0. * - * @param data type for {@code transformed_images} output * @param images 4-D with shape {@code [batch, height, width, channels]}. * @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3 * projective transformation matrix, with the last entry assumed to be 1. If there @@ -733,7 +719,6 @@ public ImageProjectiveTransformV2 imageProjectiveTransfor * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input * image, the output pixel is set to fill_value. * - * @param data type for {@code transformed_images} output * @param images 4-D with shape {@code [batch, height, width, channels]}. * @param transforms 2-D Tensor, {@code [batch, 8]} or {@code [1, 8]} matrix, where each row corresponds to a 3 x 3 * projective transformation matrix, with the last entry assumed to be 1. If there @@ -794,7 +779,6 @@ public NearestNeighbors nearestNeighbors(Operand points, Operand data type for {@code selected_scores} output * @param boxes A 2-D float tensor of shape {@code [num_boxes, 4]}. * @param scores A 1-D float tensor of shape {@code [num_boxes]} representing a single * score corresponding to each box (each row of boxes). @@ -854,7 +838,6 @@ public NonMaxSuppressionWithOverlaps nonMaxSuppressionWithOverlaps(Operand data type for {@code resized_images} output * @param images 4-D with shape {@code [batch, height, width, channels]}. * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The * new size for the images. @@ -878,7 +861,6 @@ public QuantizedResizeBilinear quantizedResizeBilinear(Op * rectangle from that location. The random location is picked so the cropped * area will fit inside the original image. * - * @param data type for {@code output} output * @param image 3-D of shape {@code [height, width, channels]}. * @param sizeOutput 1-D of length 2 containing: {@code crop_height}, {@code crop_width}.. * @param options carries optional attribute values @@ -931,7 +913,6 @@ public ResizeBicubic resizeBicubic(Operand images, Operand data type for {@code output} output * @param grads 4-D with shape {@code [batch, height, width, channels]}. * @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]}, * The image tensor that was resized. @@ -962,7 +943,6 @@ public ResizeBilinear resizeBilinear(Operand images, /** * Computes the gradient of bilinear interpolation. * - * @param data type for {@code output} output * @param grads 4-D with shape {@code [batch, height, width, channels]}. * @param originalImage 4-D with shape {@code [batch, orig_height, orig_width, channels]}, * The image tensor that was resized. @@ -978,7 +958,6 @@ public ResizeBilinearGrad resizeBilinearGrad(Operand data type for {@code resized_images} output * @param images 4-D with shape {@code [batch, height, width, channels]}. * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The * new size for the images. @@ -994,7 +973,6 @@ public ResizeNearestNeighbor resizeNearestNeighbor(Operan /** * Computes the gradient of nearest neighbor interpolation. * - * @param data type for {@code output} output * @param grads 4-D with shape {@code [batch, height, width, channels]}. * @param sizeOutput = A 1-D int32 Tensor of 2 elements: {@code orig_height, orig_width}. The * original input size. @@ -1031,7 +1009,6 @@ public ResizeNearestNeighborGrad resizeNearestNeighborGra * * * - * @param data type for {@code output} output * @param images 1-D or higher rank. RGB data to convert. Last dimension must be size 3. * @param data type for {@code RGBToHSV} output and operands * @return a new instance of RgbToHsv @@ -1076,7 +1053,6 @@ public RgbToHsv rgbToHsv(Operand images) { * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is * false and no bounding boxes are supplied, an error is raised. * - * @param data type for {@code begin} output * @param imageSize 1-D, containing {@code [height, width, channels]}. * @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes * associated with the image. @@ -1113,7 +1089,6 @@ public ScaleAndTranslate scaleAndTranslate(Operand images, /** * The ScaleAndTranslateGrad operation * - * @param data type for {@code output} output * @param grads The grads value * @param originalImage The originalImage value * @param scale The scale value @@ -1189,7 +1164,6 @@ public ScaleAndTranslateGrad scaleAndTranslateGrad(Operan * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is * false and no bounding boxes are supplied, an error is raised. * - * @param data type for {@code begin} output * @param imageSize 1-D, containing {@code [height, width, channels]}. * @param boundingBoxes 3-D with shape {@code [batch, N, 4]} describing the N bounding boxes * associated with the image. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java index e038446af4a..5c33c56e962 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/IoOps.java @@ -160,7 +160,6 @@ public DecodeJsonExample decodeJsonExample(Operand jsonExamples) { /** * Reinterpret the bytes of a string as a vector of numbers. * - * @param data type for {@code output} output * @param inputBytes Tensor of string to be decoded. * @param fixedLength Length in bytes for each element of the decoded output. Must be a multiple * of the size of the output type. @@ -177,7 +176,6 @@ public DecodePaddedRaw decodePaddedRaw(Operand i /** * Reinterpret the bytes of a string as a vector of numbers. * - * @param data type for {@code output} output * @param bytes All the elements must have the same length. * @param outType The value of the outType attribute * @param options carries optional attribute values @@ -231,7 +229,6 @@ public DecodeRaw decodeRaw(Operand bytes, Class * shape = [2 50] * * - * @param data type for {@code sparse_values} output * @param serializedSparse 2-D, The {@code N} serialized {@code SparseTensor} objects. * Must have 3 columns. * @param dtype The {@code dtype} of the serialized {@code SparseTensor} objects. @@ -581,7 +578,6 @@ public ParseSingleSequenceExample parseSingleSequenceExample(Operand se /** * Transforms a serialized tensorflow.TensorProto proto into a Tensor. * - * @param data type for {@code output} output * @param serialized A scalar string containing a serialized TensorProto proto. * @param outType The type of the serialized tensor. The provided type must match the * type of the serialized tensor and no implicit conversion will take place. @@ -883,7 +879,6 @@ public ReaderSerializeState readerSerializeState(Operand reader * rank {@code R-1}. *

The minibatch size {@code N} is extracted from {@code sparse_shape[0]}. * - * @param data type for {@code serialized_sparse} output * @param sparseIndices 2-D. The {@code indices} of the minibatch {@code SparseTensor}. * @param sparseValues 1-D. The {@code values} of the minibatch {@code SparseTensor}. * @param sparseShape 1-D. The {@code shape} of the minibatch {@code SparseTensor}. @@ -903,7 +898,6 @@ public SerializeManySparse serializeManySparse(Operand sparseIn * rank {@code R-1}. *

The minibatch size {@code N} is extracted from {@code sparse_shape[0]}. * - * @param data type for {@code serialized_sparse} output * @param sparseIndices 2-D. The {@code indices} of the minibatch {@code SparseTensor}. * @param sparseValues 1-D. The {@code values} of the minibatch {@code SparseTensor}. * @param sparseShape 1-D. The {@code shape} of the minibatch {@code SparseTensor}. @@ -920,7 +914,6 @@ public SerializeManySparse serializeManySparse(Operand data type for {@code serialized_sparse} output * @param sparseIndices 2-D. The {@code indices} of the {@code SparseTensor}. * @param sparseValues 1-D. The {@code values} of the {@code SparseTensor}. * @param sparseShape 1-D. The {@code shape} of the {@code SparseTensor}. @@ -934,7 +927,6 @@ public SerializeSparse serializeSparse(Operand sparseIndices, /** * Serialize a {@code SparseTensor} into a {@code [3]} {@code Tensor} object. * - * @param data type for {@code serialized_sparse} output * @param sparseIndices 2-D. The {@code indices} of the {@code SparseTensor}. * @param sparseValues 1-D. The {@code values} of the {@code SparseTensor}. * @param sparseShape 1-D. The {@code shape} of the {@code SparseTensor}. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java index 87d87f85dcf..7cb8027ca3a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgOps.java @@ -127,7 +127,6 @@ public final class LinalgOps { * tf.linalg.band_part(input, 0, 0) ==> Diagonal. * * - * @param data type for {@code band} output * @param input Rank {@code k} tensor. * @param numLower 0-D tensor. Number of subdiagonals to keep. If negative, keep entire * lower triangle. @@ -145,7 +144,6 @@ public BandPart bandPart(Operand inpu /** * The BandedTriangularSolve operation * - * @param data type for {@code output} output * @param matrix The matrix value * @param rhs The rhs value * @param options carries optional attribute values @@ -160,7 +158,6 @@ public BandedTriangularSolve bandedTriangularSolve(Operand< /** * The BatchCholesky operation * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code BatchCholesky} output and operands * @return a new instance of BatchCholesky @@ -172,7 +169,6 @@ public BatchCholesky batchCholesky(Operand input) { /** * The BatchCholeskyGrad operation * - * @param data type for {@code output} output * @param l The l value * @param grad The grad value * @param data type for {@code BatchCholeskyGrad} output and operands @@ -185,7 +181,6 @@ public BatchCholeskyGrad batchCholeskyGrad(Operand l, /** * The BatchMatrixBandPart operation * - * @param data type for {@code band} output * @param input The input value * @param numLower The numLower value * @param numUpper The numUpper value @@ -200,7 +195,6 @@ public BatchMatrixBandPart batchMatrixBandPart(Operand i /** * The BatchMatrixDeterminant operation * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code BatchMatrixDeterminant} output and operands * @return a new instance of BatchMatrixDeterminant @@ -212,7 +206,6 @@ public BatchMatrixDeterminant batchMatrixDeterminant(Operan /** * The BatchMatrixDiag operation * - * @param data type for {@code output} output * @param diagonal The diagonal value * @param data type for {@code BatchMatrixDiag} output and operands * @return a new instance of BatchMatrixDiag @@ -224,7 +217,6 @@ public BatchMatrixDiag batchMatrixDiag(Operand diagonal) /** * The BatchMatrixDiagPart operation * - * @param data type for {@code diagonal} output * @param input The input value * @param data type for {@code BatchMatrixDiagPart} output and operands * @return a new instance of BatchMatrixDiagPart @@ -235,8 +227,11 @@ public BatchMatrixDiagPart batchMatrixDiagPart(Operand i /** * The BatchMatrixInverse operation + * DEPRECATED: This operation is deprecated and will be removed in a future version. + * Use tf.linalg.inv instead. + *

Computes the inverse of one or more square invertible matrices or their + * adjoints (conjugate transposes). * - * @param data type for {@code output} output * @param input The input value * @param options carries optional attribute values * @param data type for {@code BatchMatrixInverse} output and operands @@ -250,7 +245,6 @@ public BatchMatrixInverse batchMatrixInverse(Operand i /** * The BatchMatrixSetDiag operation * - * @param data type for {@code output} output * @param input The input value * @param diagonal The diagonal value * @param data type for {@code BatchMatrixSetDiag} output and operands @@ -264,7 +258,6 @@ public BatchMatrixSetDiag batchMatrixSetDiag(Operand inp /** * The BatchMatrixSolve operation * - * @param data type for {@code output} output * @param matrix The matrix value * @param rhs The rhs value * @param options carries optional attribute values @@ -279,7 +272,6 @@ public BatchMatrixSolve batchMatrixSolve(Operand matri /** * The BatchMatrixSolveLs operation * - * @param data type for {@code output} output * @param matrix The matrix value * @param rhs The rhs value * @param l2Regularizer The l2Regularizer value @@ -295,7 +287,6 @@ public BatchMatrixSolveLs batchMatrixSolveLs(Operand m /** * The BatchMatrixTriangularSolve operation * - * @param data type for {@code output} output * @param matrix The matrix value * @param rhs The rhs value * @param options carries optional attribute values @@ -310,7 +301,6 @@ public BatchMatrixTriangularSolve batchMatrixTriangularSo /** * The BatchSelfAdjointEigV2 operation * - * @param data type for {@code e} output * @param input The input value * @param options carries optional attribute values * @param data type for {@code BatchSelfAdjointEigV2} output and operands @@ -324,7 +314,6 @@ public BatchSelfAdjointEig batchSelfAdjointEig(Operand /** * The BatchSvd operation * - * @param data type for {@code s} output * @param input The input value * @param options carries optional attribute values * @param data type for {@code BatchSvd} output and operands @@ -347,7 +336,6 @@ public BatchSvd batchSvd(Operand input, BatchSvd.Options * not for large batch dimensions when the submatrices are small. In this * case it might be faster to use the CPU. * - * @param data type for {@code output} output * @param input Shape is {@code [..., M, M]}. * @param data type for {@code Cholesky} output and operands * @return a new instance of Cholesky @@ -361,7 +349,6 @@ public Cholesky cholesky(Operand input) { * For an explanation see "Differentiation of the Cholesky algorithm" by * Iain Murray http://arxiv.org/abs/1602.07527. * - * @param data type for {@code output} output * @param l Output of batch Cholesky algorithm l = cholesky(A). Shape is {@code [..., M, M]}. * Algorithm depends only on lower triangular part of the innermost matrices of * this tensor. @@ -381,7 +368,6 @@ public CholeskyGrad choleskyGrad(Operand l, Operand * {@code y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]} * {@code y[i,j,k,...,s,t,u] == conj(x[perm[i], perm[j], perm[k],...,perm[s], perm[t], perm[u]])} * - * @param data type for {@code y} output * @param x The x value * @param perm The perm value * @param data type for {@code ConjugateTranspose} output and operands @@ -398,7 +384,6 @@ public ConjugateTranspose conjugateTranspose(Operand x, * or any shape where the innermost dimension is 3. In the latter case, each pair * of corresponding 3-element vectors is cross-multiplied independently. * - * @param data type for {@code product} output * @param a A tensor containing 3-element vectors. * @param b Another tensor, of same type and shape as {@code a}. * @param data type for {@code Cross} output and operands @@ -414,7 +399,6 @@ public Cross cross(Operand a, Operand b) { * form square matrices. The output is a tensor containing the determinants * for all input submatrices {@code [..., :, :]}. * - * @param data type for {@code output} output * @param input Shape is {@code [..., M, M]}. * @param data type for {@code MatrixDeterminant} output and operands * @return a new instance of Det @@ -436,7 +420,6 @@ public Det det(Operand input) { * e = eig(a, compute_v=False) * * - * @param data type for {@code e} output * @param input {@code Tensor} input of shape {@code [N, N]}. * @param Tout The value of the Tout attribute * @param options carries optional attribute values @@ -514,7 +497,6 @@ public Eig eig(Operand input, Class Tou *
{@literal @}end_compatibility * * - * @param data type for {@code output} output * @param inputs List of 1 or 2 Tensors. * @param equation String describing the Einstein Summation operation; in the format of np.einsum. * @param data type for {@code Einsum} output and operands @@ -531,7 +513,6 @@ public Einsum einsum(Iterable> inputs, String eq * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -554,7 +535,6 @@ public EuclideanNorm euclideanNorm(Operand input, * may detect the condition and raise an exception or it may simply return a * garbage result. * - * @param data type for {@code output} output * @param input Shape is {@code [..., M, M]}. * @param options carries optional attribute values * @param data type for {@code MatrixInverse} output and operands @@ -632,7 +612,6 @@ public LoadAndRemapMatrix loadAndRemapMatrix(Operand ckptPath, * is the {@code LU} decomposition of the input and {@code P} is the corresponding * permutation matrix. * - * @param data type for {@code sign} output * @param input Shape is {@code [N, M, M]}. * @param data type for {@code LogMatrixDeterminant} output and operands * @return a new instance of LogMatrixDeterminant @@ -657,8 +636,6 @@ public LogMatrixDeterminant logMatrixDeterminant(Operand * and {@code M-1}, inclusive. If P_mat denotes the permutation matrix corresponding to * P, then the L, U and P satisfies P_mat * input = L * U. * - * @param data type for {@code lu} output - * @param data type for {@code p} output * @param input A tensor of shape {@code [..., M, M]} whose inner-most 2 dimensions form matrices of * size {@code [M, M]}. * @param data type for {@code Lu} output and operands @@ -684,8 +661,6 @@ public Lu lu(Operand input) { * and {@code M-1}, inclusive. If P_mat denotes the permutation matrix corresponding to * P, then the L, U and P satisfies P_mat * input = L * U. * - * @param data type for {@code lu} output - * @param data type for {@code p} output * @param input A tensor of shape {@code [..., M, M]} whose inner-most 2 dimensions form matrices of * size {@code [M, M]}. * @param outputIdxType The value of the outputIdxType attribute @@ -707,7 +682,6 @@ public Lu lu(Operand input, *

Note: The default kernel implementation for MatMul on GPUs uses * cublas. * - * @param data type for {@code product} output * @param a The a value * @param b The b value * @param options carries optional attribute values @@ -801,7 +775,6 @@ public MatMul matMul(Operand a, Operand b, MatMul.Opt * [9, 2]] * * - * @param data type for {@code output} output * @param diagonal Rank {@code r}, where {@code r >= 1} * @param k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main * diagonal, and negative value means subdiagonals. {@code k} can be a single integer @@ -886,7 +859,6 @@ public MatrixDiag matrixDiag(Operand diagonal, Operand * - * @param data type for {@code diagonal} output * @param input Rank {@code r} tensor where {@code r >= 2}. * @param k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main * diagonal, and negative value means subdiagonals. {@code k} can be a single integer @@ -995,7 +967,6 @@ public MatrixDiagPart matrixDiagPart(Operand input, Oper * * * - * @param data type for {@code diagonal} output * @param input Rank {@code r} tensor where {@code r >= 2}. * @param k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main * diagonal, and negative value means subdiagonals. {@code k} can be a single integer @@ -1123,7 +1094,6 @@ public MatrixDiagPartV3 matrixDiagPartV3(Operand input, * * * - * @param data type for {@code output} output * @param diagonal Rank {@code r}, where {@code r >= 1} * @param k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main * diagonal, and negative value means subdiagonals. {@code k} can be a single integer @@ -1150,7 +1120,6 @@ public MatrixDiagV3 matrixDiagV3(Operand diagonal, Opera /** * Deprecated, use python implementation tf.linalg.matrix_exponential. * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code MatrixExponential} output and operands * @return a new instance of MatrixExponential @@ -1173,7 +1142,6 @@ public MatrixExponential matrixExponential(Operand input * form square matrices. The output is a tensor of the same shape as the input * containing the exponential for all input submatrices {@code [..., :, :]}. * - * @param data type for {@code output} output * @param input Shape is {@code [..., M, M]}. * @param data type for {@code MatrixLogarithm} output and operands * @return a new instance of MatrixLogarithm @@ -1281,7 +1249,6 @@ public MatrixLogarithm matrixLogarithm(Operand input) { * * * - * @param data type for {@code output} output * @param input Rank {@code r+1}, where {@code r >= 1}. * @param diagonal Rank {@code r} when {@code k} is an integer or {@code k[0] == k[1]}. Otherwise, it has rank {@code r+1}. * {@code k >= 1}. @@ -1331,7 +1298,6 @@ public MatrixSetDiag matrixSetDiag(Operand input, Operan * typically 6-7 times slower than the fast path. If {@code fast} is {@code False} then * {@code l2_regularizer} is ignored. * - * @param data type for {@code output} output * @param matrix Shape is {@code [..., M, N]}. * @param rhs Shape is {@code [..., M, K]}. * @param l2Regularizer Scalar tensor. @@ -1362,7 +1328,6 @@ public MatrixSolveLs matrixSolveLs(Operand matrix, Opera * q_full, r_full = qr(a, full_matrices=True) * * - * @param data type for {@code q} output * @param input A tensor of shape {@code [..., M, N]} whose inner-most 2 dimensions * form matrices of size {@code [M, N]}. Let {@code P} be the minimum of {@code M} and {@code N}. * @param options carries optional attribute values @@ -1380,7 +1345,6 @@ public Qr qr(Operand input, Qr.Options... options) { * outer dimension of {@code b} (after being transposed if {@code transposed_b} is * non-zero). * - * @param data type for {@code out} output * @param a Must be a two-dimensional tensor. * @param b Must be a two-dimensional tensor. * @param minA The float value that the lowest quantized {@code a} value represents. @@ -1411,7 +1375,6 @@ public QuantizedMatMul quantizedMatMul * non-zero). Then do broadcast add operation with bias values on the matrix * multiplication result. The bias size must match inner dimension of {@code b}. * - * @param data type for {@code out} output * @param a A matrix to be multiplied. Must be a two-dimensional tensor of type {@code quint8}. * @param b A matrix to be multiplied and must be a two-dimensional tensor of type {@code qint8}. * @param bias A 1D bias tensor with size matching inner dimension of {@code b} (after being @@ -1442,7 +1405,6 @@ public QuantizedMatMulWithBias quantizedMatMulWithBias( * multiplication result. The bias size must match inner dimension of {@code b}. Then do * relu activation to get non-negative result. * - * @param data type for {@code out} output * @param a A matrix to be multiplied. Must be a two-dimensional tensor of type {@code quint8}. * @param b A matrix to be multiplied and must be a two-dimensional tensor of type {@code qint8}. * @param bias A 1D bias tensor with size matching with inner dimension of {@code b} (after being @@ -1474,7 +1436,6 @@ public QuantizedMatMulWithBiasAndRelu quantizedMatMulWith * relu activation to get non-negative result. Then do requantize operation to get * final uint8 result. * - * @param data type for {@code out} output * @param a A matrix to be multiplied. Must be a two-dimensional tensor of type {@code quint8}. * @param b A matrix to be multiplied and must be a two-dimensional tensor of type {@code qint8}. * @param bias A 1D bias tensor with size matching with inner dimension of {@code b} (after being @@ -1512,7 +1473,6 @@ public QuantizedMatMulWithBiasAndReluAndRequantize quanti * e = self_adjoint_eig(a, compute_v=False) * * - * @param data type for {@code e} output * @param input {@code Tensor} input of shape {@code [N, N]}. * @param options carries optional attribute values * @param data type for {@code SelfAdjointEigV2} output and operands @@ -1532,7 +1492,6 @@ public SelfAdjointEig selfAdjointEig(Operand input, * If {@code adjoint} is {@code True} then each output matrix satisfies * {@code adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :]}. * - * @param data type for {@code output} output * @param matrix Shape is {@code [..., M, M]}. * @param rhs Shape is {@code [..., M, K]}. * @param options carries optional attribute values @@ -1559,7 +1518,6 @@ public Solve solve(Operand matrix, Operand rhs, * form square matrices. The output is a tensor of the same shape as the input * containing the matrix square root for all input submatrices {@code [..., :, :]}. * - * @param data type for {@code output} output * @param input Shape is {@code [..., M, M]}. * @param data type for {@code MatrixSquareRoot} output and operands * @return a new instance of Sqrtm @@ -1581,7 +1539,6 @@ public Sqrtm sqrtm(Operand input) { * s, _, _ = svd(a, compute_uv=False) * * - * @param data type for {@code s} output * @param input A tensor of shape {@code [..., M, N]} whose inner-most 2 dimensions * form matrices of size {@code [M, N]}. Let {@code P} be the minimum of {@code M} and {@code N}. * @param options carries optional attribute values @@ -1608,7 +1565,6 @@ public Svd svd(Operand input, Svd.Options... options) { * [0, 0, 0, 4]] * * - * @param data type for {@code output} output * @param diagonal Rank k tensor where k is at most 1. * @param data type for {@code Diag} output and operands * @return a new instance of TensorDiag @@ -1634,7 +1590,6 @@ public TensorDiag tensorDiag(Operand diagonal) { * tf.diag_part(input) ==> [1, 2, 3, 4] * * - * @param data type for {@code diagonal} output * @param input Rank k tensor where k is even and not zero. * @param data type for {@code DiagPart} output and operands * @return a new instance of TensorDiagPart @@ -1648,7 +1603,6 @@ public TensorDiagPart tensorDiagPart(Operand input) { * The output {@code y} has the same rank as {@code x}. The shapes of {@code x} and {@code y} satisfy: * {@code y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]} * - * @param data type for {@code y} output * @param x The x value * @param perm The perm value * @param data type for {@code Transpose} output and operands @@ -1703,7 +1657,6 @@ public Transpose transpose(Operand x, Operand * - * @param data type for {@code output} output * @param matrix Shape is {@code [..., M, M]}. * @param rhs Shape is {@code [..., M, K]}. * @param options carries optional attribute values @@ -1719,7 +1672,6 @@ public TriangularSolve triangularSolve(Operand matrix, O * Calculate product with tridiagonal matrix. * Calculates product of two matrices, where left matrix is a tridiagonal matrix. * - * @param data type for {@code output} output * @param superdiag Tensor of shape {@code [..., 1, M]}, representing superdiagonals of * tri-diagonal matrices to the left of multiplication. Last element is ignored. * @param maindiag Tensor of shape {@code [..., 1, M]}, representing main diagonals of tri-diagonal @@ -1746,7 +1698,6 @@ public TridiagonalMatMul tridiagonalMatMul(Operand super * library is used: https://docs.nvidia.com/cuda/cusparse/index.html#gtsv * Partial pivoting is not yet supported by XLA backends. * - * @param data type for {@code output} output * @param diagonals Tensor of shape {@code [..., 3, M]} whose innermost 2 dimensions represent the * tridiagonal matrices with three rows being the superdiagonal, diagonals, and * subdiagonals, in order. The last element of the superdiagonal and the first diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java index ed8c4fdbb90..7210249ba1f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/LinalgSparseOps.java @@ -59,7 +59,6 @@ public final class LinalgSparseOps { * This op is meant only for debugging / testing, and its interface is not expected * to be stable. * - * @param data type for {@code values} output * @param csrSparseMatrix A batched CSRSparseMatrix. * @param index The index in {@code csr_sparse_matrix}'s batch. * @param type The value of the type attribute @@ -74,7 +73,6 @@ public CSRSparseMatrixComponents cSRSparseMatrixComponents( /** * Convert a (possibly batched) CSRSparseMatrix to dense. * - * @param data type for {@code dense_output} output * @param sparseInput A batched CSRSparseMatrix. * @param type The value of the type attribute * @param data type for {@code CSRSparseMatrixToDense} output and operands @@ -88,7 +86,6 @@ public CSRSparseMatrixToDense cSRSparseMatrixToDense( /** * Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. * - * @param data type for {@code values} output * @param sparseMatrix A (possibly batched) CSRSparseMatrix. * @param type The value of the type attribute * @param data type for {@code CSRSparseMatrixToSparseTensor} output and operands @@ -152,7 +149,6 @@ public SparseMatrixAdd sparseMatrixAdd(Operand * - * @param data type for {@code output} output * @param a A CSRSparseMatrix. * @param b A dense tensor. * @param options carries optional attribute values diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java index ee2e3a46c27..d3dcfc686ad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathOps.java @@ -168,7 +168,6 @@ public final class MathOps { * value of each element in {@code x}. For example, if x is an input element and y is * an output element, this operation computes \(y = |x|\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Abs} output and operands * @return a new instance of Abs @@ -186,7 +185,6 @@ public Abs abs(Operand x) { *

Unlike the original {@code accumulate_n}, {@code accumulate_n_v2} is differentiable. *

Returns a {@code Tensor} of same shape and type as the elements of {@code inputs}. * - * @param data type for {@code sum} output * @param inputs A list of {@code Tensor} objects, each with same shape and type. * @param shape Shape of elements of {@code inputs}. * @param data type for {@code AccumulateNV2} output and operands @@ -201,7 +199,6 @@ public AccumulateN accumulateN(Iterable> inputs, * Provided an input tensor, the {@code tf.math.acos} operation returns the inverse cosine of each element of the tensor. If {@code y = tf.math.cos(x)} then, {@code x = tf.math.acos(y)}. *

Input range is {@code [-1, 1]} and the output has a range of {@code [0, pi]}. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Acos} output and operands * @return a new instance of Acos @@ -219,7 +216,6 @@ public Acos acos(Operand x) { * tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Acosh} output and operands * @return a new instance of Acosh @@ -235,7 +231,6 @@ public Acosh acosh(Operand x) { *

Given two input tensors, the {@code tf.add} operation computes the sum for every element in the tensor. *

Both input and output have a range {@code (-inf, inf)}. * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Add} output and operands @@ -253,7 +248,6 @@ public Add add(Operand x, Operand y) { * tf.math.add_n(x) ==> 26 * * - * @param data type for {@code sum} output * @param inputs The inputs value * @param data type for {@code AddN} output and operands * @return a new instance of AddN @@ -278,7 +272,6 @@ public AddN addN(Iterable> inputs) { * Equivalent to np.angle. *
{@literal @}end_compatibility * - * @param data type for {@code output} output * @param input The input value * @return a new instance of Angle, with default output types */ @@ -302,7 +295,6 @@ public Angle angle(Operand input) { * Equivalent to np.angle. *
{@literal @}end_compatibility * - * @param data type for {@code output} output * @param input The input value * @param Tout The value of the Tout attribute * @param data type for {@code Angle} output and operands @@ -339,7 +331,6 @@ public ApproximateEqual approximateEqual(Operand x, Operand * # here a[4] = 166.32 which is the largest element of a across axis 0 * * - * @param data type for {@code output} output * @param input The input value * @param dimension int16, int32 or int64, must be in the range {@code [-rank(input), rank(input))}. * Describes which dimension of the input Tensor to reduce across. For vectors, @@ -364,7 +355,6 @@ public ArgMax argMax(Operand input, * # here a[4] = 166.32 which is the largest element of a across axis 0 * * - * @param data type for {@code output} output * @param input The input value * @param dimension int16, int32 or int64, must be in the range {@code [-rank(input), rank(input))}. * Describes which dimension of the input Tensor to reduce across. For vectors, @@ -391,7 +381,6 @@ public ArgMax argMax(Operand input, * # here a[0] = 1 which is the smallest element of a across axis 0 * * - * @param data type for {@code output} output * @param input The input value * @param dimension int32 or int64, must be in the range {@code [-rank(input), rank(input))}. * Describes which dimension of the input Tensor to reduce across. For vectors, @@ -416,7 +405,6 @@ public ArgMin argMin(Operand input, * # here a[0] = 1 which is the smallest element of a across axis 0 * * - * @param data type for {@code output} output * @param input The input value * @param dimension int32 or int64, must be in the range {@code [-rank(input), rank(input))}. * Describes which dimension of the input Tensor to reduce across. For vectors, @@ -445,7 +433,6 @@ public ArgMin argMin(Operand input, * tf.math.asin(y) # [1.047, 0.785] = x * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Asin} output and operands * @return a new instance of Asin @@ -464,7 +451,6 @@ public Asin asin(Operand x) { * tf.math.asinh(x) ==> [-inf -1.4436355 -0.4812118 0.8813736 1.0159732 5.991471 9.903487 inf] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Asinh} output and operands * @return a new instance of Asinh @@ -488,7 +474,6 @@ public Asinh asinh(Operand x) { * tf.math.atan(y) # [1.047, 0.785] = x * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Atan} output and operands * @return a new instance of Atan @@ -516,7 +501,6 @@ public Atan atan(Operand x) { * * * - * @param data type for {@code z} output * @param y The y value * @param x The x value * @param data type for {@code Atan2} output and operands @@ -538,7 +522,6 @@ public Atan2 atan2(Operand y, Operand x) { * tf.math.atanh(x) ==> [nan -inf -0.54930615 inf 0. 0.54930615 nan nan] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Atanh} output and operands * @return a new instance of Atanh @@ -550,7 +533,6 @@ public Atanh atanh(Operand x) { /** * The BesselI0 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselI0} output and operands * @return a new instance of BesselI0 @@ -562,7 +544,6 @@ public BesselI0 besselI0(Operand x) { /** * The BesselI0e operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselI0e} output and operands * @return a new instance of BesselI0e @@ -574,7 +555,6 @@ public BesselI0e besselI0e(Operand x) { /** * The BesselI1 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselI1} output and operands * @return a new instance of BesselI1 @@ -586,7 +566,6 @@ public BesselI1 besselI1(Operand x) { /** * The BesselI1e operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselI1e} output and operands * @return a new instance of BesselI1e @@ -604,7 +583,6 @@ public BesselI1e besselI1e(Operand x) { *

is the incomplete beta function and \(B(a, b)\) is the complete * beta function. * - * @param data type for {@code z} output * @param a The a value * @param b The b value * @param x The x value @@ -624,7 +602,6 @@ public Betainc betainc(Operand a, Operand b, Operan * {@code i}. *

Values in {@code arr} outside of the range [0, size) are ignored. * - * @param data type for {@code bins} output * @param arr int32 {@code Tensor}. * @param sizeOutput non-negative int32 scalar {@code Tensor}. * @param weights is an int32, int64, float32, or float64 {@code Tensor} with the same @@ -641,7 +618,6 @@ public Bincount bincount(Operand arr, Operand data type for {@code y} output * @param x The x value * @param data type for {@code Ceil} output and operands * @return a new instance of Ceil @@ -667,7 +643,6 @@ public Ceil ceil(Operand x) { * * * - * @param data type for {@code y} output * @param x The x value * @return a new instance of ComplexAbs, with default output types */ @@ -692,7 +667,6 @@ public ComplexAbs complexAbs(Operand x) { * * * - * @param data type for {@code y} output * @param x The x value * @param Tout The value of the Tout attribute * @param data type for {@code ComplexAbs} output and operands @@ -715,7 +689,6 @@ public ComplexAbs complexAbs(Operand x, * tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] * * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code Conj} output and operands * @return a new instance of Conj @@ -735,7 +708,6 @@ public Conj conj(Operand input) { * tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Cos} output and operands * @return a new instance of Cos @@ -754,7 +726,6 @@ public Cos cos(Operand x) { * tf.math.cosh(x) ==> [inf 4.0515420e+03 1.1276259e+00 1.5430807e+00 1.8106556e+00 3.7621956e+00 1.1013233e+04 inf] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Cosh} output and operands * @return a new instance of Cosh @@ -786,7 +757,6 @@ public Cosh cosh(Operand x) { * tf.cumprod([a, b, c], exclusive=True, reverse=True) # => [b * c, c, 1] * * - * @param data type for {@code out} output * @param x A {@code Tensor}. Must be one of the following types: {@code float32}, {@code float64}, * {@code int64}, {@code int32}, {@code uint8}, {@code uint16}, {@code int16}, {@code int8}, {@code complex64}, * {@code complex128}, {@code qint8}, {@code quint8}, {@code qint32}, {@code half}. @@ -824,7 +794,6 @@ public Cumprod cumprod(Operand x, Operand * - * @param data type for {@code out} output * @param x A {@code Tensor}. Must be one of the following types: {@code float32}, {@code float64}, * {@code int64}, {@code int32}, {@code uint8}, {@code uint16}, {@code int16}, {@code int8}, {@code complex64}, * {@code complex128}, {@code qint8}, {@code quint8}, {@code qint32}, {@code half}. @@ -858,7 +827,6 @@ public Cumsum cumsum(Operand x, OperandBy setting the {@code reverse} kwarg to {@code True}, the cumulative log-sum-exp is performed in the * opposite direction. * - * @param data type for {@code out} output * @param x A {@code Tensor}. Must be one of the following types: {@code float16}, {@code float32}, {@code float64}. * @param axis A {@code Tensor} of type {@code int32} (default: 0). Must be in the range * {@code [-rank(x), rank(x))}. @@ -880,7 +848,6 @@ public CumulativeLogsumexp cumulativeLogsumexp(Operand * {@code i}. *

Values in {@code arr} outside of the range [0, size) are ignored. * - * @param data type for {@code output} output * @param input 1D or 2D int {@code Tensor}. * @param sizeOutput non-negative int scalar {@code Tensor}. * @param weights is an int32, int64, float32, or float64 {@code Tensor} with the same @@ -900,7 +867,6 @@ public DenseBincount denseBincount(Ope * Computes Psi, the derivative of Lgamma (the log of the absolute value of * {@code Gamma(x)}), element-wise. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Digamma} output and operands * @return a new instance of Digamma @@ -914,7 +880,6 @@ public Digamma digamma(Operand x) { * NOTE: {@code math.Div} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Div} output and operands @@ -929,7 +894,6 @@ public Div div(Operand x, Operand y) { * NOTE: {@code math.DivNoNan} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code DivNoNan} output and operands @@ -966,7 +930,6 @@ public Equal equal(Operand x, Operand y, Equal.Options.. /** * Computes the Gauss error function of {@code x} element-wise. In statistics, for non-negative values of $x$, the error function has the following interpretation: for a random variable $Y$ that is normally distributed with mean 0 and variance $1/\sqrt{2}$, $erf(x)$ is the probability that $Y$ falls in the range $[−x, x]$. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Erf} output and operands * @return a new instance of Erf @@ -978,7 +941,6 @@ public Erf erf(Operand x) { /** * Computes the complementary error function of {@code x} element-wise. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Erfc} output and operands * @return a new instance of Erfc @@ -990,7 +952,6 @@ public Erfc erfc(Operand x) { /** * The Erfinv operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Erfinv} output and operands * @return a new instance of erfinv @@ -1023,7 +984,6 @@ public erfinv erfinv(Operand x) { * tf.math.exp(x) ==> 1.4686939399158851+2.2873552871788423j * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Exp} output and operands * @return a new instance of Exp @@ -1047,7 +1007,6 @@ public Exp exp(Operand x) { * tf.math.expm1(x) ==> (0.46869393991588515+2.2873552871788423j) * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Expm1} output and operands * @return a new instance of Expm1 @@ -1068,7 +1027,6 @@ public Fact fact() { /** * Returns element-wise largest integer not greater than x. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Floor} output and operands * @return a new instance of Floor @@ -1082,7 +1040,6 @@ public Floor floor(Operand x) { * NOTE: {@code math.FloorDiv} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code FloorDiv} output and operands @@ -1100,7 +1057,6 @@ public FloorDiv floorDiv(Operand x, Operand y) { *

NOTE: {@code math.FloorMod} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code FloorMod} output and operands @@ -1168,7 +1124,6 @@ public GreaterEqual greaterEqual(Operand x, Operand y) *

Note, above {@code Q(a, x)} ({@code Igammac}) is the upper regularized complete * Gamma function. * - * @param data type for {@code z} output * @param a The a value * @param x The x value * @param data type for {@code Igamma} output and operands @@ -1181,7 +1136,6 @@ public Igamma igamma(Operand a, Operand x) { /** * Computes the gradient of {@code igamma(a, x)} wrt {@code a}. * - * @param data type for {@code z} output * @param a The a value * @param x The x value * @param data type for {@code IgammaGradA} output and operands @@ -1201,7 +1155,6 @@ public IgammaGradA igammaGradA(Operand a, Operand x *

Note, above {@code P(a, x)} ({@code Igamma}) is the lower regularized complete * Gamma function. * - * @param data type for {@code z} output * @param a The a value * @param x The x value * @param data type for {@code Igammac} output and operands @@ -1223,7 +1176,6 @@ public Igammac igammac(Operand a, Operand x) { * tf.imag(input) ==> [4.75, 5.75] * * - * @param data type for {@code output} output * @param input The input value * @return a new instance of Imag, with default output types */ @@ -1243,7 +1195,6 @@ public Imag imag(Operand input) { * tf.imag(input) ==> [4.75, 5.75] * * - * @param data type for {@code output} output * @param input The input value * @param Tout The value of the Tout attribute * @param data type for {@code Imag} output and operands @@ -1267,7 +1218,6 @@ public Imag imag(Operand input, Class * invert_permutation(x) ==> [2, 4, 3, 0, 1] * * - * @param data type for {@code y} output * @param x 1-D. * @param data type for {@code InvertPermutation} output and operands * @return a new instance of InvertPermutation @@ -1388,7 +1338,6 @@ public LessEqual lessEqual(Operand x, Operand y) { * tf.math.lgamma(x) ==> [inf, 0.5723649, 0., 2.4537368, inf, -4.6477685] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Lgamma} output and operands * @return a new instance of Lgamma @@ -1406,7 +1355,6 @@ public Lgamma lgamma(Operand x) { * tf.math.log(x) ==> [-inf, -0.6931472, 0. , 1.609438] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Log} output and operands * @return a new instance of Log @@ -1424,7 +1372,6 @@ public Log log(Operand x) { * tf.math.log1p(x) ==> [0., 0.4054651, 0.6931472, 1.7917595] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Log1p} output and operands * @return a new instance of Log1p @@ -1474,7 +1421,6 @@ public LogicalOr logicalOr(Operand x, Operand y) { * NOTE: {@code math.Maximum} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Maximum} output and operands @@ -1491,7 +1437,6 @@ public Maximum maximum(Operand x, Operand y) { * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -1509,7 +1454,6 @@ public Mean mean(Operand input, OperandNOTE: {@code math.Minimum} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Minimum} output and operands @@ -1526,7 +1470,6 @@ public Minimum minimum(Operand x, Operand y) { *

NOTE: {@code math.Mod} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Mod} output and operands @@ -1541,7 +1484,6 @@ public Mod mod(Operand x, Operand y) { * NOTE: {@code math.Mul} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Mul} output and operands @@ -1556,7 +1498,6 @@ public Mul mul(Operand x, Operand y) { * NOTE: {@code math.MulNoNan} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code MulNoNan} output and operands @@ -1569,7 +1510,6 @@ public MulNoNan mulNoNan(Operand x, Operand y) { /** * The Ndtri operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Ndtri} output and operands * @return a new instance of Ndtri @@ -1582,7 +1522,6 @@ public Ndtri ndtri(Operand x) { * Computes numerical negative value element-wise. * I.e., \(y = -x\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Neg} output and operands * @return a new instance of Neg @@ -1599,7 +1538,6 @@ public Neg neg(Operand x) { * Equivalent to C++ std::nextafter function. *
{@literal @}end_compatibility * - * @param data type for {@code output} output * @param x1 The x1 value * @param x2 The x2 value * @param data type for {@code NextAfter} output and operands @@ -1632,7 +1570,6 @@ public NotEqual notEqual(Operand x, Operand y, *

where \(\psi(x)\) is the digamma function. * The polygamma function is defined only for non-negative integer orders \a\. * - * @param data type for {@code z} output * @param a The a value * @param x The x value * @param data type for {@code Polygamma} output and operands @@ -1667,7 +1604,6 @@ public PopulationCount populationCount(Operand x) { * tf.pow(x, y) ==> [[256, 65536], [9, 27]] * * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Pow} output and operands @@ -1680,7 +1616,6 @@ public Pow pow(Operand x, Operand y) { /** * Returns x + y element-wise, working on quantized buffers. * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param minX The float value that the lowest quantized {@code x} value represents. @@ -1700,7 +1635,6 @@ public QuantizedAdd quantizedAdd(Operand data type for {@code z} output * @param x The x value * @param y The y value * @param minX The float value that the lowest quantized {@code x} value represents. @@ -1729,7 +1663,6 @@ public QuantizedMul quantizedMul(Operand * - * @param data type for {@code output} output * @param input The input value * @return a new instance of Real, with default output types */ @@ -1749,7 +1682,6 @@ public Real real(Operand input) { * tf.real(input) ==> [-2.25, 3.25] * * - * @param data type for {@code output} output * @param input The input value * @param Tout The value of the Tout attribute * @param data type for {@code Real} output and operands @@ -1765,7 +1697,6 @@ public Real real(Operand input, Class *

NOTE: {@code Div} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code RealDiv} output and operands @@ -1779,7 +1710,6 @@ public RealDiv realDiv(Operand x, Operand y) { * Computes the reciprocal of x element-wise. * I.e., \(y = 1 / x\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Reciprocal} output and operands * @return a new instance of Reciprocal @@ -1793,7 +1723,6 @@ public Reciprocal reciprocal(Operand x) { * Specifically, {@code grad = -dy * y*y}, where {@code y = 1/x}, and {@code dy} * is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code ReciprocalGrad} output and operands @@ -1822,7 +1751,6 @@ public RequantizationRangePerChannel requantizationRangePerChannel( /** * Requantizes input with min and max values known per channel. * - * @param data type for {@code output} output * @param input The original input tensor. * @param inputMin The minimum value of the input tensor * @param inputMax The maximum value of the input tensor. @@ -1850,7 +1778,6 @@ public RequantizePerChannel requantizePerChannel( * rint([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) ==> [-2., -2., -0., 0., 2., 2., 2.] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Rint} output and operands * @return a new instance of Rint @@ -1864,7 +1791,6 @@ public Rint rint(Operand x) { * Rounds half to even. Also known as bankers rounding. If you want to round * according to the current system rounding mode use std::cint. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Round} output and operands * @return a new instance of Round @@ -1877,7 +1803,6 @@ public Round round(Operand x) { * Computes reciprocal of square root of x element-wise. * I.e., \(y = 1 / \sqrt{x}\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Rsqrt} output and operands * @return a new instance of Rsqrt @@ -1891,7 +1816,6 @@ public Rsqrt rsqrt(Operand x) { * Specifically, {@code grad = dy * -0.5 * y^3}, where {@code y = rsqrt(x)}, and {@code dy} * is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code RsqrtGrad} output and operands @@ -1942,7 +1866,6 @@ public RsqrtGrad rsqrtGrad(Operand y, Operand dy) { * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A 1-D tensor whose size is equal to the size of {@code data}'s * first dimension. Values should be sorted and can be repeated. @@ -1989,7 +1912,6 @@ public SegmentMax segmentMax(Operand data, * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A 1-D tensor whose size is equal to the size of {@code data}'s * first dimension. Values should be sorted and can be repeated. @@ -2044,7 +1966,6 @@ public SegmentMean segmentMean(Operand data, * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A 1-D tensor whose size is equal to the size of {@code data}'s * first dimension. Values should be sorted and can be repeated. @@ -2093,7 +2014,6 @@ public SegmentMin segmentMin(Operand data, * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A 1-D tensor whose size is equal to the size of {@code data}'s * first dimension. Values should be sorted and can be repeated. @@ -2119,9 +2039,7 @@ public SegmentProd segmentProd(Operand data, * that {@code segment_ids[j] == i}. *

If the sum is empty for a given segment ID {@code i}, {@code output[i] = 0}. *

Note that this op is currently only supported with jit_compile=True. - * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A 1-D tensor whose size is equal to the size of {@code data}'s * first dimension. Values should be sorted and can be repeated. @@ -2141,7 +2059,6 @@ public SegmentSum segmentSum(Operand data, * Computes sigmoid of {@code x} element-wise. * Specifically, {@code y = 1 / (1 + exp(-x))}. * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Sigmoid} output and operands * @return a new instance of Sigmoid @@ -2155,7 +2072,6 @@ public Sigmoid sigmoid(Operand x) { * Specifically, {@code grad = dy * y * (1 - y)}, where {@code y = sigmoid(x)}, and * {@code dy} is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code SigmoidGrad} output and operands @@ -2179,7 +2095,6 @@ public SigmoidGrad sigmoidGrad(Operand y, Operand dy) * * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Sign} output and operands * @return a new instance of Sign @@ -2198,7 +2113,6 @@ public Sign sign(Operand x) { * tf.math.sin(x) ==> [nan -0.4121185 -0.47942555 0.84147096 0.9320391 -0.87329733 -0.54402107 nan] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Sin} output and operands * @return a new instance of Sin @@ -2217,7 +2131,6 @@ public Sin sin(Operand x) { * tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Sinh} output and operands * @return a new instance of Sinh @@ -2231,7 +2144,6 @@ public Sinh sinh(Operand x) { * Creates a Sobol sequence with {@code num_results} samples. Each sample has dimension * {@code dim}. Skips the first {@code skip} samples. * - * @param data type for {@code samples} output * @param dim Positive scalar {@code Tensor} representing each sample's dimension. * @param numResults Positive scalar {@code Tensor} of dtype int32. The number of Sobol points to return * in the output. @@ -2249,7 +2161,6 @@ public SobolSample sobolSample(Operand dim, Operand nu * Creates a Sobol sequence with {@code num_results} samples. Each sample has dimension * {@code dim}. Skips the first {@code skip} samples. * - * @param data type for {@code samples} output * @param dim Positive scalar {@code Tensor} representing each sample's dimension. * @param numResults Positive scalar {@code Tensor} of dtype int32. The number of Sobol points to return * in the output. @@ -2267,7 +2178,6 @@ public SobolSample sobolSample(Operand dim, /** * The Softplus operation * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Softplus} output and operands * @return a new instance of Softplus @@ -2279,7 +2189,6 @@ public Softplus softplus(Operand features) { /** * Computes softplus gradients for a softplus operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding softplus operation. * @param features The features passed as input to the corresponding softplus operation. * @param data type for {@code SoftplusGrad} output and operands @@ -2294,7 +2203,6 @@ public SoftplusGrad softplusGrad(Operand gradients, * Computes square root of x element-wise. * I.e., \(y = \sqrt{x} = x^{1/2}\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Sqrt} output and operands * @return a new instance of Sqrt @@ -2308,7 +2216,6 @@ public Sqrt sqrt(Operand x) { * Specifically, {@code grad = dy * 0.5 / y}, where {@code y = sqrt(x)}, and {@code dy} * is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code SqrtGrad} output and operands @@ -2322,7 +2229,6 @@ public SqrtGrad sqrtGrad(Operand y, Operand dy) { * Computes square of x element-wise. * I.e., \(y = x * x = x^2\). * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Square} output and operands * @return a new instance of Square @@ -2336,7 +2242,6 @@ public Square square(Operand x) { * NOTE: {@code math.SquaredDifference} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code SquaredDifference} output and operands @@ -2351,7 +2256,6 @@ public SquaredDifference squaredDifference(Operand x, Op * NOTE: {@code math.Sub} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Sub} output and operands @@ -2372,7 +2276,6 @@ public Sub sub(Operand x, Operand y) { * tf.math.tan(x) ==> [nan 0.45231566 -0.5463025 1.5574077 2.572152 -1.7925274 0.32097113 nan] * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Tan} output and operands * @return a new instance of Tan @@ -2398,7 +2301,6 @@ public Tan tan(Operand x) { * * * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Tanh} output and operands * @return a new instance of Tanh @@ -2412,7 +2314,6 @@ public Tanh tanh(Operand x) { * Specifically, {@code grad = dy * (1 - y*y)}, where {@code y = tanh(x)}, and {@code dy} * is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code TanhGrad} output and operands @@ -2431,7 +2332,6 @@ public TanhGrad tanhGrad(Operand y, Operand dy) { *

NOTE: {@code math.TruncateDiv} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code TruncateDiv} output and operands @@ -2447,7 +2347,6 @@ public TruncateDiv truncateDiv(Operand x, Operand y) *

NOTE: {@code math.TruncateMod} supports broadcasting. More about broadcasting * here * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code TruncateMod} output and operands @@ -2475,7 +2374,6 @@ public TruncateMod truncateMod(Operand x, Operand y * if {@code operand.quantization_axis} >= 0 and {@code output.quantization_axis} >= 0, * {@code operand.dims} - {@code operand.quantization_axis} must be equal to {@code output.dims} - {@code output.quantization_axis}. * - * @param data type for {@code output} output * @param lhs Must be a quantized tensor. * @param rhs Must be a quantized tensor. * @param lhsScales The float value(s) used as scale factors when quantizing the original data that {@code lhs} represents. @@ -2547,7 +2445,6 @@ public UniformQuantizedAdd uniformQuantizedAdd(Operand * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A tensor whose shape is a prefix of {@code data.shape}. * The values must be less than {@code num_segments}. @@ -2594,7 +2491,6 @@ public UnsortedSegmentMax unsortedSegmentMax(Operand d * out-of-bound indices or outputting a tensor with a 0 stored in the first * dimension of its shape if {@code num_segments} is 0. * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A tensor whose shape is a prefix of {@code data.shape}. * The values must be less than {@code num_segments}. @@ -2640,7 +2536,6 @@ public UnsortedSegmentMin unsortedSegmentMin(Operand d * out-of-bound indices or outputting a tensor with a 0 stored in the first * dimension of its shape if {@code num_segments} is 0. * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A tensor whose shape is a prefix of {@code data.shape}. * The values must be less than {@code num_segments}. @@ -2689,7 +2584,6 @@ public UnsortedSegmentProd unsortedSegmentProd(Operand d * * * - * @param data type for {@code output} output * @param data The data value * @param segmentIds A tensor whose shape is a prefix of {@code data.shape}. * The values must be less than {@code num_segments}. @@ -2707,7 +2601,6 @@ public UnsortedSegmentSum unsortedSegmentSum(Operand dat /** * Returns 0 if x == 0, and x / y otherwise, elementwise. * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Xdivy} output and operands @@ -2720,7 +2613,6 @@ public Xdivy xdivy(Operand x, Operand y) { /** * Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Xlog1py} output and operands @@ -2733,7 +2625,6 @@ public Xlog1py xlog1py(Operand x, Operand y) { /** * Returns 0 if x == 0, and x * log(y) otherwise, elementwise. * - * @param data type for {@code z} output * @param x The x value * @param y The y value * @param data type for {@code Xlogy} output and operands @@ -2748,7 +2639,6 @@ public Xlogy xlogy(Operand x, Operand y) { * The Hurwitz zeta function is defined as: *

\(\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}\) * - * @param data type for {@code z} output * @param x The x value * @param q The q value * @param data type for {@code Zeta} output and operands diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathSpecialOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathSpecialOps.java index 05af5fe921d..e486615af1b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathSpecialOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/MathSpecialOps.java @@ -51,7 +51,6 @@ public final class MathSpecialOps { /** * The BesselJ0 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselJ0} output and operands * @return a new instance of BesselJ0 @@ -63,7 +62,6 @@ public BesselJ0 besselJ0(Operand x) { /** * The BesselJ1 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselJ1} output and operands * @return a new instance of BesselJ1 @@ -75,7 +73,6 @@ public BesselJ1 besselJ1(Operand x) { /** * The BesselK0 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselK0} output and operands * @return a new instance of BesselK0 @@ -87,7 +84,6 @@ public BesselK0 besselK0(Operand x) { /** * The BesselK0e operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselK0e} output and operands * @return a new instance of BesselK0e @@ -99,7 +95,6 @@ public BesselK0e besselK0e(Operand x) { /** * The BesselK1 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselK1} output and operands * @return a new instance of BesselK1 @@ -111,7 +106,6 @@ public BesselK1 besselK1(Operand x) { /** * The BesselK1e operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselK1e} output and operands * @return a new instance of BesselK1e @@ -123,7 +117,6 @@ public BesselK1e besselK1e(Operand x) { /** * The BesselY0 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselY0} output and operands * @return a new instance of BesselY0 @@ -135,7 +128,6 @@ public BesselY0 besselY0(Operand x) { /** * The BesselY1 operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code BesselY1} output and operands * @return a new instance of BesselY1 @@ -147,7 +139,6 @@ public BesselY1 besselY1(Operand x) { /** * The Dawsn operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Dawsn} output and operands * @return a new instance of Dawsn @@ -159,7 +150,6 @@ public Dawsn dawsn(Operand x) { /** * The Expint operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Expint} output and operands * @return a new instance of Expint @@ -171,7 +161,6 @@ public Expint expint(Operand x) { /** * The FresnelCos operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code FresnelCos} output and operands * @return a new instance of FresnelCos @@ -183,7 +172,6 @@ public FresnelCos fresnelCos(Operand x) { /** * The FresnelSin operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code FresnelSin} output and operands * @return a new instance of FresnelSin @@ -195,7 +183,6 @@ public FresnelSin fresnelSin(Operand x) { /** * The Spence operation * - * @param data type for {@code y} output * @param x The x value * @param data type for {@code Spence} output and operands * @return a new instance of Spence diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java index 2e20b52b946..535af3cda71 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/NnOps.java @@ -155,7 +155,6 @@ public final class NnOps { * Each entry in {@code output} is the mean of the corresponding size {@code ksize} * window in {@code value}. * - * @param data type for {@code output} output * @param value 4-D with shape {@code [batch, height, width, channels]}. * @param ksize The size of the sliding window for each dimension of {@code value}. * @param strides The stride of the sliding window for each dimension of {@code value}. @@ -174,7 +173,6 @@ public AvgPool avgPool(Operand value, List ksize * Each entry in {@code output} is the mean of the corresponding size {@code ksize} window in * {@code value}. * - * @param data type for {@code output} output * @param input Shape {@code [batch, depth, rows, cols, channels]} tensor to pool over. * @param ksize 1-D tensor of length 5. The size of the window for each dimension of * the input tensor. Must have {@code ksize[0] = ksize[4] = 1}. @@ -193,7 +191,6 @@ public AvgPool3d avgPool3d(Operand input, List k /** * Computes gradients of average pooling function. * - * @param data type for {@code output} output * @param origInputShape The original input dimensions. * @param grad Output backprop of shape {@code [batch, depth, rows, cols, channels]}. * @param ksize 1-D tensor of length 5. The size of the window for each dimension of @@ -214,7 +211,6 @@ public AvgPool3dGrad avgPool3dGrad(Operand origIn /** * Computes gradients of the average pooling function. * - * @param data type for {@code output} output * @param origInputShape 1-D. Shape of the original input to {@code avg_pool}. * @param grad 4-D with shape {@code [batch, height, width, channels]}. Gradients w.r.t. * the output of {@code avg_pool}. @@ -235,7 +231,6 @@ public AvgPoolGrad avgPoolGrad(Operand origInputS * Batch normalization. * This op is deprecated. Prefer {@code tf.nn.batch_normalization}. * - * @param data type for {@code result} output * @param t A 4D input Tensor. * @param m A 1D mean Tensor with size matching the last dimension of t. * This is the first output from tf.nn.moments, @@ -264,7 +259,6 @@ public BatchNormWithGlobalNormalization batchNormWithGlobal * Gradients for batch normalization. * This op is deprecated. See {@code tf.nn.batch_normalization}. * - * @param data type for {@code dx} output * @param t A 4D input Tensor. * @param m A 1D mean Tensor with size matching the last dimension of t. * This is the first output from tf.nn.moments, @@ -293,7 +287,6 @@ public BatchNormWithGlobalNormalizationGrad batchNormWithGl * This is a special case of {@code tf.add} where {@code bias} is restricted to be 1-D. * Broadcasting is supported, so {@code value} may have any number of dimensions. * - * @param data type for {@code output} output * @param value Any number of dimensions. * @param bias 1-D with size the last dimension of {@code value}. * @param options carries optional attribute values @@ -311,7 +304,6 @@ public BiasAdd biasAdd(Operand value, Operand bias, * For NHWC data format, the feature dimension is the last. For NCHW data format, * the feature dimension is the third-to-last. * - * @param data type for {@code output} output * @param outBackprop Any number of dimensions. * @param options carries optional attribute values * @param data type for {@code BiasAddGrad} output and operands @@ -345,7 +337,6 @@ public BiasAddGrad biasAddGrad(Operand outBackprop, * all gate-related outputs should be reordered. * * - * @param data type for {@code i} output * @param seqLenMax Maximum time length actually used by this input. Outputs are padded * with zeros beyond this length. * @param x The sequence input to the LSTM, shape (timelen, batch_size, num_inputs). @@ -370,7 +361,6 @@ public BlockLSTM blockLSTM(Operand seqLenMax, Ope * Computes the LSTM cell backward propagation for the entire time sequence. * This implementation is to be used in conjunction of BlockLSTMV2. * - * @param data type for {@code x_grad} output * @param seqLenMax Maximum time length actually used by this input. Outputs are padded * with zeros beyond this length. * @param x The sequence input to the LSTM, shape (timelen, batch_size, num_inputs). @@ -445,7 +435,6 @@ public ComputeAccidentalHits computeAccidentalHits(Operand trueClasses, * General function for computing a N-D convolution. It is required that * {@code 1 <= N <= 3}. * - * @param data type for {@code output} output * @param input Tensor of type T and shape {@code batch_shape + spatial_shape + [in_channels]} in the * case that {@code channels_last_format = true} or shape * {@code batch_shape + [in_channels] + spatial_shape} if {@code channels_last_format = false}. @@ -490,7 +479,6 @@ public Conv conv(Operand input, Operand filter, Lis *

Must have {@code strides[0] = strides[3] = 1}. For the most common case of the same * horizontal and vertices strides, {@code strides = [1, stride, stride, 1]}. * - * @param data type for {@code output} output * @param input A 4-D tensor. The dimension order is interpreted according to the value * of {@code data_format}, see below for details. * @param filter A 4-D tensor of shape @@ -511,7 +499,6 @@ public Conv2d conv2d(Operand input, Operand filter, /** * Computes the gradients of convolution with respect to the filter. * - * @param data type for {@code output} output * @param input 4-D with shape {@code [batch, in_height, in_width, in_channels]}. * @param filterSizes An integer vector representing the tensor shape of {@code filter}, * where {@code filter} is a 4-D @@ -535,7 +522,6 @@ public Conv2dBackpropFilter conv2dBackpropFilter(Operand< /** * Computes the gradients of convolution with respect to the input. * - * @param data type for {@code output} output * @param inputSizes An integer vector representing the shape of {@code input}, * where {@code input} is a 4-D {@code [batch, height, width, channels]} tensor. * @param filter 4-D with shape @@ -563,7 +549,6 @@ public Conv2dBackpropInput conv2dBackpropInput(OperandOur Conv3D implements a form of cross-correlation. * - * @param data type for {@code output} output * @param input Shape {@code [batch, in_depth, in_height, in_width, in_channels]}. * @param filter Shape {@code [filter_depth, filter_height, filter_width, in_channels, out_channels]}. {@code in_channels} must match between {@code input} and {@code filter}. * @param strides 1-D tensor of length 5. The stride of the sliding window for each @@ -581,7 +566,6 @@ public Conv3d conv3d(Operand input, Operand filter, /** * Computes the gradients of 3-D convolution with respect to the filter. * - * @param data type for {@code output} output * @param input Shape {@code [batch, depth, rows, cols, in_channels]}. * @param filterSizes An integer vector representing the tensor shape of {@code filter}, * where {@code filter} is a 5-D @@ -604,7 +588,6 @@ public Conv3dBackpropFilter conv3dBackpropFilter(Operand< /** * Computes the gradients of 3-D convolution with respect to the input. * - * @param data type for {@code output} output * @param inputSizes An integer vector representing the tensor shape of {@code input}, * where {@code input} is a 5-D * {@code [batch, depth, rows, cols, in_channels]} tensor. @@ -632,7 +615,6 @@ public Conv3dBackpropInput conv3dBackpropInput( * "A B" is returned if merge_repeated = True but "A B B B B" is * returned if merge_repeated = False. * - * @param data type for {@code log_probability} output * @param inputs 3-D, shape: {@code (max_time x batch_size x num_classes)}, the logits. * @param sequenceLength A vector containing sequence lengths, size {@code (batch)}. * @param beamWidth A scalar >= 0 (beam search beam width). @@ -658,7 +640,6 @@ public CtcBeamSearchDecoder ctcBeamSearchDecoder(Operand< * time and batch corresponds to the blank, index {@code (num_classes - 1)}, no new * element is emitted. * - * @param data type for {@code log_probability} output * @param inputs 3-D, shape: {@code (max_time x batch_size x num_classes)}, the logits. * @param sequenceLength A vector containing sequence lengths, size {@code (batch_size)}. * @param options carries optional attribute values @@ -675,7 +656,6 @@ public CtcGreedyDecoder ctcGreedyDecoder(Operand input * the gradient. This class performs the softmax operation for you, so inputs * should be e.g. linear projections of outputs by an LSTM. * - * @param data type for {@code loss} output * @param inputs 3-D, shape: {@code (max_time x batch_size x num_classes)}, the logits. * @param labelsIndices The indices of a {@code SparseTensor}. * {@code labels_indices(i, :) == [b, t]} means {@code labels_values(i)} stores the id for @@ -730,7 +710,6 @@ public CtcLoss ctcLoss(Operand inputs, Operand * reserve_space: An opaque tensor that can be used in backprop calculation. It * is only produced if is_training is true. * - * @param data type for {@code output} output * @param input The input value * @param inputH The inputH value * @param inputC The inputC value @@ -795,7 +774,6 @@ public CudnnRNN cudnnRNN(Operand input, Operand inp * params_backprop: The backprop to the params buffer in the forward pass. Has the * same shape as params. * - * @param data type for {@code input_backprop} output * @param input The input value * @param inputH The inputH value * @param inputC The inputC value @@ -852,7 +830,6 @@ public CudnnRNNBackprop cudnnRNNBackprop(Operand input * num_proj: The output dimensionality for the projection matrices. If None or 0, * no projection is performed. * - * @param data type for {@code params} output * @param numLayers The numLayers value * @param numUnits The numUnits value * @param inputSize The inputSize value @@ -900,7 +877,6 @@ public CudnnRNNCanonicalToParams cudnnRNNCanonicalToParam * num_proj: The output dimensionality for the projection matrices. If None or 0, * no projection is performed. * - * @param data type for {@code weights} output * @param numLayers The numLayers value * @param numUnits The numUnits value * @param inputSize The inputSize value @@ -941,7 +917,6 @@ public CudnnRNNParamsToCanonical cudnnRNNParamsToCanonica * CudnnRNNParamsBiases to save and restore them in a way that is compatible * across different runs. * - * @param data type for {@code params_size} output * @param numLayers The numLayers value * @param numUnits The numUnits value * @param inputSize The inputSize value @@ -962,7 +937,6 @@ public CudnnRnnParamsSize cudnnRnnPara * Returns the dimension index in the destination data format given the one in * the source data format. * - * @param data type for {@code y} output * @param x A Tensor with each element as a dimension index in source data format. * Must be in the range [-4, 4). * @param options carries optional attribute values @@ -1006,7 +980,6 @@ public DataFormatDimMap dataFormatDimMap(Operand x, * [1, 2] * * - * @param data type for {@code y} output * @param x Tensor of rank 1 or 2 in source data format. * @param options carries optional attribute values * @param data type for {@code DataFormatVecPermute} output and operands @@ -1094,7 +1067,6 @@ public DataFormatVecPermute dataFormatVecPermute(Operand< * * * - * @param data type for {@code output} output * @param input The input value * @param blockSize The size of the spatial block, same as in Space2Depth. * @param options carries optional attribute values @@ -1125,7 +1097,6 @@ public DepthToSpace depthToSpace(Operand input, Long blo *

Must have {@code strides[0] = strides[3] = 1}. For the most common case of the same * horizontal and vertices strides, {@code strides = [1, stride, stride, 1]}. * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param strides 1-D of length 4. The stride of the sliding window for each dimension @@ -1144,7 +1115,6 @@ public DepthwiseConv2dNative depthwiseConv2dNative(Operan /** * Computes the gradients of depthwise convolution with respect to the filter. * - * @param data type for {@code output} output * @param input 4-D with shape based on {@code data_format}. For example, if * {@code data_format} is 'NHWC' then {@code input} is a 4-D {@code [batch, in_height, in_width, in_channels]} tensor. * @param filterSizes An integer vector representing the tensor shape of {@code filter}, @@ -1170,7 +1140,6 @@ public DepthwiseConv2dNativeBackpropFilter depthwiseConv2 /** * Computes the gradients of depthwise convolution with respect to the input. * - * @param data type for {@code output} output * @param inputSizes An integer vector representing the shape of {@code input}, based * on {@code data_format}. For example, if {@code data_format} is 'NHWC' then * {@code input} is a 4-D {@code [batch, height, width, channels]} tensor. @@ -1217,7 +1186,6 @@ public DepthwiseConv2dNativeBackpropInput depthwiseConv2d *

Note on duality: The dilation of {@code input} by the {@code filter} is equal to the * negation of the erosion of {@code -input} by the reflected {@code filter}. * - * @param data type for {@code output} output * @param input 4-D with shape {@code [batch, in_height, in_width, depth]}. * @param filter 3-D with shape {@code [filter_height, filter_width, depth]}. * @param strides The stride of the sliding window for each dimension of the input @@ -1236,7 +1204,6 @@ public Dilation2d dilation2d(Operand input, Operand /** * Computes the gradient of morphological 2-D dilation with respect to the filter. * - * @param data type for {@code filter_backprop} output * @param input 4-D with shape {@code [batch, in_height, in_width, depth]}. * @param filter 3-D with shape {@code [filter_height, filter_width, depth]}. * @param outBackprop 4-D with shape {@code [batch, out_height, out_width, depth]}. @@ -1257,7 +1224,6 @@ public Dilation2dBackpropFilter dilation2dBackpropFilter( /** * Computes the gradient of morphological 2-D dilation with respect to the input. * - * @param data type for {@code in_backprop} output * @param input 4-D with shape {@code [batch, in_height, in_width, depth]}. * @param filter 3-D with shape {@code [filter_height, filter_width, depth]}. * @param outBackprop 4-D with shape {@code [batch, out_height, out_width, depth]}. @@ -1298,7 +1264,6 @@ public Dilation2dBackpropInput dilation2dBackpropInput(Op *

See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) * * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Elu} output and operands * @return a new instance of Elu @@ -1310,7 +1275,6 @@ public Elu elu(Operand features) { /** * Computes gradients for the exponential linear (Elu) operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding Elu operation. * @param outputs The outputs of the corresponding Elu operation. * @param data type for {@code EluGrad} output and operands @@ -1358,7 +1322,6 @@ public FixedUnigramCandidateSampler fixedUnigramCandidateSampler(Operand * generated, a mean operation is performed instead of a max operation in each * pooling region. * - * @param data type for {@code output} output * @param value 4-D with shape {@code [batch, height, width, channels]}. * @param poolingRatio Pooling ratio for each dimension of {@code value}, currently only * supports row and col dimension and should be >= 1.0. For example, a valid @@ -1383,7 +1346,6 @@ public FractionalAvgPool fractionalAvgPool(Operand val * just need to know the shape of original input tensor, instead of the whole * tensor. * - * @param data type for {@code output} output * @param origInputTensorShape Original input tensor shape for {@code fractional_avg_pool} * @param outBackprop 4-D with shape {@code [batch, height, width, channels]}. Gradients * w.r.t. the output of {@code fractional_avg_pool}. @@ -1431,7 +1393,6 @@ public FractionalAvgPoolGrad fractionalAvgPoolGrad( *

For more details on fractional max pooling, see this paper: * Benjamin Graham, Fractional Max-Pooling * - * @param data type for {@code output} output * @param value 4-D with shape {@code [batch, height, width, channels]}. * @param poolingRatio Pooling ratio for each dimension of {@code value}, currently only * supports row and col dimension and should be >= 1.0. For example, a valid @@ -1451,7 +1412,6 @@ public FractionalMaxPool fractionalMaxPool(Operand val /** * Computes gradient of the FractionalMaxPool function. * - * @param data type for {@code output} output * @param origInput Original input for {@code fractional_max_pool} * @param origOutput Original output for {@code fractional_max_pool} * @param outBackprop 4-D with shape {@code [batch, height, width, channels]}. Gradients @@ -1475,8 +1435,6 @@ public FractionalMaxPoolGrad fractionalMaxPoolGrad(Operan * Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". * The size of 1D Tensors matches the dimension C of the 4D Tensors. * - * @param data type for {@code y} output - * @param data type for {@code batch_mean} output * @param x A 4D Tensor for input data. * @param scale A 1D Tensor for scaling factor, to scale the normalized x. * @param offset A 1D Tensor for offset, to shift to the normalized x. @@ -1500,8 +1458,6 @@ public FusedBatchNorm fusedBatchNor * Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". * The size of 1D Tensors matches the dimension C of the 4D Tensors. * - * @param data type for {@code x_backprop} output - * @param data type for {@code scale_backprop} output * @param yBackprop A 4D Tensor for the gradient with respect to y. * @param x A 4D Tensor for input data. * @param scale A 1D Tensor for scaling factor, to scale the normalized x. @@ -1542,7 +1498,6 @@ public FusedBatchNormGrad fusedBatc * will block if multiple versions are being run in parallel. This is because this * operator is primarily an optimization to minimize memory usage. * - * @param data type for {@code output} output * @param input 4-D with shape {@code [batch, in_height, in_width, in_channels]}. * @param paddings A two-column matrix specifying the padding sizes. The number of * rows must be the same as the rank of {@code input}. @@ -1574,7 +1529,6 @@ public FusedPadConv2d fusedPadConv2d(Operand input, * will block if multiple versions are being run in parallel. This is because this * operator is primarily an optimization to minimize memory usage. * - * @param data type for {@code output} output * @param input 4-D with shape {@code [batch, in_height, in_width, in_channels]}. * @param sizeOutput A 1-D int32 Tensor of 2 elements: {@code new_height, new_width}. The * new size for the images. @@ -1637,7 +1591,6 @@ public FusedResizeAndPadConv2d fusedResizeAndPadConv2d(Op * h = (1-u) \circ c + u \circ h_prev * * - * @param data type for {@code r} output * @param x The x value * @param hPrev The hPrev value * @param wRu The wRu value @@ -1728,7 +1681,6 @@ public GRUBlockCell gRUBlockCell(Operand x, Operand * d_b_c = sum of d_c_bar along axis = 0 * * - * @param data type for {@code d_x} output * @param x The x value * @param hPrev The hPrev value * @param wRu The wRu value @@ -1778,7 +1730,6 @@ public InTopK inTopK(Operand predictions, Operand< * Specifically, {@code grad = -dy * y*y}, where {@code y = 1/x}, and {@code dy} * is the corresponding input gradient. * - * @param data type for {@code z} output * @param y The y value * @param dy The dy value * @param data type for {@code InvGrad} output and operands @@ -1791,7 +1742,6 @@ public InvGrad invGrad(Operand y, Operand dy) { /** * Solves a batch of isotonic regression problems. * - * @param data type for {@code output} output * @param input A (batch_size, dim)-tensor holding a batch of inputs. * @return a new instance of IsotonicRegression, with default output types */ @@ -1802,7 +1752,6 @@ public IsotonicRegression isotonicRegression(Operand data type for {@code output} output * @param input A (batch_size, dim)-tensor holding a batch of inputs. * @param outputDtype Dtype of output. * @param data type for {@code IsotonicRegression} output and operands @@ -1820,7 +1769,6 @@ public IsotonicRegression isotonicRegression( * output = sum(t ** 2) / 2 * * - * @param data type for {@code output} output * @param t Typically 2-D, but may have any dimensions. * @param data type for {@code L2Loss} output and operands * @return a new instance of L2Loss @@ -1854,7 +1802,6 @@ public L2Loss l2Loss(Operand t) { * h = co .* o * * - * @param data type for {@code i} output * @param x The input to the LSTM cell, shape (batch_size, num_inputs). * @param csPrev Value of the cell state at previous time step. * @param hPrev Output of the previous cell at previous time step. @@ -1877,7 +1824,6 @@ public LSTMBlockCell lSTMBlockCell(Operand x, Operand< * Computes the LSTM cell backward propagation for 1 timestep. * This implementation is to be used in conjunction of LSTMBlockCell. * - * @param data type for {@code cs_prev_grad} output * @param x The input to the LSTM cell, shape (batch_size, num_inputs). * @param csPrev The previous cell state. * @param hPrev The previous h state. @@ -1908,7 +1854,6 @@ public LSTMBlockCellGrad lSTMBlockCellGrad(Operand x, /** * Computes rectified linear: {@code max(features, features * alpha)}. * - * @param data type for {@code activations} output * @param features The features value * @param options carries optional attribute values * @param data type for {@code LeakyRelu} output and operands @@ -1960,7 +1905,6 @@ public LearnedUnigramCandidateSampler learnedUnigramCandidateSampler(OperandFor details, see Krizhevsky et al., ImageNet classification with deep * convolutional neural networks (NIPS 2012) . * - * @param data type for {@code output} output * @param input 4-D. * @param options carries optional attribute values * @param data type for {@code LRN} output and operands @@ -1974,7 +1918,6 @@ public LocalResponseNormalization localResponseNormalizat /** * Gradients for Local Response Normalization. * - * @param data type for {@code output} output * @param inputGrads 4-D with shape {@code [batch, height, width, channels]}. * @param inputImage 4-D with shape {@code [batch, height, width, channels]}. * @param outputImage 4-D with shape {@code [batch, height, width, channels]}. @@ -1995,7 +1938,6 @@ public LocalResponseNormalizationGrad localResponseNormal * logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i]))) * * - * @param data type for {@code logsoftmax} output * @param logits 2-D with shape {@code [batch_size, num_classes]}. * @param data type for {@code LogSoftmax} output and operands * @return a new instance of LogSoftmax @@ -2007,7 +1949,6 @@ public LogSoftmax logSoftmax(Operand logits) { /** * Performs max pooling on the input. * - * @param data type for {@code output} output * @param input 4-D input to pool over. * @param ksize The size of the window for each dimension of the input tensor. * @param strides The stride of the sliding window for each dimension of the @@ -2025,7 +1966,6 @@ public MaxPool maxPool(Operand input, Operand /** * Performs 3D max pooling on the input. * - * @param data type for {@code output} output * @param input Shape {@code [batch, depth, rows, cols, channels]} tensor to pool over. * @param ksize 1-D tensor of length 5. The size of the window for each dimension of * the input tensor. Must have {@code ksize[0] = ksize[4] = 1}. @@ -2044,7 +1984,6 @@ public MaxPool3d maxPool3d(Operand input, List k /** * Computes gradients of 3D max pooling function. * - * @param data type for {@code output} output * @param origInput The original input tensor. * @param origOutput The original output tensor. * @param grad Output backprop of shape {@code [batch, depth, rows, cols, channels]}. @@ -2067,7 +2006,6 @@ public MaxPool3dGrad maxPool3dGrad(Ope /** * Computes second-order gradients of the maxpooling function. * - * @param data type for {@code output} output * @param origInput The original input tensor. * @param origOutput The original output tensor. * @param grad Output backprop of shape {@code [batch, depth, rows, cols, channels]}. @@ -2089,7 +2027,6 @@ public MaxPool3dGradGrad maxPool3dGradGrad(Operand ori /** * Computes gradients of the maxpooling function. * - * @param data type for {@code output} output * @param origInput The original input tensor. * @param origOutput The original output tensor. * @param grad 4-D. Gradients w.r.t. the output of {@code max_pool}. @@ -2110,7 +2047,6 @@ public MaxPoolGrad maxPoolGrad(Operand origInput, Oper /** * Computes second-order gradients of the maxpooling function. * - * @param data type for {@code output} output * @param origInput The original input tensor. * @param origOutput The original output tensor. * @param grad 4-D. Gradients of gradients w.r.t. the input of {@code max_pool}. @@ -2131,7 +2067,6 @@ public MaxPoolGradGrad maxPoolGradGrad(Operand origInp /** * Computes second-order gradients of the maxpooling function. * - * @param data type for {@code output} output * @param input The original input. * @param grad 4-D with shape {@code [batch, height, width, channels]}. Gradients w.r.t. the * input of {@code max_pool}. @@ -2153,7 +2088,6 @@ public MaxPoolGradGradWithArgmax maxPoolGradGradWithArgma /** * Computes gradients of the maxpooling function. * - * @param data type for {@code output} output * @param input The original input. * @param grad 4-D with shape {@code [batch, height, width, channels]}. Gradients w.r.t. the * output of {@code max_pool}. @@ -2183,8 +2117,6 @@ public MaxPoolGradWithArgmax maxPoolGradWithArgmax(Operan * (either negative or too large). This is a bug, but fixing it is difficult to do * in a safe backwards compatible way, especially due to flattening. * - * @param data type for {@code output} output - * @param data type for {@code argmax} output * @param input 4-D with shape {@code [batch, height, width, channels]}. Input to pool over. * @param ksize The size of the window for each dimension of the input tensor. * @param strides The stride of the sliding window for each dimension of the @@ -2210,8 +2142,6 @@ public MaxPoolWithArgmax maxPoolWithArgmax(Operan * (either negative or too large). This is a bug, but fixing it is difficult to do * in a safe backwards compatible way, especially due to flattening. * - * @param data type for {@code output} output - * @param data type for {@code argmax} output * @param input 4-D with shape {@code [batch, height, width, channels]}. Input to pool over. * @param ksize The size of the window for each dimension of the input tensor. * @param strides The stride of the sliding window for each dimension of the @@ -2239,7 +2169,6 @@ public MaxPoolWithArgmax maxPoolWit * values.shape = input.shape[:-1] * * - * @param data type for {@code values} output * @param input 1-D or higher with last dimension at least {@code n+1}. * @param n 0-D. Position of sorted vector to select along the last dimension (along * each row for matrices). Valid range of n is {@code [0, input.shape[:-1])} @@ -2255,7 +2184,6 @@ public NthElement nthElement(Operand input, Operand data type for {@code output} output * @param input 4-D with shape {@code [batch, height, width, channels]}. * @param minInput The float value that the lowest quantized input value represents. * @param maxInput The float value that the highest quantized input value represents. @@ -2278,7 +2206,6 @@ public QuantizedAvgPool quantizedAvgPool(Operand input * This op is deprecated and will be removed in the future. Prefer * {@code tf.nn.batch_normalization}. * - * @param data type for {@code result} output * @param t A 4D input Tensor. * @param tMin The value represented by the lowest quantized input. * @param tMax The value represented by the highest quantized input. @@ -2322,7 +2249,6 @@ public QuantizedBatchNormWithGlobalNormal * Adds Tensor 'bias' to Tensor 'input' for Quantized types. * Broadcasts the values of bias on dimensions 0..N-2 of 'input'. * - * @param data type for {@code output} output * @param input The input value * @param bias A 1D bias Tensor with size matching the last dimension of 'input'. * @param minInput The float value that the lowest quantized input value represents. @@ -2342,7 +2268,6 @@ public QuantizedBiasAdd quantizedBiasAdd(Operand data type for {@code output} output * @param input The input value * @param filter The filter value * @param minInput The minInput value @@ -2367,7 +2292,6 @@ public QuantizedConv2DAndRelu quantizedConv2DAndRelu( /** * The QuantizedConv2DAndReluAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param minInput The minInput value @@ -2395,7 +2319,6 @@ public QuantizedConv2DAndReluAndRequantize quantizedConv2 /** * The QuantizedConv2DAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param minInput The minInput value @@ -2423,7 +2346,6 @@ public QuantizedConv2DAndRequantize quantizedConv2DAndReq /** * Computes QuantizedConv2D per channel. * - * @param data type for {@code output} output * @param input The original input tensor. * @param filter The original filter tensor. * @param minInput The minimum value of the input tensor @@ -2448,7 +2370,6 @@ public QuantizedConv2DPerChannel quantizedConv2DPerChanne /** * The QuantizedConv2DWithBias operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2474,7 +2395,6 @@ public QuantizedConv2DWithBias quantizedConv2DWithBias( /** * The QuantizedConv2DWithBiasAndRelu operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2500,7 +2420,6 @@ public QuantizedConv2DWithBiasAndRelu quantizedConv2DWith /** * The QuantizedConv2DWithBiasAndReluAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2529,7 +2448,6 @@ public QuantizedConv2DWithBiasAndReluAndRequantize quanti /** * The QuantizedConv2DWithBiasAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2558,7 +2476,6 @@ public QuantizedConv2DWithBiasAndRequantize quantizedConv /** * The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2592,7 +2509,6 @@ public QuantizedConv2DWithBiasSignedSumAndReluAndRequantize< /** * The QuantizedConv2DWithBiasSumAndRelu operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2619,7 +2535,6 @@ public QuantizedConv2DWithBiasSumAndRelu quantizedConv2DW /** * The QuantizedConv2DWithBiasSumAndReluAndRequantize operation * - * @param data type for {@code output} output * @param input The input value * @param filter The filter value * @param bias The bias value @@ -2657,7 +2572,6 @@ public QuantizedConv2DWithBiasSumAndReluAndRequantize qua * This means that you can only interpret the quantized output in the same way, by * taking the returned minimum and maximum values into account. * - * @param data type for {@code output} output * @param input The input value * @param filter filter's input_depth dimension must match input's depth dimensions. * @param minInput The float value that the lowest quantized input value represents. @@ -2682,7 +2596,6 @@ public QuantizedConv2d quantizedConv2d(Operand data type for {@code output} output * @param input The original input tensor. * @param filter The original filter tensor. * @param minInput The float value that the minimum quantized input value represents. @@ -2707,7 +2620,6 @@ public QuantizedDepthwiseConv2D quantizedDepthwiseConv2D( /** * Computes quantized depthwise Conv2D with Bias. * - * @param data type for {@code output} output * @param input The original input tensor. * @param filter The original filter tensor. * @param bias The original bias tensor. @@ -2733,7 +2645,6 @@ public QuantizedDepthwiseConv2DWithBias quantizedDepthwis /** * Computes quantized depthwise Conv2D with Bias and Relu. * - * @param data type for {@code output} output * @param input The original input tensor. * @param filter The original filter tensor. * @param bias The original bias tensor. @@ -2759,7 +2670,6 @@ public QuantizedDepthwiseConv2DWithBiasAndRelu quantizedD /** * Computes quantized depthwise Conv2D with Bias, Relu and Requantize. * - * @param data type for {@code output} output * @param input The original input tensor. * @param filter The original filter tensor. * @param bias The original bias tensor. @@ -2788,7 +2698,6 @@ public QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize< /** * Quantized Instance normalization. * - * @param data type for {@code y} output * @param x A 4D input Tensor. * @param xMin The value represented by the lowest quantized input. * @param xMax The value represented by the highest quantized input. @@ -2804,7 +2713,6 @@ public QuantizedInstanceNorm quantizedInstanceNorm(Operan /** * Produces the max pool of the input tensor for quantized types. * - * @param data type for {@code output} output * @param input The 4D (batch x rows x cols x depth) Tensor to MaxReduce over. * @param minInput The float value that the lowest quantized input value represents. * @param maxInput The float value that the highest quantized input value represents. @@ -2825,7 +2733,6 @@ public QuantizedMaxPool quantizedMaxPool(Operand input /** * Computes Quantized Rectified Linear: {@code max(features, 0)} * - * @param data type for {@code activations} output * @param features The features value * @param minFeatures The float value that the lowest quantized value represents. * @param maxFeatures The float value that the highest quantized value represents. @@ -2841,7 +2748,6 @@ public QuantizedRelu quantizedRelu(Operand data type for {@code activations} output * @param features The features value * @param minFeatures The float value that the lowest quantized value represents. * @param maxFeatures The float value that the highest quantized value represents. @@ -2857,7 +2763,6 @@ public QuantizedRelu6 quantizedRelu6(Operand data type for {@code activations} output * @param features The features value * @param maxValue The maxValue value * @param minFeatures The float value that the lowest quantized value represents. @@ -2885,7 +2790,6 @@ public QuantizedReluX quantizedReluX(Operand * * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Relu} output and operands * @return a new instance of Relu @@ -2897,7 +2801,6 @@ public Relu relu(Operand features) { /** * Computes rectified linear 6: {@code min(max(features, 0), 6)}. * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Relu6} output and operands * @return a new instance of Relu6 @@ -2909,7 +2812,6 @@ public Relu6 relu6(Operand features) { /** * Computes rectified linear 6 gradients for a Relu6 operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding Relu6 operation. * @param features The features passed as input to the corresponding Relu6 operation, or * its output; using either one produces the same result. @@ -2923,7 +2825,6 @@ public Relu6Grad relu6Grad(Operand gradients, Operand< /** * Computes rectified linear gradients for a Relu operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding Relu operation. * @param features The features passed as input to the corresponding Relu operation, OR * the outputs of that operation (both work equivalently). @@ -2942,7 +2843,6 @@ public ReluGrad reluGrad(Operand gradients, Operand * For correct dropout, use {@code tf.contrib.nn.alpha_dropout}. *

See Self-Normalizing Neural Networks * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Selu} output and operands * @return a new instance of Selu @@ -2954,7 +2854,6 @@ public Selu selu(Operand features) { /** * Computes gradients for the scaled exponential linear (Selu) operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding Selu operation. * @param outputs The outputs of the corresponding Selu operation. * @param data type for {@code SeluGrad} output and operands @@ -2971,7 +2870,6 @@ public SeluGrad seluGrad(Operand gradients, Operand * $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$ * * - * @param data type for {@code softmax} output * @param logits 2-D with shape {@code [batch_size, num_classes]}. * @param data type for {@code Softmax} output and operands * @return a new instance of Softmax @@ -2984,7 +2882,6 @@ public Softmax softmax(Operand logits) { * Computes softmax cross entropy cost and gradients to backpropagate. * Inputs are the logits, not probabilities. * - * @param data type for {@code loss} output * @param features batch_size x num_classes matrix * @param labels batch_size x num_classes matrix * The caller must ensure that each batch of labels represents a valid @@ -3000,7 +2897,6 @@ public SoftmaxCrossEntropyWithLogits softmaxCrossEntropyW /** * Computes softsign: {@code features / (abs(features) + 1)}. * - * @param data type for {@code activations} output * @param features The features value * @param data type for {@code Softsign} output and operands * @return a new instance of Softsign @@ -3012,7 +2908,6 @@ public Softsign softsign(Operand features) { /** * Computes softsign gradients for a softsign operation. * - * @param data type for {@code backprops} output * @param gradients The backpropagated gradients to the corresponding softsign operation. * @param features The features passed as input to the corresponding softsign operation. * @param data type for {@code SoftsignGrad} output and operands @@ -3090,7 +2985,6 @@ public SoftsignGrad softsignGrad(Operand gradients, *

Among others, this operation is useful for reducing atrous convolution into * regular convolution. * - * @param data type for {@code output} output * @param input 4-D with shape {@code [batch, height, width, depth]}. * @param paddings 2-D tensor of non-negative integers with shape {@code [2, 2]}. It specifies * the padding of the input with zeros across the spatial dimensions as follows: @@ -3182,7 +3076,6 @@ public SpaceToBatch spaceToBatch(Operand input, * [13, 14, 15, 16]]]] * * - * @param data type for {@code output} output * @param input The input value * @param blockSize The size of the spatial block. * @param options carries optional attribute values @@ -3202,7 +3095,6 @@ public SpaceToDepth spaceToDepth(Operand input, Long blo * given row. *

Inputs are the logits, not probabilities. * - * @param data type for {@code loss} output * @param features batch_size x num_classes matrix * @param labels batch_size vector with values in [0, num_classes). * This is the label for the given minibatch entry. @@ -3226,8 +3118,6 @@ public SparseSoftmaxCrossEntropyWithLogits sparseSoftmaxC * *

If two elements are equal, the lower-index element appears first. * - * @param data type for {@code values} output - * @param data type for {@code indices} output * @param input 1-D or higher with last dimension at least {@code k}. * @param k 0-D. Number of top elements to look for along the last dimension (along each * row for matrices). @@ -3236,7 +3126,7 @@ public SparseSoftmaxCrossEntropyWithLogits sparseSoftmaxC * @return a new instance of TopK, with default output types */ public TopK topK(Operand input, Operand k, - TopK.Options[] options) { + TopK.Options... options) { return TopK.create(scope, input, k, options); } @@ -3252,8 +3142,6 @@ public TopK topK(Operand input, Operand *

If two elements are equal, the lower-index element appears first. * - * @param data type for {@code values} output - * @param data type for {@code indices} output * @param input 1-D or higher with last dimension at least {@code k}. * @param k 0-D. Number of top elements to look for along the last dimension (along each * row for matrices). @@ -3287,7 +3175,6 @@ public TopK topK(Operand input, *

{@code output} is also quantized, using the same formula. * If {@code rhs} is per-tensor quantized, {@code output} must be also per-tensor quantized. * - * @param data type for {@code output} output * @param lhs Must be a quantized tensor, rank >= 3. * @param rhs Must be a quantized tensor, same rank as {@code lhs}. * @param lhsScales The float value(s) used as scale factors when quantizing the original data that {@code lhs} represents. @@ -3358,7 +3245,6 @@ public UniformQuantizedConvolution uni *

{@code rhs} must be quantized Tensor, where its data value is quantized using the formula: * quantized_data = clip(original_data / scale + zero_point, quantization_min_val, quantization_max_val). * - * @param data type for {@code output} output * @param lhs Must be a non-quantized Tensor of {@code Tlhs}, rank >= 3. * @param rhs Must be a quantized Tensor of {@code Trhs}, same rank as {@code lhs}. * @param rhsScales The float value(s) used as scale factors when quantizing the original data that {@code rhs} represents. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java index 93a6a3eb05c..b9f5cd836f6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/Ops.java @@ -77,6 +77,7 @@ import org.tensorflow.op.core.BroadcastTo; import org.tensorflow.op.core.Bucketize; import org.tensorflow.op.core.Case; +import org.tensorflow.op.core.CheckPinned; import org.tensorflow.op.core.ClipByValue; import org.tensorflow.op.core.CompositeTensorVariantFromComponents; import org.tensorflow.op.core.CompositeTensorVariantToComponents; @@ -407,10 +408,10 @@ public final class Ops { public final CollectiveOps collective; - public final AudioOps audio; - public final DistributeOps distribute; + public final AudioOps audio; + public final SignalOps signal; public final TrainOps train; @@ -450,8 +451,8 @@ public final class Ops { bitwise = new BitwiseOps(this); debugging = new DebuggingOps(this); collective = new CollectiveOps(this); - audio = new AudioOps(this); distribute = new DistributeOps(this); + audio = new AudioOps(this); signal = new SignalOps(this); train = new TrainOps(this); quantization = new QuantizationOps(this); @@ -618,7 +619,6 @@ public Any any(Operand input, Operand axis, Any.Option * See https://arxiv.org/abs/2206.14286 for the algorithm details. * This op is only optimized on TPU currently. * - * @param data type for {@code values} output * @param input Array to search. Must be at least 1-D of the floating type * @param k Specifies the number of min/max-k. * @param options carries optional attribute values @@ -732,7 +732,6 @@ public AssertThat assertThat(Operand condition, Iterable> data * This operation outputs "ref" after the assignment is done. * This makes it easier to chain operations that need to use the reset value. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. May be uninitialized. * @param value The value to be assigned to the variable. * @param options carries optional attribute values @@ -749,7 +748,6 @@ public Assign assign(Operand ref, Operand value, * This operation outputs "ref" after the update is done. * This makes it easier to chain operations that need to use the reset value. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param value The value to be added to the variable. * @param options carries optional attribute values @@ -780,7 +778,6 @@ public AssignAddVariableOp assignAddVariableOp(Operand resource * This operation outputs "ref" after the update is done. * This makes it easier to chain operations that need to use the reset value. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param value The value to be subtracted to the variable. * @param options carries optional attribute values @@ -1027,7 +1024,6 @@ public BatchFunction batchFunction(Iterable> inTensors, * dimension are moved in spatial blocks to the {@code height} and {@code width} dimensions, * followed by cropping along the {@code height} and {@code width} dimensions. * - * @param data type for {@code output} output * @param input 4-D tensor with shape * {@code [batch*block_size*block_size, height_pad/block_size, width_pad/block_size, depth]}. Note that the batch size of the input tensor must be divisible by * {@code block_size * block_size}. @@ -1055,7 +1051,6 @@ public BatchToSpace batchToSpace(Operand input, * optionally cropped according to {@code crops} to produce the output. This is the * reverse of SpaceToBatch. See below for a precise description. * - * @param data type for {@code output} output * @param input N-D with shape {@code input_shape = [batch] + spatial_shape + remaining_shape}, * where spatial_shape has M dimensions. * @param blockShape 1-D with shape {@code [M]}, all values must be >= 1. @@ -1221,7 +1216,6 @@ public BatchToSpaceNd batchToSpaceNd(Operand input, * buffer is made on BE machines when types are of different sizes in order to get * the same casting results as on LE machines. * - * @param data type for {@code output} output * @param input The input value * @param type The value of the type attribute * @param data type for {@code Bitcast} output and operands @@ -1292,7 +1286,6 @@ public Operand booleanMaskUpdate(Operand tensor, Operand * Given {@code s0} and {@code s1}, tensors that represent shapes, compute {@code r0}, the * broadcasted shape. {@code s0}, {@code s1} and {@code r0} are all integer vectors. * - * @param data type for {@code r0} output * @param s0 The s0 value * @param s1 The s1 value * @param data type for {@code BroadcastArgs} output and operands @@ -1307,7 +1300,6 @@ public BroadcastDynamicShape broadcastDynamicShape(Operan * Return the reduction indices for computing gradients of s0 op s1 with broadcast. * This is typically used by gradient computations for a broadcasting operation. * - * @param data type for {@code r0} output * @param s0 The s0 value * @param s1 The s1 value * @param data type for {@code BroadcastGradientArgs} output and operands @@ -1357,7 +1349,6 @@ public BroadcastGradientArgs broadcastGradientArgs(Operan * shape. (In a graph context, {@code broadcast_to} might be fused to * subsequent operation and then be optimized away, however.) * - * @param data type for {@code output} output * @param input A Tensor to broadcast. * @param shape An 1-D {@code int} Tensor. The shape of the desired output. * @param data type for {@code BroadcastTo} output and operands @@ -1451,6 +1442,22 @@ public Case caseOp(Operand branchIndex, Iterable> input, return Case.create(scope, branchIndex, input, Tout, branches, options); } + /** + * Checks whether a tensor is located in host memory pinned for GPU. + * When run: + *

    + *
  • Reports an {@code InvalidArgument} error if {@code tensor} is not in pinned memory.
  • + *
  • Reports a {@code FailedPrecondition} error if not built with CUDA.
  • + *
+ * + * @param tensor The tensor value + * @param data type for {@code CheckPinned} output and operands + * @return a new instance of CheckPinned + */ + public CheckPinned checkPinned(Operand tensor) { + return CheckPinned.create(scope, tensor); + } + /** * Clips tensor values to a specified min and max. * Given a tensor {@code t}, this operation returns a tensor of the same type and @@ -1458,7 +1465,6 @@ public Case caseOp(Operand branchIndex, Iterable> input, * Any values less than {@code clip_value_min} are set to {@code clip_value_min}. Any values * greater than {@code clip_value_max} are set to {@code clip_value_max}. * - * @param data type for {@code output} output * @param t A {@code Tensor}. * @param clipValueMin A 0-D (scalar) {@code Tensor}, or a {@code Tensor} with the same shape * as {@code t}. The minimum value to clip by. @@ -1508,7 +1514,6 @@ public CompositeTensorVariantToComponents compositeTensorVariantToComponents( /** * Concatenates tensors along one dimension. * - * @param data type for {@code output} output * @param values List of {@code N} Tensors to concatenate. Their ranks and types must match, * and their sizes must match in all dimensions except {@code concat_dim}. * @param axis 0-D. The dimension along which to concatenate. Must be in the @@ -1531,14 +1536,13 @@ public Concat concat(Iterable> values, * y = [2, 3, 7] * z = [2, 9, 7] * offsets = concat_offset(1, [x, y, z]) - * [list(off.numpy()) for off in offsets] + * [[a.item() for a in list(off.numpy())] for off in offsets] * [[0, 0, 0], [0, 2, 0], [0, 5, 0]] * * * *

This is typically used by gradient computations for a concat operation. * - * @param data type for {@code offset} output * @param concatDim The dimension along which to concatenate. * @param shape The {@code N} int32 or int64 vectors representing shape of tensors being concatenated. * @param data type for {@code ConcatOffset} output and operands @@ -2262,11 +2266,7 @@ public Constant constant(Class type, Shape shape, ByteDa /** * Create a constant by making an immutable copy of {@code tensor}. {@code tensor} may be closed - * afterwards without issue. - * - *

Note: this endpoint cannot be simply called {@code constant} since it will conflict with - * other endpoints accepting an NdArray in parameter {e.g. {@link #tensorOf(Scope, - * FloatNdArray)}}. + * afterward without issue. * * @param tensor a Tensor holding the constant value * @return a constant of the same data type as `tensor` @@ -2318,7 +2318,6 @@ public ControlTrigger controlTrigger() { /** * The CopyToMesh operation * - * @param data type for {@code output} output * @param input The input value * @param mesh The value of the mesh attribute * @param data type for {@code CopyToMesh} output and operands @@ -2331,7 +2330,6 @@ public CopyToMesh copyToMesh(Operand input, String mesh) /** * The CopyToMeshGrad operation * - * @param data type for {@code output} output * @param input The input value * @param forwardInput The forwardInput value * @param data type for {@code CopyToMeshGrad} output and operands @@ -2345,7 +2343,6 @@ public CopyToMeshGrad copyToMeshGrad(Operand input, /** * Increments 'ref' until it reaches 'limit'. * - * @param data type for {@code output} output * @param ref Should be from a scalar {@code Variable} node. * @param limit If incrementing ref would bring it above limit, instead generates an * 'OutOfRange' error. @@ -2440,7 +2437,6 @@ public DecodeProto decodeProto(Operand bytes, String messageType, /** * Makes a copy of {@code x}. * - * @param data type for {@code y} output * @param x The source tensor of type {@code T}. * @param data type for {@code DeepCopy} output and operands * @return a new instance of DeepCopy @@ -2482,7 +2478,6 @@ public DestroyResourceOp destroyResourceOp(Operand resource, * using control dependencies. *

Outputs the final value of the tensor pointed to by 'ref'. * - * @param data type for {@code value} output * @param ref A reference to the temporary variable tensor. * @param varName Name of the temporary variable, usually the name of the matching * 'TemporaryVariable' op. @@ -2560,7 +2555,6 @@ public DummyMemoryCache dummyMemoryCache() { * * * - * @param data type for {@code outputs} output * @param data The data value * @param partitions Any shape. Indices in the range {@code [0, num_partitions)}. * @param numPartitions The number of partitions to output. @@ -2628,7 +2622,6 @@ public DynamicPartition dynamicPartition(Operand data, * * * - * @param data type for {@code merged} output * @param indices The indices value * @param data The data value * @param data type for {@code DynamicStitch} output and operands @@ -2672,7 +2665,6 @@ public EditDistance editDistance(Operand hypothesisInd * Creates a tensor with the given shape. *

This operation creates a tensor of {@code shape} and {@code dtype}. * - * @param data type for {@code output} output * @param shape 1-D. Represents the shape of the output tensor. * @param dtype The value of the dtype attribute * @param options carries optional attribute values @@ -2778,7 +2770,6 @@ public EncodeProto encodeProto(Operand sizes, Iterable> value * Raises an error if the input tensor's shape does not match the specified shape. * Returns the input tensor otherwise. * - * @param data type for {@code output} output * @param input A tensor, whose shape is to be validated. * @param shape The expected (possibly partially specified) shape of the input tensor. * @param data type for {@code EnsureShape} output and operands @@ -2796,7 +2787,6 @@ public EnsureShape ensureShape(Operand input, Shape shap * it may be changed in the child frame. At most {@code parallel_iterations} iterations * are run in parallel in the child frame. * - * @param data type for {@code output} output * @param data The tensor to be made available to the child frame. * @param frameName The name of the child frame. * @param options carries optional attribute values @@ -2812,7 +2802,6 @@ public Enter enter(Operand data, String frameName, * Exits the current frame to its parent frame. * Exit makes its input {@code data} available to the parent frame. * - * @param data type for {@code output} output * @param data The tensor to be made available to the parent frame. * @param data type for {@code Exit} output and operands * @return a new instance of Exit @@ -2847,7 +2836,6 @@ public Exit exit(Operand data) { *

This operation is related to {@code squeeze()}, which removes dimensions of * size 1. * - * @param data type for {@code output} output * @param input The input value * @param axis 0-D (scalar). Specifies the dimension index at which to * expand the shape of {@code input}. Must be in the range @@ -2863,7 +2851,6 @@ public ExpandDims expandDims(Operand input, /** * Extract {@code patches} from {@code input} and put them in the {@code "depth"} output dimension. 3D extension of {@code extract_image_patches}. * - * @param data type for {@code patches} output * @param input 5-D Tensor with shape {@code [batch, in_planes, in_rows, in_cols, depth]}. * @param ksizes The size of the sliding window for each dimension of {@code input}. * @param strides 1-D of length 5. How far the centers of two consecutive patches are in @@ -2888,7 +2875,6 @@ public ExtractVolumePatches extractVolumePatches(Operand< * function input) or guaranteed not to be used (e.g. if mirroring an * intermediate output needed for the gradient computation of the other branch). * - * @param data type for {@code output} output * @param dtype The type of the output. * @param shape

    *  The purported shape of the output. This is only used for shape inference;
@@ -2934,7 +2920,6 @@ public FileSystemSetConfiguration fileSystemSetConfiguration(Operand sc
    *  based on other runtime Tensors, unlike {@code tf.constant}.
    *  
    *
-   * @param  data type for {@code output} output
    * @param dims 1-D. Represents the shape of the output tensor.
    * @param value 0-D (scalar). Value to fill the returned tensor.
    *  

{@literal @}compatibility(numpy)
@@ -3028,9 +3013,11 @@ public For forOp(Operand start, Operand limit, Operand d *

Note that on CPU, if an out of bound index is found, an error is returned. * On GPU, if an out of bound index is found, a 0 is stored in the * corresponding output value. + *

Note that on TPU, if any dimension of {@code params} is of size 0 then the output will + * be the expected shape filled with zeros. On CPU and GPU an error will be + * returned. *

See also {@code tf.batch_gather} and {@code tf.gather_nd}. * - * @param data type for {@code output} output * @param params The tensor from which to gather values. Must be at least rank * {@code axis + 1}. * @param indices Index tensor. Must be in range {@code [0, params.shape[axis])}. @@ -3068,9 +3055,17 @@ public Gather gather(Operand params, Operand * indices.shape[:-1] + params.shape[indices.shape[-1]:] *

- *

Note that on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, a 0 is stored in the - * corresponding output value. + *

If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

    + *
  1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
  2. + *
  3. "ERROR": raises error; GPU does not support this value.
  4. + *
  5. "IGNORE": ignore error and set the corresponding output to 0; + * supported on both CPU and GPU.
  6. + *
*

Some examples below. *

Simple indexing into a matrix: *

@@ -3137,15 +3132,15 @@ public  Gather gather(Operand params, Operand
    *  

See also {@code tf.gather} and {@code tf.batch_gather}. * - * @param data type for {@code output} output * @param params The tensor from which to gather values. * @param indices Index tensor. + * @param options carries optional attribute values * @param data type for {@code GatherNd} output and operands * @return a new instance of GatherNd */ public GatherNd gatherNd(Operand params, - Operand indices) { - return GatherNd.create(scope, params, indices); + Operand indices, GatherNd.Options... options) { + return GatherNd.create(scope, params, indices, options); } /** @@ -3185,7 +3180,6 @@ public GetSessionHandle getSessionHandle(Operand value) { /** * Get the value of the tensor specified by its handle. * - * @param data type for {@code value} output * @param handle The handle for a tensor stored in the session state. * @param dtype The type of the output value. * @param data type for {@code GetSessionTensor} output and operands @@ -3250,7 +3244,6 @@ public Gradients gradients(Iterable> y, IterableReturns the input tensor without modification. * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code GuaranteeConst} output and operands * @return a new instance of GuaranteeConst @@ -3294,7 +3287,6 @@ public HashTable hashTable(Class keyDtype, * sess.run(hist) => [2, 1, 1, 0, 2] *

* - * @param data type for {@code out} output * @param values Numeric {@code Tensor}. * @param valueRange Shape [2] {@code Tensor} of same {@code dtype} as {@code values}. * values <= value_range[0] will be mapped to hist[0], @@ -3325,7 +3317,6 @@ public HistogramFixedWidth histogramFixedWidth(Opera * sess.run(hist) => [2, 1, 1, 0, 2] * * - * @param data type for {@code out} output * @param values Numeric {@code Tensor}. * @param valueRange Shape [2] {@code Tensor} of same {@code dtype} as {@code values}. * values <= value_range[0] will be mapped to hist[0], @@ -3344,7 +3335,6 @@ public HistogramFixedWidth histogramFi /** * Returns a constant tensor on the host. Only for writing C++ tests. * - * @param data type for {@code output} output * @param value Attr {@code value} is the tensor to return. * @param dtype The value of the dtype attribute * @param data type for {@code HostConst} output and operands @@ -3357,7 +3347,6 @@ public HostConst hostConst(Tensor value, Class dtype) { /** * Return a tensor with the same shape and contents as the input tensor or value. * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code Identity} output and operands * @return a new instance of Identity @@ -3425,7 +3414,6 @@ public If ifOp(Operand cond, Iterable> input, * Returns immutable tensor from memory region. * The current implementation memmaps the tensor from a file. * - * @param data type for {@code tensor} output * @param dtype Type of the returned tensor. * @param shape Shape of the returned tensor. * @param memoryRegionName Name of readonly memory region used by the tensor, see @@ -3485,7 +3473,6 @@ public InitializeTableFromTextFile initializeTableFromTextFile( * Computes y = x; y[i, :] += v; return y. * * - * @param data type for {@code y} output * @param x A {@code Tensor} of type T. * @param i A vector. Indices into the left-most dimension of {@code x}. * @param v A {@code Tensor} of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. @@ -3503,7 +3490,6 @@ public InplaceAdd inplaceAdd(Operand x, Operand * Computes y = x; y[i, :] -= v; return y. * * - * @param data type for {@code y} output * @param x A {@code Tensor} of type T. * @param i A vector. Indices into the left-most dimension of {@code x}. * @param v A {@code Tensor} of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. @@ -3520,7 +3506,6 @@ public InplaceSub inplaceSub(Operand x, Operand *

Originally this function is mutative however for compilation we make this * operation create / operate on a copy of {@code x}. * - * @param data type for {@code y} output * @param x A tensor of type {@code T}. * @param i A vector. Indices into the left-most dimension of {@code x}. * @param v A {@code Tensor} of type T. Same dimension sizes as x except the first dimension, which must be the same as i's size. @@ -3578,7 +3563,6 @@ public KthOrderStatistic kthOrderStatistic(Operand input, Long k) { * tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0] * * - * @param data type for {@code output} output * @param start 0-D tensor. First entry in the range. * @param stop 0-D tensor. Last entry in the range. * @param num 0-D tensor. Number of values to generate. @@ -3593,8 +3577,6 @@ public LinSpace linSpace(Operand start, Operand sto /** * Outputs all keys and values in the table. * - * @param data type for {@code keys} output - * @param data type for {@code values} output * @param tableHandle Handle to the table. * @param Tkeys The value of the Tkeys attribute * @param Tvalues The value of the Tvalues attribute @@ -3614,7 +3596,6 @@ public LookupTableExport lookupTableExp *

The scalar {@code default_value} is the value output for keys not present in the * table. It must also be of the same type as the table values. * - * @param data type for {@code values} output * @param tableHandle Handle to the table. * @param keys Any shape. Keys to look up. * @param defaultValue The defaultValue value @@ -3708,7 +3689,6 @@ public LoopCond loopCond(Operand input) { *

result == [[1, 2, 2], * [0, 1, 5]] * - * @param data type for {@code output} output * @param sortedInputs 2-D Tensor where each row is ordered. * @param values 2-D Tensor with the same numbers of rows as {@code sorted_search_values}. Contains * the values that will be searched for in {@code sorted_search_values}. @@ -3736,7 +3716,6 @@ public LowerBound lowerBound(Operand sortedInputs, *

result == [[1, 2, 2], * [0, 1, 5]] * - * @param data type for {@code output} output * @param sortedInputs 2-D Tensor where each row is ordered. * @param values 2-D Tensor with the same numbers of rows as {@code sorted_search_values}. Contains * the values that will be searched for in {@code sorted_search_values}. @@ -3901,7 +3880,6 @@ public MapUnstageNoKey mapUnstageNoKey(Operand indices, * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -3921,7 +3899,6 @@ public Max max(Operand input, Operand{@code Merge} forwards the first tensor to become available to {@code output}, and sets * {@code value_index} to its index in {@code inputs}. * - * @param data type for {@code output} output * @param inputs The input tensors, exactly one of which will become available. * @param data type for {@code Merge} output and operands * @return a new instance of Merge @@ -3937,7 +3914,6 @@ public Merge merge(Iterable> inputs) { * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -3974,7 +3950,6 @@ public Min min(Operand input, Operand * - * @param data type for {@code output} output * @param input The input tensor to be padded. * @param paddings A two-column matrix specifying the padding sizes. The number of * rows must be the same as the rank of {@code input}. @@ -4008,7 +3983,6 @@ public MirrorPad mirrorPad(Operand input, * [11, 28]] * * - * @param data type for {@code output} output * @param input The input tensor to be folded. * @param paddings A two-column matrix specifying the padding sizes. The number of * rows must be the same as the rank of {@code input}. @@ -4187,7 +4161,6 @@ public MutexLock mutexLock(Operand mutex) { * num_devices: The number of devices participating in this reduction. * shared_name: Identifier that shared between ops of the same reduction. * - * @param data type for {@code data} output * @deprecated use {@link org.tensorflow.op.distribute.NcclAllReduce} instead * @param input The input value * @param reduction The value of the reduction attribute @@ -4211,7 +4184,6 @@ public NcclAllReduce ncclAllReduce(Operand input, Stri * output: The same as input. * shape: The shape of the input tensor. * - * @param data type for {@code output} output * @deprecated use {@link org.tensorflow.op.distribute.NcclBroadcast} instead * @param input The input value * @param shape The value of the shape attribute @@ -4232,7 +4204,6 @@ public NcclBroadcast ncclBroadcast(Operand input, Shap * data: the value of the reduction across all {@code num_devices} devices. * reduction: the reduction operation to perform. * - * @param data type for {@code data} output * @deprecated use {@link org.tensorflow.op.distribute.NcclReduce} instead * @param input The input value * @param reduction The value of the reduction attribute @@ -4248,7 +4219,6 @@ public NcclReduce ncclReduce(Iterable> input, /** * Makes its input available to the next iteration. * - * @param data type for {@code output} output * @param data The tensor to be made available to the next iteration. * @param data type for {@code NextIteration} output and operands * @return a new instance of NextIteration @@ -4343,7 +4313,6 @@ public NoOp noOp() { * ] * * - * @param data type for {@code output} output * @param indices A tensor of indices. * @param depth A scalar defining the depth of the one hot dimension. * @param onValue A scalar defining the value to fill in output when {@code indices[j] = i}. @@ -4372,7 +4341,6 @@ public Ones ones(Operand dims, Class /** * Returns a tensor of ones with the same shape and type as x. * - * @param data type for {@code y} output * @param x a tensor of type T. * @param data type for {@code OnesLike} output and operands * @return a new instance of OnesLike @@ -4506,7 +4474,6 @@ public OrderedMapUnstageNoKey orderedMapUnstageNoKey(Operand indices, * [0, 0, 0, 0, 0, 0]] * * - * @param data type for {@code output} output * @param input The input value * @param paddings The paddings value * @param constantValues The constantValues value @@ -4534,7 +4501,6 @@ public Pad pad(Operand input, Operand * will copy pieces of the input into the output as they become available, in * some situations this can provide a performance benefit. * - * @param data type for {@code output} output * @param values Tensors to be concatenated. All must have size 1 in the first dimension * and same shape. * @param shape the final shape of the result; should be equal to the shapes of any input @@ -4602,7 +4568,6 @@ public ParallelConcat parallelConcat(Iterable> v * * * - * @param data type for {@code merged} output * @param indices The indices value * @param data The data value * @param data type for {@code ParallelDynamicStitch} output and operands @@ -4641,7 +4606,6 @@ public PartitionedCall partitionedCall(Iterable> args, * intended as a way to represent a value that will always be fed, and to * provide attrs that enable the fed value to be checked at runtime. * - * @param data type for {@code output} output * @param dtype The type of elements in the tensor. * @param options carries optional attribute values * @param data type for {@code Placeholder} output and operands @@ -4655,7 +4619,6 @@ public Placeholder placeholder(Class dtype, /** * A placeholder op that passes through {@code input} when its output is not fed. * - * @param data type for {@code output} output * @param input The default value to produce when {@code output} is not fed. * @param shape The (possibly partial) shape of the tensor. * @param data type for {@code PlaceholderWithDefault} output and operands @@ -4685,7 +4648,6 @@ public Print print(Operand input, Print.Options... options) { * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -4701,7 +4663,6 @@ public Prod prod(Operand input, Operand data type for {@code output} output * @param tensor The tensor value * @param shape Defines the shape of the output tensor. * @param inputMin The minimum value of the input. @@ -4721,7 +4682,6 @@ public QuantizedReshape quantizedReshape(Operand tensor, * first dimension must match. *

The outputs are deterministic. * - * @param data type for {@code output} output * @param index A scalar tensor or a vector of dtype {@code dtype}. The index (or indices) to be shuffled. Must be within [0, max_index]. * @param seed A tensor of dtype {@code Tseed} and shape [3] or [n, 3]. The random seed. * @param maxIndex A scalar tensor or vector of dtype {@code dtype}. The upper bound(s) of the interval (inclusive). @@ -4746,7 +4706,6 @@ public RandomIndexShuffle randomIndexShuffle(Operand i * tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] * * - * @param data type for {@code output} output * @param start 0-D (scalar). First entry in the sequence. * @param limit 0-D (scalar). Upper limit of sequence, exclusive. * @param delta 0-D (scalar). Optional. Default is 1. Number that increments {@code start}. @@ -4785,7 +4744,6 @@ public Rank rank(Operand input) { * influenced by any of the writes which depend directly or indirectly on this * operation. * - * @param data type for {@code value} output * @param resource handle to the resource in which to store the variable. * @param dtype the dtype of the value. * @param data type for {@code ReadVariableOp} output and operands @@ -4799,7 +4757,6 @@ public ReadVariableOp readVariableOp(Operand data type for {@code tensor} output * @param tensorType The value of the tensorType attribute * @param tensorName The name of the tensor to receive. * @param sendDevice The name of the device sending the tensor. @@ -4857,7 +4814,6 @@ public ReduceAny reduceAny(Operand input, Operand axis * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -4877,7 +4833,6 @@ public ReduceMax reduceMax(Operand input, * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -4897,7 +4852,6 @@ public ReduceMin reduceMin(Operand input, * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -4917,7 +4871,6 @@ public ReduceProd reduceProd(Operand input, * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -4937,7 +4890,6 @@ public ReduceSum reduceSum(Operand input, Operand data type for {@code output} output * @param data The tensor to be made available to the child frame. * @param frameName The name of the child frame. * @param options carries optional attribute values @@ -4953,7 +4905,6 @@ public RefEnter refEnter(Operand data, String frameName, * Exits the current frame to its parent frame. * Exit makes its input {@code data} available to the parent frame. * - * @param data type for {@code output} output * @param data The tensor to be made available to the parent frame. * @param data type for {@code RefExit} output and operands * @return a new instance of RefExit @@ -4965,7 +4916,6 @@ public RefExit refExit(Operand data) { /** * Return the same ref tensor as the input ref tensor. * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code RefIdentity} output and operands * @return a new instance of RefIdentity @@ -4981,7 +4931,6 @@ public RefIdentity refIdentity(Operand input) { *

{@code Merge} forwards the first tensor for become available to {@code output}, and sets * {@code value_index} to its index in {@code inputs}. * - * @param data type for {@code output} output * @param inputs The input tensors, exactly one of which will become available. * @param data type for {@code RefMerge} output and operands * @return a new instance of RefMerge @@ -4993,7 +4942,6 @@ public RefMerge refMerge(Iterable> inputs) { /** * Makes its input available to the next iteration. * - * @param data type for {@code output} output * @param data The tensor to be made available to the next iteration. * @param data type for {@code RefNextIteration} output and operands * @return a new instance of RefNextIteration @@ -5005,7 +4953,6 @@ public RefNextIteration refNextIteration(Operand data) { /** * Forwards the {@code index}th element of {@code inputs} to {@code output}. * - * @param data type for {@code output} output * @param index A scalar that determines the input that gets selected. * @param inputs A list of ref tensors, one of which will be forwarded to {@code output}. * @param data type for {@code RefSelect} output and operands @@ -5022,7 +4969,6 @@ public RefSelect refSelect(Operand index, * the data goes to {@code output_false}. *

See also {@code Switch} and {@code Merge}. * - * @param data type for {@code output_false} output * @param data The ref tensor to be forwarded to the appropriate output. * @param pred A scalar that specifies which output port will receive data. * @param data type for {@code RefSwitch} output and operands @@ -5035,7 +4981,6 @@ public RefSwitch refSwitch(Operand data, Operand /** * The Relayout operation * - * @param data type for {@code output} output * @param input The input value * @param layout The value of the layout attribute * @param data type for {@code Relayout} output and operands @@ -5048,7 +4993,6 @@ public Relayout relayout(Operand input, String layout) { /** * The RelayoutLike operation * - * @param data type for {@code output} output * @param input The input value * @param layoutInput The layoutInput value * @param data type for {@code RelayoutLike} output and operands @@ -5130,7 +5074,6 @@ public RemoteCall remoteCall(Operand target, Iterable> args, * reshape(t, []) ==> 7 * * - * @param data type for {@code output} output * @param tensor The tensor value * @param shape Defines the shape of the output tensor. * @param data type for {@code Reshape} output and operands @@ -5143,7 +5086,6 @@ public Reshape reshape(Operand tensor, Operand data type for {@code output} output * @param resource Should be from a scalar {@code Variable} node. * @param limit If incrementing ref would bring it above limit, instead generates an * 'OutOfRange' error. @@ -5171,7 +5113,6 @@ public ResourceCountUpTo resourceCountUpTo( * output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] * * - * @param data type for {@code output} output * @param resource The resource value * @param indices The indices value * @param dtype The value of the dtype attribute @@ -5187,7 +5128,6 @@ public ResourceGather resourceGather(Operand data type for {@code output} output * @param resource The resource value * @param indices The indices value * @param dtype The value of the dtype attribute @@ -5633,7 +5573,6 @@ public ResourceStridedSliceAssign resourceStridedSliceAssign * [12, 13, 14, 15]]]] * * - * @param data type for {@code output} output * @param tensor Up to 8-D. * @param axis 1-D. The indices of the dimensions to reverse. Must be in the range * {@code [-rank(tensor), rank(tensor))}. @@ -5695,7 +5634,6 @@ public Reverse reverse(Operand tensor, Operand * - * @param data type for {@code output} output * @param input The input to reverse. * @param seqLengths 1-D with length {@code input.dims(batch_dim)} and * {@code max(seq_lengths) <= input.dims(seq_dim)} @@ -5730,7 +5668,6 @@ public ReverseSequence reverseSequence(Operand input, * roll(t, shift=[2, -3], axis=[1, 1]) ==> [[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]] * * - * @param data type for {@code output} output * @param input The input value * @param shift Dimension must be 0-D or 1-D. {@code shift[i]} specifies the number of places by which * elements are shifted positively (towards larger indices) along the dimension @@ -5770,7 +5707,6 @@ public Roll roll(Operand input, Operand * * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to add to {@code ref}. @@ -5802,7 +5738,6 @@ public ScatterAdd scatterAdd(Operand ref, * the same location, their contributions divide. *

Requires {@code updates.shape = indices.shape + ref.shape[1:]} or {@code updates.shape = []}. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of values that {@code ref} is divided by. @@ -5837,7 +5772,6 @@ public ScatterDiv scatterDiv(Operand ref, * * * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to reduce into {@code ref}. @@ -5872,7 +5806,6 @@ public ScatterMax scatterMax(Operand ref, * * * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to reduce into {@code ref}. @@ -5904,7 +5837,6 @@ public ScatterMin scatterMin(Operand ref, * the same location, their contributions multiply. *

Requires {@code updates.shape = indices.shape + ref.shape[1:]} or {@code updates.shape = []}. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to multiply to {@code ref}. @@ -5990,20 +5922,28 @@ public ScatterMul scatterMul(Operand ref, * [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], * [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]] * - *

Note that on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, the index is ignored. + *

If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

    + *
  1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
  2. + *
  3. "ERROR": raises error; GPU does not support this value.
  4. + *
  5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
  6. + *
* - * @param data type for {@code output} output * @param indices Tensor of indices. * @param updates Values to scatter into the output tensor. * @param shape 1-D. The shape of the output tensor. + * @param options carries optional attribute values * @param data type for {@code ScatterNd} output and operands * @param data type for {@code ScatterNd} output and operands * @return a new instance of ScatterNd */ public ScatterNd scatterNd(Operand indices, - Operand updates, Operand shape) { - return ScatterNd.create(scope, indices, updates, shape); + Operand updates, Operand shape, ScatterNd.Options... options) { + return ScatterNd.create(scope, indices, updates, shape, options); } /** @@ -6035,7 +5975,6 @@ public ScatterNd scatterNd(Operand in *

See {@code tf.scatter_nd} for more details about how to make updates to * slices. * - * @param data type for {@code output_ref} output * @param ref A mutable Tensor. Should be from a Variable node. * @param indices A Tensor. Must be one of the following types: int32, int64. * A tensor of indices into ref. @@ -6053,7 +5992,6 @@ public ScatterNdAdd scatterNdAdd(Operand ref, /** * Computes element-wise maximum. * - * @param data type for {@code output_ref} output * @param ref A mutable Tensor. Should be from a Variable node. * @param indices A Tensor. Must be one of the following types: int32, int64. * A tensor of indices into ref. @@ -6071,7 +6009,6 @@ public ScatterNdMax scatterNdMax(Operand ref, /** * Computes element-wise minimum. * - * @param data type for {@code output_ref} output * @param ref A mutable Tensor. Should be from a Variable node. * @param indices A Tensor. Must be one of the following types: int32, int64. * A tensor of indices into ref. @@ -6116,18 +6053,19 @@ public ScatterNdMin scatterNdMin(Operand ref, * *

See {@code tf.scatter_nd} for more details about how to make updates to slices. * - * @param data type for {@code output} output * @param input A Tensor. * @param indices A Tensor. Must be one of the following types: {@code int32}, {@code int64}. * A tensor of indices into {@code input}. * @param updates A Tensor. Must have the same type as ref. A tensor of updated values * to add to {@code input}. + * @param options carries optional attribute values * @param data type for {@code ScatterNdNonAliasingAdd} output and operands * @return a new instance of ScatterNdNonAliasingAdd */ public ScatterNdNonAliasingAdd scatterNdNonAliasingAdd(Operand input, - Operand indices, Operand updates) { - return ScatterNdNonAliasingAdd.create(scope, input, indices, updates); + Operand indices, Operand updates, + ScatterNdNonAliasingAdd.Options... options) { + return ScatterNdNonAliasingAdd.create(scope, input, indices, updates, options); } /** @@ -6160,7 +6098,6 @@ public ScatterNdNonAliasingAdd scatterNdNonAliasingAdd(Oper *

See {@code tf.scatter_nd} for more details about how to make updates to * slices. * - * @param data type for {@code output_ref} output * @param ref A mutable Tensor. Should be from a Variable node. * @param indices A Tensor. Must be one of the following types: int32, int64. * A tensor of indices into ref. @@ -6204,7 +6141,6 @@ public ScatterNdSub scatterNdSub(Operand ref, * slices. *

See also {@code tf.scatter_update} and {@code tf.batch_scatter_update}. * - * @param data type for {@code output_ref} output * @param ref A mutable Tensor. Should be from a Variable node. * @param indices A Tensor. Must be one of the following types: int32, int64. * A tensor of indices into ref. @@ -6240,7 +6176,6 @@ public ScatterNdUpdate scatterNdUpdate(Operand ref, * * * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to subtract from {@code ref}. @@ -6277,7 +6212,6 @@ public ScatterSub scatterSub(Operand ref, * *

See also {@code tf.batch_scatter_update} and {@code tf.scatter_nd_update}. * - * @param data type for {@code output_ref} output * @param ref Should be from a {@code Variable} node. * @param indices A tensor of indices into the first dimension of {@code ref}. * @param updates A tensor of updated values to store in {@code ref}. @@ -6293,7 +6227,6 @@ public ScatterUpdate scatterUpdate(Operand ref, /** * The SelectV2 operation * - * @param data type for {@code output} output * @param condition The condition value * @param t The t value * @param e The e value @@ -6339,8 +6272,6 @@ public Send send(Operand tensor, String tensorName, String send * idx ==> [1, 3, 5] * * - * @param data type for {@code out} output - * @param data type for {@code idx} output * @param x 1-D. Values to keep. * @param y 1-D. Values to remove. * @param data type for {@code ListDiff} output and operands @@ -6369,8 +6300,6 @@ public SetDiff1d setDiff1d(Operand x, Operand * idx ==> [1, 3, 5] * * - * @param data type for {@code out} output - * @param data type for {@code idx} output * @param x 1-D. Values to keep. * @param y 1-D. Values to remove. * @param outIdx The value of the outIdx attribute @@ -6412,7 +6341,6 @@ public SetSize setSize(Operand setIndices, Operand setV * shape(t) ==> [2, 2, 3] * * - * @param data type for {@code output} output * @param input The input value * @return a new instance of Shape, with default output types */ @@ -6429,7 +6357,6 @@ public org.tensorflow.op.core.Shape shape(Operand input * shape(t) ==> [2, 2, 3] * * - * @param data type for {@code output} output * @param input The input value * @param outType The value of the outType attribute * @param data type for {@code Shape} output and operands @@ -6444,7 +6371,6 @@ public org.tensorflow.op.core.Shape shape(Operand data type for {@code output} output * @param input The input value * @return a new instance of ShapeN, with default output types */ @@ -6456,7 +6382,6 @@ public ShapeN shapeN(Iterable> input) { * Returns shape of tensors. * This operation returns N 1-D integer tensors representing shape of {@code input[i]s}. * - * @param data type for {@code output} output * @param input The input value * @param outType The value of the outType attribute * @param data type for {@code ShapeN} output and operands @@ -6477,7 +6402,6 @@ public ShapeN shapeN(Iterable> i * size(t) ==> 12 * * - * @param data type for {@code output} output * @param input The input value * @return a new instance of Size, with default output types */ @@ -6495,7 +6419,6 @@ public Size size(Operand input) { * size(t) ==> 12 * * - * @param data type for {@code output} output * @param input The input value * @param outType The value of the outType attribute * @param data type for {@code Size} output and operands @@ -6525,7 +6448,6 @@ public Skipgram skipgram(String filename, Long batchSize, Skipgram.Options... op *

Requirements: * 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) * - * @param data type for {@code output} output * @param input The input value * @param begin begin[i] specifies the offset into the 'i'th dimension of * 'input' to slice from. @@ -6545,7 +6467,6 @@ public Slice slice(Operand input, Ope /** * Returns a copy of the input tensor. * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code Snapshot} output and operands * @return a new instance of Snapshot @@ -6653,7 +6574,6 @@ public Snapshot snapshot(Operand input) { *

Among others, this operation is useful for reducing atrous convolution into * regular convolution. * - * @param data type for {@code output} output * @param input N-D with shape {@code input_shape = [batch] + spatial_shape + remaining_shape}, * where spatial_shape has {@code M} dimensions. * @param blockShape 1-D with shape {@code [M]}, all values must be >= 1. @@ -6672,7 +6592,6 @@ public SpaceToBatchNd spaceToBatchNd(Operand input, /** * Splits a tensor into {@code num_split} tensors along one dimension. * - * @param data type for {@code output} output * @param axis 0-D. The dimension along which to split. Must be in the range * {@code [-rank(value), rank(value))}. * @param value The tensor to split. @@ -6688,7 +6607,6 @@ public Split split(Operand axis, Operand value, /** * Splits a tensor into {@code num_split} tensors along one dimension. * - * @param data type for {@code output} output * @param value The tensor to split. * @param sizeSplits list containing the sizes of each output tensor along the split * dimension. Must sum to the dimension of value along split_dim. @@ -6721,7 +6639,6 @@ public SplitV splitV(Operand value, Operand * - * @param data type for {@code output} output * @param input The {@code input} to squeeze. * @param options carries optional attribute values * @param data type for {@code Squeeze} output and operands @@ -6749,7 +6666,6 @@ public Squeeze squeeze(Operand input, Squeeze.Options... * *

This is the opposite of {@code unpack}. * - * @param data type for {@code output} output * @param values Must be of same shape and type. * @param options carries optional attribute values * @param data type for {@code Pack} output and operands @@ -6787,7 +6703,6 @@ public StackCreate stackCreate(Operand maxSize, Class< /** * Pop the element at the top of the stack. * - * @param data type for {@code elem} output * @param handle The handle to a stack. * @param elemType The type of the elem that is popped. * @param data type for {@code StackPopV2} output and operands @@ -6801,7 +6716,6 @@ public StackPop stackPop(Operand handle, /** * Push an element onto the stack. * - * @param data type for {@code output} output * @param handle The handle to a stack. * @param elem The tensor to be pushed onto the stack. * @param options carries optional attribute values @@ -7083,7 +6997,6 @@ public StatelessWhile statelessWhile(Iterable> input, ConcreteFunctio * The values are cast with a deterministic pseudo-random tensor from a uniform distribution generated from user given key, counter, algorithm. Values will saturate if out of the specified integer type range, and will become zero if inputs are NaN. *

The outputs are a deterministic function of {@code input}, {@code key}, {@code counter}, {@code alg}. * - * @param data type for {@code output} output * @param input The operand to stochastically cast to int. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -7151,7 +7064,6 @@ public StochasticCastToInt stochasticCastToInt( * example generation process. * * - * @param data type for {@code output} output * @param input The input value * @param data type for {@code StopGradient} output and operands * @return a new instance of StopGradient @@ -7169,16 +7081,17 @@ public StopGradient stopGradient(Operand input) { * equal to `n`, but this need not be the case. Each range specification entry can be one of the * following: * - *

- An ellipsis (...) using {@link Indices#ellipsis()}. Ellipses are used to imply zero or - * more dimensions of full-dimension selection. For example, {@code stridedSlice(foo, - * Indices.ellipsis()} is the identity slice. + *

- An ellipsis (...) using {@link org.tensorflow.ndarray.index.Indices#ellipsis()}. Ellipses + * are used to imply zero or more dimensions of full-dimension selection. For example, {@code + * stridedSlice(foo, Indices.ellipsis()} is the identity slice. * - *

- A new axis using {@link Indices#newAxis()}. This is used to insert a new shape=1 - * dimension. For example, `{@code stridedSlice(foo, Indices.newAxis())} where {@code foo} is - * shape {@code (3, 4)} produces a {@code (1, 3, 4)} tensor. + *

- A new axis using {@link org.tensorflow.ndarray.index.Indices#newAxis()}. This is used to + * insert a new shape=1 dimension. For example, `{@code stridedSlice(foo, Indices.newAxis())} + * where {@code foo} is shape {@code (3, 4)} produces a {@code (1, 3, 4)} tensor. * - *

- A range {@code begin:end:stride} using {@link Indices#slice(Long, Long, long)} - * Index.slice()} or {@link Indices#all()}. This is used to specify how much to choose from a + *

- A range {@code begin:end:stride} using {@link + * org.tensorflow.ndarray.index.Indices#slice(Long, Long, long)} Index.slice()} or {@link + * org.tensorflow.ndarray.index.Indices#all()}. This is used to specify how much to choose from a * given dimension. {@code stride} can be any integer but 0. {@code begin} is an integer which * represents the index of the first value to select while {@code end} represents the index of the * last value to select (exclusive). Begin and end can be null, in which case the index begins or @@ -7195,10 +7108,11 @@ public StopGradient stopGradient(Operand input) { * elements). For example {@code foo = [1,2,3,4]; stridedSlice(foo, Indices.slice(-2, null, -1)} * is {@code [4,3]}. * - *

- A single index using {@link Indices#at(long)}. This is used to keep only elements that - * have a given index. For example ({@code stridedSlice(foo, Indices.at(2))} on a shape {@code - * (5,6)} tensor produces a shape {@code (6,)} tensor. The dimension can be kept with size one - * using {@link Indices#at(long, boolean)}. + *

- A single index using {@link org.tensorflow.ndarray.index.Indices#at(long)}. This is used + * to keep only elements that have a given index. For example ({@code stridedSlice(foo, + * Indices.at(2))} on a shape {@code (5,6)} tensor produces a shape {@code (6,)} tensor. The + * dimension can be kept with size one using {@link org.tensorflow.ndarray.index.Indices#at(long, + * boolean)}. * *

These semantics generally follow NumPy's indexing semantics, which can be found here: https://numpy.org/doc/stable/reference/arrays.indexing.html @@ -7206,9 +7120,9 @@ public StopGradient stopGradient(Operand input) { *

Requirements: `0 != strides[i] for i in [0, m)` Only one ellipsis. * * @param data type for {@code output()} output - * @param indices The indices to slice. See {@link Indices}. + * @param indices The indices to slice. See {@link org.tensorflow.ndarray.index.Indices}. * @return a new instance of StridedSlice - * @see Indices + * @see org.tensorflow.ndarray.index.Indices */ public StridedSlice stridedSlice(Operand input, Index... indices) { return StridedSliceHelper.stridedSlice(scope, input, indices); @@ -7314,7 +7228,6 @@ public StridedSlice stridedSlice(Operand input, Index... * {@code 0 != strides[i] for i in [0, m)} * {@code ellipsis_mask must be a power of two (only one ellipsis)} * - * @param data type for {@code output} output * @param input The input value * @param begin {@code begin[k]} specifies the offset into the {@code k}th range specification. * The exact dimension this corresponds to will be determined by context. @@ -7351,9 +7264,10 @@ public StridedSlice stridedSlice(Operand * @param data type for {@code outputRef()} output * @param ref the tensor to assign to. * @param value the value to assign. - * @param indices The indices to slice. See {@link Indices}. + * @param indices The indices to slice. See {@link org.tensorflow.ndarray.index.Indices}. * @return a new instance of StridedSliceAssign - * @see org.tensorflow.op.Ops#stridedSlice(Operand, Index...) + * @see org.tensorflow.op.Ops#stridedSlice(org.tensorflow.Operand, + * org.tensorflow.ndarray.index.Index...) */ public StridedSliceAssign stridedSliceAssign(Operand ref, Operand value, Index... indices) { @@ -7368,7 +7282,6 @@ public StridedSliceAssign stridedSliceAssign(Operand ref *

NOTE this op currently does not support broadcasting and so {@code value}'s * shape must be exactly the shape produced by the slice of {@code ref}. * - * @param data type for {@code output_ref} output * @param ref The ref value * @param begin The begin value * @param end The end value @@ -7395,7 +7308,6 @@ public StridedSliceAssign stridedSliceAs * {@code dy} is the input gradient to be propagated and {@code shape} is the * shape of {@code StridedSlice}'s {@code input}. * - * @param data type for {@code output} output * @param shape The shape value * @param begin The begin value * @param end The end value @@ -7419,7 +7331,6 @@ public StridedSliceGrad stridedSliceGrad * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. * - * @param data type for {@code output} output * @param input The tensor to reduce. * @param axis The dimensions to reduce. Must be in the range * {@code [-rank(input), rank(input))}. @@ -7438,7 +7349,6 @@ public Sum sum(Operand input, Operand * the data goes to {@code output_false}. *

See also {@code RefSwitch} and {@code Merge}. * - * @param data type for {@code output_false} output * @param data The tensor to be forwarded to the appropriate output. * @param pred A scalar that specifies which output port will receive data. * @param data type for {@code Switch} output and operands @@ -7473,7 +7383,6 @@ public SyncDevice syncDevice() { * var = state_ops.assign_add(var, [[6.0, 7.0]]) * final = state_ops._destroy_temporary_variable(var, var_name=var_name) * - * @param data type for {@code ref} output * @param shape The shape of the variable tensor. * @param dtype The type of elements in the variable tensor. * @param options carries optional attribute values @@ -7524,7 +7433,6 @@ public TensorArrayClose tensorArrayClose(Operand handle) { * *

All elements must have the same shape (excepting the first dimension). * - * @param data type for {@code value} output * @param handle The handle to a TensorArray. * @param flowIn A float scalar that enforces proper chaining of operations. * @param dtype The type of the elem that is returned. @@ -7541,7 +7449,6 @@ public TensorArrayConcat tensorArrayConcat(Operand data type for {@code value} output * @param handle The handle to a TensorArray. * @param indices The locations in the TensorArray from which to read tensor elements. * @param flowIn A float scalar that enforces proper chaining of operations. @@ -7622,7 +7529,6 @@ public TensorArrayGradWithShape tensorArrayGradWithShape(Operand data type for {@code value} output * @param handle The handle value * @param flowIn The flowIn value * @param dtype The value of the dtype attribute @@ -7638,7 +7544,6 @@ public TensorArrayPack tensorArrayPack(Operand han /** * Read an element from the TensorArray into output {@code value}. * - * @param data type for {@code value} output * @param handle The handle to a TensorArray. * @param index The index value * @param flowIn A float scalar that enforces proper chaining of operations. @@ -7750,7 +7655,6 @@ public TensorArrayWrite tensorArrayWrite(Operand handle, Operan * tensor: The concated result. * lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. * - * @param data type for {@code tensor} output * @param inputHandle The inputHandle value * @param elementShape The elementShape value * @param leadingDims The leadingDims value @@ -7783,7 +7687,6 @@ public TensorListConcatLists tensorListConcatLists( * input_handle: the list * element_shape: the shape of elements of the list * - * @param data type for {@code element_shape} output * @param inputHandle The inputHandle value * @param shapeType The value of the shapeType attribute * @param data type for {@code TensorListElementShape} output and operands @@ -7817,7 +7720,6 @@ public TensorListFromTensor tensorListFromTensor(Operand tensor * indices: The indices used to index into the list. * values: The tensor. * - * @param data type for {@code values} output * @param inputHandle The inputHandle value * @param indices The indices value * @param elementShape The elementShape value @@ -7837,7 +7739,6 @@ public TensorListGather tensorListGather( * index: the position in the list from which an element will be retrieved * item: the element at that position * - * @param data type for {@code item} output * @param inputHandle The inputHandle value * @param index The index value * @param elementShape The elementShape value @@ -7871,7 +7772,6 @@ public TensorListLength tensorListLength(Operand inputHandle) { * element_dtype: the type of elements in the list * element_shape: the shape of the output tensor * - * @param data type for {@code tensor} output * @param inputHandle The inputHandle value * @param elementShape The elementShape value * @param elementDtype The value of the elementDtype attribute @@ -8033,7 +7933,6 @@ public TensorListSplit tensorListSplit(Operand tensor, * tensor: the gathered result * num_elements: optional. If not -1, the number of elements in the list. * - * @param data type for {@code tensor} output * @param inputHandle The inputHandle value * @param elementShape The elementShape value * @param elementDtype The value of the elementDtype attribute @@ -8101,7 +8000,6 @@ public TensorMapInsert tensorMapInsert(Operand inputHandle, * key: the key to be looked up * value: the value found from the given key * - * @param data type for {@code value} output * @param inputHandle The inputHandle value * @param key The key value * @param valueDtype The value of the valueDtype attribute @@ -8130,7 +8028,6 @@ public TensorMapSize tensorMapSize(Operand inputHandle) { * input_handle: the input map * keys: the returned Tensor of all keys in the map * - * @param data type for {@code keys} output * @param inputHandle The inputHandle value * @param keyDtype The value of the keyDtype attribute * @param data type for {@code TensorMapStackKeys} output and operands @@ -8201,19 +8098,28 @@ public TensorMapStackKeys tensorMapStackKeys( * * * - *

Note: on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, the index is ignored. + *

If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

    + *
  1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
  2. + *
  3. "ERROR": raises error; GPU does not support this value.
  4. + *
  5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
  6. + *
* - * @param data type for {@code output} output * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterAdd} output and operands * @return a new instance of TensorScatterNdAdd */ public TensorScatterNdAdd tensorScatterNdAdd(Operand tensor, - Operand indices, Operand updates) { - return TensorScatterNdAdd.create(scope, tensor, indices, updates); + Operand indices, Operand updates, + TensorScatterNdAdd.Options... options) { + return TensorScatterNdAdd.create(scope, tensor, indices, updates, options); } /** @@ -8233,31 +8139,33 @@ public TensorScatterNdAdd tensorScatterNdAdd(Operand ten * *

Refer to {@code tf.tensor_scatter_nd_update} for more details. * - * @param data type for {@code output} output * @param tensor Tensor to update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterMax} output and operands * @return a new instance of TensorScatterNdMax */ public TensorScatterNdMax tensorScatterNdMax(Operand tensor, - Operand indices, Operand updates) { - return TensorScatterNdMax.create(scope, tensor, indices, updates); + Operand indices, Operand updates, + TensorScatterNdMax.Options... options) { + return TensorScatterNdMax.create(scope, tensor, indices, updates, options); } /** * The TensorScatterMin operation * - * @param data type for {@code output} output * @param tensor Tensor to update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterMin} output and operands * @return a new instance of TensorScatterNdMin */ public TensorScatterNdMin tensorScatterNdMin(Operand tensor, - Operand indices, Operand updates) { - return TensorScatterNdMin.create(scope, tensor, indices, updates); + Operand indices, Operand updates, + TensorScatterNdMin.Options... options) { + return TensorScatterNdMin.create(scope, tensor, indices, updates, options); } /** @@ -8318,16 +8226,17 @@ public TensorScatterNdMin tensorScatterNdMin(Operand ten *

Note that on CPU, if an out of bound index is found, an error is returned. * On GPU, if an out of bound index is found, the index is ignored. * - * @param data type for {@code output} output * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterSub} output and operands * @return a new instance of TensorScatterNdSub */ public TensorScatterNdSub tensorScatterNdSub(Operand tensor, - Operand indices, Operand updates) { - return TensorScatterNdSub.create(scope, tensor, indices, updates); + Operand indices, Operand updates, + TensorScatterNdSub.Options... options) { + return TensorScatterNdSub.create(scope, tensor, indices, updates, options); } /** @@ -8338,7 +8247,6 @@ public TensorScatterNdSub tensorScatterNdSub(Operand ten * scattered onto an existing tensor (as opposed to a zero-tensor). If the memory * for the existing tensor cannot be re-used, a copy is made and updated. *

If {@code indices} contains duplicates, then we pick the last update for the index. - *

If an out of bound index is found on CPU, an error is returned. *

WARNING: There are some GPU specific semantics for this operation. *

    *
  • If an out of bound index is found, the index is ignored.
  • @@ -8360,18 +8268,29 @@ public TensorScatterNdSub tensorScatterNdSub(Operand ten *
        *  indices.shape[:-1] + tensor.shape[indices.shape[-1]:]
        *  
    + *

    If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

      + *
    1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
    2. + *
    3. "ERROR": raises error; GPU does not support this value.
    4. + *
    5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
    6. + *
    *

    For usage examples see the python tf.tensor_scatter_nd_update {@link org.tensorflow.op.Ops#tensorScatterNdUpdate} function * - * @param data type for {@code output} output * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterUpdate} output and operands * @return a new instance of TensorScatterNdUpdate */ public TensorScatterNdUpdate tensorScatterNdUpdate(Operand tensor, - Operand indices, Operand updates) { - return TensorScatterNdUpdate.create(scope, tensor, indices, updates); + Operand indices, Operand updates, + TensorScatterNdUpdate.Options... options) { + return TensorScatterNdUpdate.create(scope, tensor, indices, updates, options); } /** @@ -8382,7 +8301,6 @@ public TensorScatterNdUpdate tensorScatterNdUpdate(Operand< *

    NOTE this op currently does not support broadcasting and so {@code value}'s shape * must be exactly the shape produced by the slice of {@code input}. * - * @param data type for {@code output} output * @param input The input value * @param begin The begin value * @param end The end value @@ -8433,7 +8351,6 @@ public TensorStridedSliceUpdate tensorSt * * * - * @param data type for {@code output} output * @param input Can be of any rank. * @param multiples 1-D. Length must be the same as the number of dimensions in {@code input} * @param data type for {@code Tile} output and operands @@ -8522,7 +8439,6 @@ public TopKWithUnique topKWithUnique(Operand input, Long k) { * assumed to possibly belong to the same batch. If left empty, the op name will * be used as the shared name. * - * @param data type for {@code unbatched_tensor} output * @param batchedTensor The batchedTensor value * @param batchIndex The batchIndex value * @param id The id value @@ -8552,7 +8468,6 @@ public Unbatch unbatch(Operand batchedTensor, Operand data type for {@code batched_grad} output * @param originalInput The originalInput value * @param batchIndex The batchIndex value * @param grad The grad value @@ -8573,7 +8488,6 @@ public UnbatchGrad unbatchGrad(Operand originalInput, * If quantization_axis is -1 (per-tensor quantized), the entire operand is clipped using scalar min, max. * Otherwise (per-channel quantized), the clipping is also done per-channel. * - * @param data type for {@code output} output * @param operand Must be a Tensor of T. * @param min The min value(s) to clip operand. Must be a Tensor of T. * Must be a scalar Tensor if quantization_axis is -1 (per-tensor quantization), otherwise 1D Tensor of size (operand.dim_size(quantization_axis),) (per-axis quantization). @@ -8635,8 +8549,6 @@ public UniformQuantizedClipByValue uniformQuantizedClipBy * idx ==> [0, 1, 1] * * - * @param data type for {@code y} output - * @param data type for {@code idx} output * @param x A {@code Tensor}. * @param axis A {@code Tensor} of type {@code int32} (default: None). The axis of the Tensor to * find the unique elements. @@ -8686,8 +8598,6 @@ public Unique unique(Operand x, Operand * - * @param data type for {@code y} output - * @param data type for {@code idx} output * @param x A {@code Tensor}. * @param axis A {@code Tensor} of type {@code int32} (default: None). The axis of the Tensor to * find the unique elements. @@ -8744,8 +8654,6 @@ public Unique unique(Operand x, * count ==> [1, 2] * * - * @param data type for {@code y} output - * @param data type for {@code idx} output * @param x A {@code Tensor}. * @param axis A {@code Tensor} of type {@code int32} (default: None). The axis of the Tensor to * find the unique elements. @@ -8800,8 +8708,6 @@ public UniqueWithCounts uniqueWithCounts(Operand * count ==> [1, 2] * * - * @param data type for {@code y} output - * @param data type for {@code idx} output * @param x A {@code Tensor}. * @param axis A {@code Tensor} of type {@code int32} (default: None). The axis of the Tensor to * find the unique elements. @@ -8835,7 +8741,6 @@ public UniqueWithCounts uniqueWithCou * Equivalent to np.unravel_index *
    {@literal @}end_compatibility * - * @param data type for {@code output} output * @param indices An 0-D or 1-D {@code int} Tensor whose elements are indices into the * flattened version of an array of dimensions dims. * @param dims An 1-D {@code int} Tensor. The shape of the array to use for unraveling @@ -8859,7 +8764,6 @@ public UnravelIndex unravelIndex(Operand indices, Oper * Etc. *

    This is the opposite of {@code pack}. * - * @param data type for {@code output} output * @param value 1-D or higher, with {@code axis} dimension size equal to {@code num}. * @param num The value of the num attribute * @param options carries optional attribute values @@ -8900,7 +8804,6 @@ public Unstage unstage(List> dtypes, Unstage.Options... o *

    result == [[1, 2, 4], * [0, 2, 5]] * - * @param data type for {@code output} output * @param sortedInputs 2-D Tensor where each row is ordered. * @param values 2-D Tensor with the same numbers of rows as {@code sorted_search_values}. Contains * the values that will be searched for in {@code sorted_search_values}. @@ -8928,7 +8831,6 @@ public UpperBound upperBound(Operand sortedInputs, *

    result == [[1, 2, 4], * [0, 2, 5]] * - * @param data type for {@code output} output * @param sortedInputs 2-D Tensor where each row is ordered. * @param values 2-D Tensor with the same numbers of rows as {@code sorted_search_values}. Contains * the values that will be searched for in {@code sorted_search_values}. @@ -8988,7 +8890,6 @@ public Variable variable(Operand init, Variable.Options. * TODO(zhifengc/mrry): Adds a pointer to a more detail document * about sharing states in tensorflow. * - * @param data type for {@code ref} output * @param shape The shape of the variable tensor. * @param dtype The type of elements in the variable tensor. * @param options carries optional attribute values @@ -9009,7 +8910,6 @@ public Variable variable(Shape shape, Class dtype, * shape(t) ==> [2, 2, 3] * * - * @param data type for {@code output} output * @param input The input value * @return a new instance of VariableShape, with default output types */ @@ -9026,7 +8926,6 @@ public VariableShape variableShape(Operand input) { * shape(t) ==> [2, 2, 3] * * - * @param data type for {@code output} output * @param input The input value * @param outType The value of the outType attribute * @param data type for {@code VariableShape} output and operands @@ -9147,7 +9046,6 @@ public Zeros zeros(Operand dims, Class data type for {@code y} output * @param x a tensor of type T. * @param data type for {@code ZerosLike} output and operands * @return a new instance of ZerosLike diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java index 99f3648ea27..8bd174ba427 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/QuantizationOps.java @@ -107,7 +107,6 @@ public final class QuantizationOps { * max_range / max_expected_T); * * - * @param data type for {@code output} output * @param input The input value * @param minRange The minimum scalar value possibly produced for the input. * @param maxRange The maximum scalar value possibly produced for the input. @@ -165,7 +164,6 @@ public Dequantize dequantize(Operand input, * max_range / max_expected_T); * * - * @param data type for {@code output} output * @param input The input value * @param minRange The minimum scalar value possibly produced for the input. * @param maxRange The maximum scalar value possibly produced for the input. @@ -275,6 +273,28 @@ public FakeQuantWithMinMaxArgsGradient fakeQuantWithMinMaxArgsGradient( *

*

This operation has a gradient and thus allows for training {@code min} and {@code max} * values. + *

+ *
+ *
+ *

constant_input = tf.constant([[1.2, -0.3, 0.7], [2.1, 0.5, -1.0]], dtype=tf.float32) + *

min_val = -0.5 + * max_val = 0.8 + * num_bits = 8 + * narrow_range = False #False:for the quantization range [0; 2^num_bits - 1] + *

quantized_data = tf.quantization.fake_quant_with_min_max_vars( + * ... inputs=constant_input, min=min_val, max=max_val, num_bits=num_bits, narrow_range=narrow_range + * ... ) + *

print("Input:\n", constant_input.numpy()) + * Input: + * [[ 1.2 -0.3 0.7] + * [ 2.1 0.5 -1. ]] + * print("Output:\n", quantized_data.numpy()) + * Output: + * [[ 0.8003921 -0.3007843 0.6984313] + * [ 0.8003921 0.4996078 -0.4996078]] + *

+ *
+ *
* * @param inputs The inputs value * @param min The min value @@ -456,7 +476,6 @@ public FakeQuantWithMinMaxVarsPerChannelGradient fakeQuantWithMinMaxVarsPerChann * The legacy default value for this is 0.01, but it is strongly suggested to * set it to 0 for new uses. * - * @param data type for {@code output} output * @param input The input value * @param minRange The minimum value of the quantization range. This value may be adjusted by the * op depending on other parameters. The adjusted value is written to {@code output_min}. @@ -482,7 +501,6 @@ public Quantize quantize(Operand input, * This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a * tensor, so its value can change during training. * - * @param data type for {@code output} output * @param input The input value * @param inputMin The inputMin value * @param inputMax The inputMax value @@ -502,7 +520,6 @@ public QuantizeAndDequantize quantizeAndDequantize(Operan * This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a * tensor, so its value can change during training. * - * @param data type for {@code output} output * @param input The input value * @param inputMin The inputMin value * @param inputMax The inputMax value @@ -522,7 +539,6 @@ public QuantizeAndDequantizeV3 quantizeAndDequantizeV3(Op * This is almost identical to QuantizeAndDequantizeV2, except that it returns a * gradient of 1 for inputs that are within the quantization range, or 0 otherwise. * - * @param data type for {@code output} output * @param input Tensor to quantize and then dequantize. * @param inputMin If {@code range_given == True}, this specifies the minimum input value that needs to * be represented, otherwise it is determined from the min value of the {@code input} @@ -544,7 +560,6 @@ public QuantizeAndDequantizeV4 quantizeAndDequantizeV4(Op * Returns a gradient of 1 for inputs that are within the quantization range, * or 0 otherwise. * - * @param data type for {@code input_backprop} output * @param gradients The gradients value * @param input The input value * @param inputMin The inputMin value @@ -581,7 +596,6 @@ public QuantizeAndDequantizeV4Grad quantizeAndDequantizeV * that output into this operator, we can reduce it from 32 bits down to 8 with * minimal loss of accuracy. * - * @param data type for {@code output} output * @param input The input value * @param inputMin The float value that the minimum quantized input value represents. * @param inputMax The float value that the maximum quantized input value represents. @@ -598,7 +612,6 @@ public QuantizeDownAndShrinkRange quantizeDownAndShrinkRa /** * Concatenates quantized tensors along one dimension. * - * @param data type for {@code output} output * @param concatDim 0-D. The dimension along which to concatenate. Must be in the * range [0, rank(values)). * @param values The {@code N} Tensors to concatenate. Their ranks and types must match, @@ -617,7 +630,6 @@ public QuantizedConcat quantizedConcat(Operand conc /** * The QuantizedMatMulWithBiasAndDequantize operation * - * @param data type for {@code out} output * @param a The a value * @param b The b value * @param bias The bias value @@ -644,7 +656,6 @@ public QuantizedMatMulWithBiasAndDequantize quantizedMatM /** * The QuantizedMatMulWithBiasAndRequantize operation * - * @param data type for {@code out} output * @param a The a value * @param b The b value * @param bias The bias value @@ -694,7 +705,6 @@ public RequantizationRange requantizationRange(Operand input, * {@code input_max} is 1.0f, and we are dealing with {@code quint16} quantized data, then a 0 * value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. * - * @param data type for {@code output} output * @param input The input value * @param inputMin The float value that the minimum quantized input value represents. * @param inputMax The float value that the maximum quantized input value represents. @@ -715,7 +725,6 @@ public Requantize requantize(Operand i * Given quantized {@code input} which was quantized using {@code scales} and {@code zero_points}, performs dequantization using the formula: * dequantized_data = (quantized_data - zero_point) * scale. * - * @param data type for {@code output} output * @param input Must be a Tensor of Tin. * @param scales The float value(s) used as scale(s) when quantizing original data that input represents. * Must be a scalar Tensor if quantization_axis is -1 (per-tensor quantization), otherwise 1D Tensor of size (input.dim_size(quantization_axis),) (per-axis quantization). @@ -746,7 +755,6 @@ public UniformDequantize uniformDequantize( * Given {@code input}, {@code scales} and {@code zero_points}, performs quantization using the formula: * quantized_data = floor(input_data * (1.0f / scale) + 0.5f) + zero_point * - * @param data type for {@code output} output * @param input Must be a Tensor of Tin. * @param scales The float value(s) to use as scale(s) to quantize {@code input}. * Must be a scalar Tensor if quantization_axis is -1 (per-tensor quantization), otherwise 1D Tensor of size (input.dim_size(quantization_axis),) (per-axis quantization). @@ -780,7 +788,6 @@ public UniformQuantize uniformQuantize(Operand data type for {@code output} output * @param lhs Must be a 2D Tensor of Tin. * @param rhs Must be a 2D Tensor of Tin. * @param lhsScales The float value(s) used as scale when quantizing original data that lhs represents. @@ -833,7 +840,6 @@ public UniformQuantizedDot uniformQuan * {@code rhs} must be quantized Tensor, where its data value is quantized using the formula: * quantized_data = clip(original_data / scale + zero_point, quantization_min_val, quantization_max_val). * - * @param data type for {@code output} output * @param lhs Must be a 2D Tensor of Tlhs. * @param rhs Must be a 2D Tensor of Trhs. * @param rhsScales The float value(s) used as scale when quantizing original data that rhs represents. @@ -873,7 +879,6 @@ public UniformQuantizedDotHybrid uniformQuantizedDotHybri * i.e. At least one among input_quantization_axis and output_quantization_axis must be -1, or two must be equal. * * - * @param data type for {@code output} output * @param input Must be a Tensor of Tin. * @param inputScales The float value(s) used as scale(s) when quantizing original data that {@code input} represents. * Must be a scalar Tensor if quantization_axis is -1 (per-tensor quantization), otherwise 1D Tensor of size (input.dim_size(quantization_axis),) (per-axis quantization). diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java index 83bf63f461f..43b18f0cf57 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RaggedOps.java @@ -60,7 +60,6 @@ public final class RaggedOps { * {@code i}. *

Values in {@code arr} outside of the range [0, size) are ignored. * - * @param data type for {@code output} output * @param splits 1D int64 {@code Tensor}. * @param values 2D int {@code Tensor}. * @param sizeOutput non-negative int scalar {@code Tensor}. @@ -82,7 +81,6 @@ public RaggedBincount raggedBincount( * Performs sparse-output bin counting for a ragged tensor input. * Counts the number of times each value occurs in the input. * - * @param data type for {@code output_values} output * @param splits Tensor containing the row splits of the ragged tensor to count. * @param values Tensor containing values of the sparse tensor to count. * @param weights A Tensor of the same shape as indices containing per-index weight values. @@ -102,8 +100,6 @@ public RaggedCountSparseOutput raggedCountSparseOutput( * Generates a feature cross from a list of tensors, and returns it as a * RaggedTensor. See {@code tf.ragged.cross} for more details. * - * @param data type for {@code output_values} output - * @param data type for {@code output_row_splits} output * @param raggedValues The values tensor for each RaggedTensor input. * @param raggedRowSplits The row_splits tensor for each RaggedTensor input. * @param sparseIndices The indices tensor for each SparseTensor input. @@ -135,7 +131,6 @@ public RaggedCross raggedCross( /** * The RaggedFillEmptyRows operation * - * @param data type for {@code output_values} output * @param valueRowids The valueRowids value * @param values The values value * @param nrows The nrows value @@ -151,7 +146,6 @@ public RaggedFillEmptyRows raggedFillEmptyRows(Operand data type for {@code d_values} output * @param reverseIndexMap The reverseIndexMap value * @param gradValues The gradValues value * @param data type for {@code RaggedFillEmptyRowsGrad} output and operands @@ -183,8 +177,6 @@ public RaggedFillEmptyRowsGrad raggedFillEmptyRowsGrad( *

(Note: This c++ op is used to implement the higher-level python * {@code tf.ragged.gather} op, which also supports ragged indices.) * - * @param data type for {@code output_nested_splits} output - * @param data type for {@code output_dense_values} output * @param paramsNestedSplits The {@code nested_row_splits} tensors that define the row-partitioning for the * {@code params} RaggedTensor input. * @param paramsDenseValues The {@code flat_values} for the {@code params} RaggedTensor. There was a terminology change @@ -221,8 +213,6 @@ public RaggedGather raggedGather( * The vector inputs must all have the same size. Scalar inputs are broadcast * to match the size of the vector inputs. * - * @param data type for {@code rt_nested_splits} output - * @param data type for {@code rt_dense_values} output * @param starts The starts of each range. * @param limits The limits of each range. * @param deltas The deltas of each range. @@ -250,8 +240,6 @@ public RaggedRange raggedRange(Operand starts, * The vector inputs must all have the same size. Scalar inputs are broadcast * to match the size of the vector inputs. * - * @param data type for {@code rt_nested_splits} output - * @param data type for {@code rt_dense_values} output * @param starts The starts of each range. * @param limits The limits of each range. * @param deltas The deltas of each range. @@ -279,8 +267,6 @@ public RaggedRange raggedRange(Oper * inferred as {@code output_ragged_rank} - {@code rank(encoded_ragged)}. See * {@code RaggedTensorToVariant} for the corresponding encoding logic. * - * @param data type for {@code output_nested_splits} output - * @param data type for {@code output_dense_values} output * @param encodedRagged A {@code variant} Tensor containing encoded {@code RaggedTensor}s. * @param inputRaggedRank The ragged rank of each encoded {@code RaggedTensor} component in the input. If set to * -1, this is inferred as {@code output_ragged_rank} - {@code rank(encoded_ragged)} @@ -310,8 +296,6 @@ public RaggedTensorFromVariant raggedTensorFromVari * inferred as {@code output_ragged_rank} - {@code rank(encoded_ragged)}. See * {@code RaggedTensorToVariant} for the corresponding encoding logic. * - * @param data type for {@code output_nested_splits} output - * @param data type for {@code output_dense_values} output * @param encodedRagged A {@code variant} Tensor containing encoded {@code RaggedTensor}s. * @param inputRaggedRank The ragged rank of each encoded {@code RaggedTensor} component in the input. If set to * -1, this is inferred as {@code output_ragged_rank} - {@code rank(encoded_ragged)} @@ -335,7 +319,6 @@ public RaggedTensorFromVariant ragged * output=SparseTensor(indices=sparse_indices, values=sparse_values, * dense_shape=sparse_dense_shape) * - * @param data type for {@code sparse_values} output * @param rtNestedSplits The {@code row_splits} for the {@code RaggedTensor}. * @param rtDenseValues The {@code flat_values} for the {@code RaggedTensor}. * @param data type for {@code RaggedTensorToSparse} output and operands @@ -365,7 +348,6 @@ public RaggedTensorToSparse raggedTensorToSparse( * is preceded by "FIRST_DIM_SIZE". * * - * @param data type for {@code result} output * @param shape The desired shape of the output tensor. If left unspecified (empty), * the minimal shape required to contain all the elements in the ragged tensor * (the natural shape) will be used. If some dimensions are left unspecified, then @@ -438,7 +420,6 @@ public RaggedTensorToVariant raggedTensorToVariant( * the outer row-splits and the shape of the dense-values that were provided as * inputs to the RaggedTensorToVariant op. * - * @param data type for {@code dense_values_grad} output * @param encodedRaggedGrad A {@code variant} Tensor containing encoded {@code RaggedTensor} gradients. * @param rowSplits Outermost row-splits that were used as input to the RaggedTensorToVariant op. * @param denseValuesShape Shape of the dense_values that was used as an input to the diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomExperimentalOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomExperimentalOps.java index 09a2b385b6f..34d3585f270 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomExperimentalOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomExperimentalOps.java @@ -49,7 +49,6 @@ public final class RandomExperimentalOps { * *

The outputs are a deterministic function of {@code value}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param value The tensor to be shuffled. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java index 3c62a3b57a1..c5ff9a489a0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/RandomOps.java @@ -203,7 +203,6 @@ public LogUniformCandidateSampler logUniformCandidateSampler(Operand tru /** * Draws samples from a multinomial distribution. * - * @param data type for {@code output} output * @param logits 2-D Tensor with shape {@code [batch_size, num_classes]}. Each slice {@code [i, :]} * represents the unnormalized log probabilities for all classes. * @param numSamples 0-D. Number of independent samples to draw for each row slice. @@ -218,7 +217,6 @@ public Multinomial multinomial(Operand logits, /** * Draws samples from a multinomial distribution. * - * @param data type for {@code output} output * @param logits 2-D Tensor with shape {@code [batch_size, num_classes]}. Each slice {@code [i, :]} * represents the unnormalized log probabilities for all classes. * @param numSamples 0-D. Number of independent samples to draw for each row slice. @@ -236,7 +234,6 @@ public Multinomial multinomial(Operand * Non-deterministically generates some integers. * This op may use some OS-provided source of non-determinism (e.g. an RNG), so each execution will give different results. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @return a new instance of NonDeterministicInts, with default output types */ @@ -248,7 +245,6 @@ public NonDeterministicInts nonDeterministicInts(Operand data type for {@code output} output * @param shape The shape of the output tensor. * @param dtype The type of the output. * @param data type for {@code NonDeterministicInts} output and operands @@ -264,7 +260,6 @@ public NonDeterministicInts nonDeterministicInts( * scalar which applies to the entire output, or a vector of length shape[0] which * stores the parameters for each batch. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. Batches are indexed by the 0th dimension. * @param means The mean parameter of each batch. * @param stdevs The standard deviation parameter of each batch. Must be greater than 0. @@ -287,7 +282,6 @@ public ParameterizedTruncatedNormal parameterizedTruncate * transformation-rejection from pairs of uniform and normal random variables. * See http://dl.acm.org/citation.cfm?id=358414 * - * @param data type for {@code output} output * @param shape 1-D integer tensor. Shape of independent samples to draw from each * distribution described by the shape parameters given in alpha. * @param alpha A tensor in which each scalar is a "shape" parameter describing the @@ -304,7 +298,6 @@ public RandomGamma randomGamma(Operand /** * Computes the derivative of a Gamma random sample w.r.t. {@code alpha}. * - * @param data type for {@code output} output * @param alpha The alpha value * @param sample The sample value * @param data type for {@code RandomGammaGrad} output and operands @@ -326,7 +319,6 @@ public RandomGammaGrad randomGammaGrad(Operand alpha, * See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer * Programming, Volume 2. Addison Wesley * - * @param data type for {@code output} output * @param shape 1-D integer tensor. Shape of independent samples to draw from each * distribution described by the shape parameters given in rate. * @param rate A tensor in which each scalar is a "rate" parameter describing the @@ -350,7 +342,6 @@ public RandomPoisson randomPoisson(Operand shape, * See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer * Programming, Volume 2. Addison Wesley * - * @param data type for {@code output} output * @param shape 1-D integer tensor. Shape of independent samples to draw from each * distribution described by the shape parameters given in rate. * @param rate A tensor in which each scalar is a "rate" parameter describing the @@ -376,7 +367,6 @@ public RandomPoisson randomPoisson(Operand * - * @param data type for {@code output} output * @param value The tensor to be shuffled. * @param options carries optional attribute values * @param data type for {@code RandomShuffle} output and operands @@ -391,7 +381,6 @@ public RandomShuffle randomShuffle(Operand value, * Outputs random values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param dtype The type of the output. * @param options carries optional attribute values @@ -408,7 +397,6 @@ public RandomStandardNormal randomStandardNormal( * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param dtype The type of the output. * @param options carries optional attribute values @@ -429,7 +417,6 @@ public RandomUniform randomUniform(Operand data type for {@code output} output * @param shape The shape of the output tensor. * @param minval 0-D. Inclusive lower bound on the generated integers. * @param maxval 0-D. Exclusive upper bound on the generated integers. @@ -491,7 +478,6 @@ public RngSkip rngSkip(Operand resource, Operand algori /** * The StatefulRandomBinomial operation * - * @param data type for {@code output} output * @param resource The resource value * @param algorithm The algorithm value * @param shape The shape value @@ -509,7 +495,6 @@ public StatefulRandomBinomial statefulRandomBinomial /** * The StatefulRandomBinomial operation * - * @param data type for {@code output} output * @param resource The resource value * @param algorithm The algorithm value * @param shape The shape value @@ -530,7 +515,6 @@ public StatefulRandomBinomial stateful * Outputs random values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -545,7 +529,6 @@ public StatefulStandardNormal statefulStandardNormal(Operand data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -565,7 +548,6 @@ public StatefulStandardNormal statefulStandardNormal( * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -583,7 +565,6 @@ public StatefulTruncatedNormal statefulTruncatedNormal( * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -602,7 +583,6 @@ public StatefulTruncatedNormal statefulTruncatedNormal( * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -618,7 +598,6 @@ public StatefulUniform statefulUniform(Operand resour * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -635,7 +614,6 @@ public StatefulUniform statefulUniform(Operand data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -658,7 +636,6 @@ public StatefulUniformFullInt statefulUniformFullInt( * power of two. The bias is small for values of {@code maxval - minval} significantly * smaller than the range of the output (either {@code 2^32} or {@code 2^64}). * - * @param data type for {@code output} output * @param resource The handle of the resource variable that stores the state of the RNG. * @param algorithm The RNG algorithm. * @param shape The shape of the output tensor. @@ -676,7 +653,6 @@ public StatefulUniformInt statefulUniformInt( /** * Draws samples from a multinomial distribution. * - * @param data type for {@code output} output * @param logits 2-D Tensor with shape {@code [batch_size, num_classes]}. Each slice {@code [i, :]} * represents the unnormalized log probabilities for all classes. * @param numSamples 0-D. Number of independent samples to draw for each row slice. @@ -691,7 +667,6 @@ public StatelessMultinomial statelessMultinomial(Operand data type for {@code output} output * @param logits 2-D Tensor with shape {@code [batch_size, num_classes]}. Each slice {@code [i, :]} * represents the unnormalized log probabilities for all classes. * @param numSamples 0-D. Number of independent samples to draw for each row slice. @@ -709,7 +684,6 @@ public StatelessMultinomial statelessMultinomial( /** * The StatelessParameterizedTruncatedNormal operation * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param means The mean parameter of each batch. @@ -731,7 +705,6 @@ public StatelessParameterizedTruncatedNormal statelessPar * Outputs random values from a binomial distribution. *

The outputs are a deterministic function of {@code shape}, {@code seed}, {@code counts}, and {@code probs}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param counts The counts of the binomial distribution. Must be broadcastable with {@code probs}, @@ -752,7 +725,6 @@ public StatelessRandomBinomial statelessRandomBinomi * Outputs random values from a binomial distribution. *

The outputs are a deterministic function of {@code shape}, {@code seed}, {@code counts}, and {@code probs}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param counts The counts of the binomial distribution. Must be broadcastable with {@code probs}, @@ -775,7 +747,6 @@ public StatelessRandomBinomial statele * Outputs random values from a gamma distribution. *

The outputs are a deterministic function of the inputs. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -830,7 +801,6 @@ public StatelessRandomGetKeyCounterAlg statelessRandomGetKeyCounterAlg( * The generated values will have mean 0 and standard deviation 1. *

The outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @return a new instance of StatelessRandomNormal, with default output types @@ -845,7 +815,6 @@ public StatelessRandomNormal statelessRandomNormal(OperandThe outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param dtype The type of the output. @@ -862,7 +831,6 @@ public StatelessRandomNormal statelessRandomNormal( * The generated values will have mean 0 and standard deviation 1. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -879,7 +847,6 @@ public StatelessRandomNormalV2 statelessRandomNormalV2(OperandThe outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -899,7 +866,6 @@ public StatelessRandomNormalV2 statelessRandomNormalV2( * Outputs random values from a Poisson distribution. *

The outputs are a deterministic function of {@code shape}, {@code seed}, and {@code lam}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param lam The rate of the Poisson distribution. Shape must match the rightmost dimensions @@ -920,7 +886,6 @@ public StatelessRandomPoisson statelessRandomPoisson( * lower bound 0 is included in the range, while the upper bound 1 is excluded. *

The outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @return a new instance of StatelessRandomUniform, with default output types @@ -936,7 +901,6 @@ public StatelessRandomUniform statelessRandomUniform(OperandThe outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param dtype The type of the output. @@ -953,7 +917,6 @@ public StatelessRandomUniform statelessRandomUniform( * The generated values are uniform integers covering the whole range of {@code dtype}. *

The outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param dtype The type of the output. @@ -970,7 +933,6 @@ public StatelessRandomUniformFullInt statelessRandomUnifo * The generated values are uniform integers covering the whole range of {@code dtype}. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -990,7 +952,6 @@ public StatelessRandomUniformFullIntV2 statelessRandomUni * The generated values follow a uniform distribution in the range {@code [minval, maxval)}. *

The outputs are a deterministic function of {@code shape}, {@code seed}, {@code minval}, and {@code maxval}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param minval Minimum value (inclusive, scalar). @@ -1009,7 +970,6 @@ public StatelessRandomUniformInt statelessRandomUniformIn * The generated values follow a uniform distribution in the range {@code [minval, maxval)}. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter}, {@code alg}, {@code minval} and {@code maxval}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -1031,7 +991,6 @@ public StatelessRandomUniformIntV2 statelessRandomUniform * lower bound 0 is included in the range, while the upper bound 1 is excluded. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -1050,7 +1009,6 @@ public StatelessRandomUniformV2 statelessRandomUniformV2( * lower bound 0 is included in the range, while the upper bound 1 is excluded. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -1072,7 +1030,6 @@ public StatelessRandomUniformV2 statelessRandomUniformV2( * deviations from the mean are dropped and re-picked. *

The outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @return a new instance of StatelessTruncatedNormal, with default output types @@ -1089,7 +1046,6 @@ public StatelessTruncatedNormal statelessTruncatedNormal( * deviations from the mean are dropped and re-picked. *

The outputs are a deterministic function of {@code shape} and {@code seed}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param seed 2 seeds (shape [2]). * @param dtype The type of the output. @@ -1108,7 +1064,6 @@ public StatelessTruncatedNormal statelessTruncatedNormal( * deviations from the mean are dropped and re-picked. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -1128,7 +1083,6 @@ public StatelessTruncatedNormalV2 statelessTruncatedNormalV2( * deviations from the mean are dropped and re-picked. *

The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param key Key for the counter-based RNG algorithm (shape uint64[1]). * @param counter Initial counter for the counter-based RNG algorithm (shape uint64[2] or uint64[1] depending on the algorithm). If a larger vector is given, only the needed portion on the left (i.e. [:N]) will be used. @@ -1176,7 +1130,6 @@ public ThreadUnsafeUnigramCandidateSampler threadUnsafeUnigramCandidateSampler( * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. * - * @param data type for {@code output} output * @param shape The shape of the output tensor. * @param dtype The type of the output. * @param options carries optional attribute values diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java index c9cdae676a4..68cb802f86d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/ShapeOps.java @@ -388,7 +388,8 @@ public Operand tail(Shape shape, Class type) { * shape. * * @param shape the TensorFlow shape - * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() + * @param n the number of leading dimensions to get, must be less than or equal to the shape's + * numDimensions() * @return a 1-dimensional operand with the dimensions matching the first n dimensions of the * shape */ @@ -401,7 +402,8 @@ public Operand take(Shape shape, Operand n) { * shape. * * @param shape the TensorFlow shape - * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() + * @param n the number of leading dimensions to get, must be less than or equal to the shape's + * numDimensions() * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional operand with the dimensions matching * the first n dimensions of the @@ -416,7 +418,8 @@ public Operand take(Shape shape, Operand n, Class Operand takeLast(Shape shape, Operand * shape. * * @param shape the TensorFlow shape - * @param n the number of leading dimensions to get, must be <= than the shape's numDimensions() + * @param n the number of leading dimensions to get, must be less than or equal to the shape's + * numDimensions() * @param type the shape datatype. * @param the shape datatype. * @return a 1-dimensional operand containing the dimensions matching the last n dimensions of the diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java index 33e2cd4d920..ac5703c264a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SignalOps.java @@ -125,7 +125,6 @@ public BatchIfft3d batchIfft3d(Operand input) { * Computes the 1-dimensional discrete Fourier transform over the inner-most * dimension of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code FFT} output and operands * @return a new instance of Fft @@ -139,7 +138,6 @@ public Fft fft(Operand input) { * Computes the 2-dimensional discrete Fourier transform over the inner-most * 2 dimensions of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code FFT2D} output and operands * @return a new instance of Fft2d @@ -153,7 +151,6 @@ public Fft2d fft2d(Operand input) { * Computes the 3-dimensional discrete Fourier transform over the inner-most 3 * dimensions of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code FFT3D} output and operands * @return a new instance of Fft3d @@ -173,7 +170,6 @@ public Fft3d fft3d(Operand input) { *

Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor. The FFT length for each dimension. * @param axes An int32 tensor with a same shape as fft_length. Axes to perform the transform. @@ -190,7 +186,6 @@ public FftNd fftNd(Operand input, Operand fftLen * Computes the inverse 1-dimensional discrete Fourier transform over the * inner-most dimension of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code IFFT} output and operands * @return a new instance of Ifft @@ -204,7 +199,6 @@ public Ifft ifft(Operand input) { * Computes the inverse 2-dimensional discrete Fourier transform over the * inner-most 2 dimensions of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code IFFT2D} output and operands * @return a new instance of Ifft2d @@ -218,7 +212,6 @@ public Ifft2d ifft2d(Operand input) { * Computes the inverse 3-dimensional discrete Fourier transform over the * inner-most 3 dimensions of {@code input}. * - * @param data type for {@code output} output * @param input A complex tensor. * @param data type for {@code IFFT3D} output and operands * @return a new instance of Ifft3d @@ -238,7 +231,6 @@ public Ifft3d ifft3d(Operand input) { *

Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor. The FFT length for each dimension. * @param axes An int32 tensor with a same shape as fft_length. Axes to perform the transform. @@ -264,7 +256,6 @@ public IfftNd ifftNd(Operand input, Operand fftL * than the corresponding dimension of {@code input}, the dimension is cropped. If it is * larger, the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [1]. The FFT length. * @return a new instance of Irfft, with default output types @@ -287,7 +278,6 @@ public Irfft irfft(Operand input, Operand fft * than the corresponding dimension of {@code input}, the dimension is cropped. If it is * larger, the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [1]. The FFT length. * @param Treal The value of the Treal attribute @@ -314,7 +304,6 @@ public Irfft irfft(Operand input, * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [2]. The FFT length for each dimension. * @return a new instance of Irfft2d, with default output types @@ -338,7 +327,6 @@ public Irfft2d irfft2d(Operand input, Operand * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [2]. The FFT length for each dimension. * @param Treal The value of the Treal attribute @@ -365,7 +353,6 @@ public Irfft2d irfft2d(Operand input, * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [3]. The FFT length for each dimension. * @return a new instance of Irfft3d, with default output types @@ -389,7 +376,6 @@ public Irfft3d irfft3d(Operand input, Operand * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor of shape [3]. The FFT length for each dimension. * @param Treal The value of the Treal attribute @@ -413,7 +399,6 @@ public Irfft3d irfft3d(Operand input, *

Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor. The FFT length for each dimension. * @param axes An int32 tensor with a same shape as fft_length. Axes to perform the transform. @@ -436,7 +421,6 @@ public IrfftNd irfftNd(Operand input, Operand *

Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor. The FFT length for each dimension. * @param axes An int32 tensor with a same shape as fft_length. Axes to perform the transform. @@ -460,7 +444,6 @@ public IrfftNd irfftNd(Operand input, * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A float32 tensor. * @param fftLength An int32 tensor of shape [1]. The FFT length. * @param Tcomplex The value of the Tcomplex attribute @@ -484,7 +467,6 @@ public Rfft rfft(Operand input, Operand< * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A float32 tensor. * @param fftLength An int32 tensor of shape [2]. The FFT length for each dimension. * @param Tcomplex The value of the Tcomplex attribute @@ -508,7 +490,6 @@ public Rfft2d rfft2d(Operand input, * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. * - * @param data type for {@code output} output * @param input A float32 tensor. * @param fftLength An int32 tensor of shape [3]. The FFT length for each dimension. * @param Tcomplex The value of the Tcomplex attribute @@ -532,7 +513,6 @@ public Rfft3d rfft3d(Operand input, *

Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. * - * @param data type for {@code output} output * @param input A complex tensor. * @param fftLength An int32 tensor. The FFT length for each dimension. * @param axes An int32 tensor with a same shape as fft_length. Axes to perform the transform. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java index 91726a9a693..f6f83acce58 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/SparseOps.java @@ -17,14 +17,18 @@ // package org.tensorflow.op; +import java.util.List; import org.tensorflow.Operand; import org.tensorflow.ndarray.Shape; import org.tensorflow.op.sparse.AddManySparseToTensorsMap; import org.tensorflow.op.sparse.AddSparseToTensorsMap; +import org.tensorflow.op.sparse.ConvertToListOfSparseCoreCooTensors; +import org.tensorflow.op.sparse.ConvertToSparseCoreCsrWrappedCooTensor; import org.tensorflow.op.sparse.DenseCountSparseOutput; import org.tensorflow.op.sparse.DenseToDenseSetOperation; import org.tensorflow.op.sparse.DenseToSparseSetOperation; import org.tensorflow.op.sparse.DeserializeSparse; +import org.tensorflow.op.sparse.GetStatsFromListOfSparseCoreCooTensors; import org.tensorflow.op.sparse.SparseAccumulatorApplyGradient; import org.tensorflow.op.sparse.SparseAccumulatorTakeGradient; import org.tensorflow.op.sparse.SparseAdd; @@ -68,6 +72,7 @@ import org.tensorflow.op.sparse.SparseToSparseSetOperation; import org.tensorflow.op.sparse.TakeManySparseFromTensorsMap; import org.tensorflow.types.TBool; +import org.tensorflow.types.TFloat32; import org.tensorflow.types.TInt32; import org.tensorflow.types.TInt64; import org.tensorflow.types.TString; @@ -151,11 +156,60 @@ public AddSparseToTensorsMap addSparseToTensorsMap(Operand sparseIndices return AddSparseToTensorsMap.create(scope, sparseIndices, sparseValues, sparseShape, options); } + /** + * The ConvertToListOfSparseCoreCooTensors operation + * + * @param indicesOrRowSplits The indicesOrRowSplits value + * @param values The values value + * @param weights The weights value + * @param sampleCount The value of the sampleCount attribute + * @param numScPerChip The value of the numScPerChip attribute + * @param rowOffset The value of the rowOffset attribute + * @param colOffset The value of the colOffset attribute + * @param colShift The value of the colShift attribute + * @param numScShards The value of the numScShards attribute + * @param stackedTableSampleCount The value of the stackedTableSampleCount attribute + * @param combiner The value of the combiner attribute + * @return a new instance of ConvertToListOfSparseCoreCooTensors + */ + public ConvertToListOfSparseCoreCooTensors convertToListOfSparseCoreCooTensors( + Operand indicesOrRowSplits, Operand values, Operand weights, + Long sampleCount, Long numScPerChip, Long rowOffset, Long colOffset, Long colShift, + Long numScShards, Long stackedTableSampleCount, String combiner) { + return ConvertToListOfSparseCoreCooTensors.create(scope, indicesOrRowSplits, values, weights, sampleCount, numScPerChip, rowOffset, colOffset, colShift, numScShards, stackedTableSampleCount, combiner); + } + + /** + * The ConvertToSparseCoreCsrWrappedCooTensor operation + * + * @param sortedRowIdsList The sortedRowIdsList value + * @param sortedColIdsList The sortedColIdsList value + * @param sortedGainsList The sortedGainsList value + * @param idCountsList The idCountsList value + * @param splits The splits value + * @param sampleCountPerSc The value of the sampleCountPerSc attribute + * @param numReplica The value of the numReplica attribute + * @param maxMinibatchesPerSc The value of the maxMinibatchesPerSc attribute + * @param maxIdsPerChipPerSample The value of the maxIdsPerChipPerSample attribute + * @param tableVocabSize The value of the tableVocabSize attribute + * @param featureWidth The value of the featureWidth attribute + * @param tableName The value of the tableName attribute + * @param allowIdDropping The value of the allowIdDropping attribute + * @return a new instance of ConvertToSparseCoreCsrWrappedCooTensor + */ + public ConvertToSparseCoreCsrWrappedCooTensor convertToSparseCoreCsrWrappedCooTensor( + Iterable> sortedRowIdsList, Iterable> sortedColIdsList, + Iterable> sortedGainsList, Iterable> idCountsList, + Operand splits, Long sampleCountPerSc, Long numReplica, Long maxMinibatchesPerSc, + Long maxIdsPerChipPerSample, Long tableVocabSize, Long featureWidth, String tableName, + Boolean allowIdDropping) { + return ConvertToSparseCoreCsrWrappedCooTensor.create(scope, sortedRowIdsList, sortedColIdsList, sortedGainsList, idCountsList, splits, sampleCountPerSc, numReplica, maxMinibatchesPerSc, maxIdsPerChipPerSample, tableVocabSize, featureWidth, tableName, allowIdDropping); + } + /** * Performs sparse-output bin counting for a tf.tensor input. * Counts the number of times each value occurs in the input. * - * @param data type for {@code output_values} output * @param values Tensor containing data to count. * @param weights A Tensor of the same shape as indices containing per-index weight values. May * also be the empty tensor if no weights are used. @@ -179,7 +233,6 @@ public DenseCountSparseOutput denseCountSparseOutput( * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. * - * @param data type for {@code result_values} output * @param set1 {@code Tensor} with rank {@code n}. 1st {@code n-1} dimensions must be the same as {@code set2}. * Dimension {@code n} contains values in a set, duplicates are allowed but ignored. * @param set2 {@code Tensor} with rank {@code n}. 1st {@code n-1} dimensions must be the same as {@code set1}. @@ -209,7 +262,6 @@ public DenseToDenseSetOperation denseToDenseSetOperation(Op * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. * - * @param data type for {@code result_values} output * @param set1 {@code Tensor} with rank {@code n}. 1st {@code n-1} dimensions must be the same as {@code set2}. * Dimension {@code n} contains values in a set, duplicates are allowed but ignored. * @param set2Indices 2D {@code Tensor}, indices of a {@code SparseTensor}. Must be in row-major @@ -272,7 +324,6 @@ public DenseToSparseSetOperation denseToSparseSetOperation( * shape = [2 50] * * - * @param data type for {@code sparse_values} output * @param serializedSparse The serialized {@code SparseTensor} objects. The last dimension * must have 3 columns. * @param dtype The {@code dtype} of the serialized {@code SparseTensor} objects. @@ -284,6 +335,29 @@ public DeserializeSparse deserializeSparse( return DeserializeSparse.create(scope, serializedSparse, dtype); } + /** + * The GetStatsFromListOfSparseCoreCooTensors operation + * + * @param rowIdsList The rowIdsList value + * @param colIdsList The colIdsList value + * @param gainsList The gainsList value + * @param sampleCountList The value of the sampleCountList attribute + * @param colOffsetList The value of the colOffsetList attribute + * @param numReplica The value of the numReplica attribute + * @param tableVocabSize The value of the tableVocabSize attribute + * @param featureWidth The value of the featureWidth attribute + * @param numScPerChip The value of the numScPerChip attribute + * @param tableName The value of the tableName attribute + * @return a new instance of GetStatsFromListOfSparseCoreCooTensors + */ + public GetStatsFromListOfSparseCoreCooTensors getStatsFromListOfSparseCoreCooTensors( + Iterable> rowIdsList, Iterable> colIdsList, + Iterable> gainsList, List sampleCountList, List colOffsetList, + Long numReplica, Long tableVocabSize, Long featureWidth, Long numScPerChip, + String tableName) { + return GetStatsFromListOfSparseCoreCooTensors.create(scope, rowIdsList, colIdsList, gainsList, sampleCountList, colOffsetList, numReplica, tableVocabSize, featureWidth, numScPerChip, tableName); + } + /** * Applies a sparse gradient to a given accumulator. * Does not add if local_step is smaller than the accumulator's @@ -317,7 +391,6 @@ public SparseAccumulatorApplyGradient sparseAccumulatorApplyGradient(Operand data type for {@code values} output * @param handle The handle to a SparseConditionalAccumulator. * @param numRequired Number of gradients required before we return an aggregate. * @param dtype The data type of accumulated gradients. Needs to correspond to the type @@ -344,7 +417,6 @@ public SparseAccumulatorTakeGradient sparseAccumulatorTakeG * only for a positive value. *

In the following shapes, {@code nnz} is the count after taking {@code thresh} into account. * - * @param data type for {@code sum_values} output * @param aIndices 2-D. The {@code indices} of the first {@code SparseTensor}, size {@code [nnz, ndims]} Matrix. * @param aValues 1-D. The {@code values} of the first {@code SparseTensor}, size {@code [nnz]} Vector. * @param aShape 1-D. The {@code shape} of the first {@code SparseTensor}, size {@code [ndims]} Vector. @@ -369,7 +441,6 @@ public SparseAdd sparseAdd(Operand aIndices, Operan * non-empty values of the sum, and outputs the gradients w.r.t. the non-empty * values of A and B. * - * @param data type for {@code a_val_grad} output * @param backpropValGrad 1-D with shape {@code [nnz(sum)]}. The gradient with respect to * the non-empty values of the sum. * @param aIndices 2-D. The {@code indices} of the {@code SparseTensor} A, size {@code [nnz(A), ndims]}. @@ -393,7 +464,6 @@ public SparseAddGrad sparseAddGrad(Operand backpropValGr * {@code i}. *

Values in {@code arr} outside of the range [0, size) are ignored. * - * @param data type for {@code output} output * @param indices 2D int64 {@code Tensor}. * @param values 1D int {@code Tensor}. * @param denseShape 1D int64 {@code Tensor}. @@ -452,7 +522,6 @@ public SparseBincount sparseBincount( * [b c ] [ ] [b c ] * * - * @param data type for {@code output_values} output * @param indices 2-D. Indices of each input {@code SparseTensor}. * @param values 1-D. Non-empty values of each {@code SparseTensor}. * @param shapes 1-D. Shapes of each {@code SparseTensor}. @@ -490,7 +559,6 @@ public SparseConditionalAccumulator sparseConditionalAccumulat * Performs sparse-output bin counting for a sparse tensor input. * Counts the number of times each value occurs in the input. * - * @param data type for {@code output_values} output * @param indices Tensor containing the indices of the sparse tensor to count. * @param values Tensor containing values of the sparse tensor to count. * @param denseShape Tensor containing the dense shape of the sparse tensor to count. @@ -624,7 +692,6 @@ public SparseCrossHashed sparseCrossHashed(Iterable> indices, * indices and shape, but possibly with different non-zero values. The output of * this Op is the resultant non-zero values. * - * @param data type for {@code output} output * @param spIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param spValues 1-D. {@code N} non-empty values corresponding to {@code sp_indices}. @@ -643,7 +710,6 @@ public SparseDenseCwiseAdd sparseDenseCwiseAdd(OperandLimitation: this Op only broadcasts the dense side to the sparse side, but not * the other direction. * - * @param data type for {@code output} output * @param spIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param spValues 1-D. {@code N} non-empty values corresponding to {@code sp_indices}. @@ -665,7 +731,6 @@ public SparseDenseCwiseDiv sparseDenseCwiseDiv(OperandLimitation: this Op only broadcasts the dense side to the sparse side, but not * the other direction. * - * @param data type for {@code output} output * @param spIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param spValues 1-D. {@code N} non-empty values corresponding to {@code sp_indices}. @@ -716,7 +781,6 @@ public SparseDenseCwiseMul sparseDenseCwiseMul(Operand * - * @param data type for {@code output_values} output * @param indices 2-D. the indices of the sparse tensor. * @param values 1-D. the values of the sparse tensor. * @param denseShape 1-D. the shape of the sparse tensor. @@ -741,7 +805,6 @@ public SparseFillEmptyRows sparseFillEmptyRows(Operand data type for {@code d_values} output * @param reverseIndexMap 1-D. The reverse index map from SparseFillEmptyRows. * @param gradValues 1-D. The gradients from backprop. * @param data type for {@code SparseFillEmptyRowsGrad} output and operands @@ -786,7 +849,6 @@ public SparseMatMul sparseMatMul(Operand a, Operand data type for {@code output} output * @param inputIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param inputValues 1-D. {@code N} non-empty values corresponding to {@code input_indices}. @@ -815,7 +877,6 @@ public SparseReduceMax sparseReduceMax(Operand in * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. * - * @param data type for {@code output_values} output * @param inputIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param inputValues 1-D. {@code N} non-empty values corresponding to {@code input_indices}. @@ -844,7 +905,6 @@ public SparseReduceMaxSparse sparseReduceMaxSparse( * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. * - * @param data type for {@code output} output * @param inputIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param inputValues 1-D. {@code N} non-empty values corresponding to {@code input_indices}. @@ -873,7 +933,6 @@ public SparseReduceSum sparseReduceSum(Operand inpu * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. * - * @param data type for {@code output_values} output * @param inputIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param inputValues 1-D. {@code N} non-empty values corresponding to {@code input_indices}. @@ -898,7 +957,6 @@ public SparseReduceSumSparse sparseReduceSumSparse( *

If the tensor has rank {@code R} and {@code N} non-empty values, {@code input_indices} has * shape {@code [N, R]}, input_values has length {@code N}, and input_shape has length {@code R}. * - * @param data type for {@code output_values} output * @param inputIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, possibly not in canonical ordering. * @param inputValues 1-D. {@code N} non-empty values corresponding to {@code input_indices}. @@ -943,7 +1001,6 @@ public SparseReshape sparseReshape(Operand inputIndices, Operand *

Like {@code SegmentMean}, but {@code segment_ids} can have rank less than {@code data}'s first * dimension, selecting a subset of dimension 0, specified by {@code indices}. * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -963,8 +1020,6 @@ public SparseSegmentMean sparseSegmentMean(Operand dat * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". * - * @param data type for {@code output} output - * @param data type for {@code sorted_unique_indices} output * @param grad gradient propagated to the SparseSegmentMean op. * @param indices indices passed to the corresponding SparseSegmentMean op. * @param segmentIds segment_ids passed to the corresponding SparseSegmentMean op. @@ -987,7 +1042,6 @@ public SparseSegmentMeanGrad sparse * the section on segmentation * for an explanation of segments. * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -1007,7 +1061,6 @@ public SparseSegmentMeanWithNumSegments sparseSegmentMean * N is the size of the segment being reduced. *

See {@code tf.sparse.segment_sum} for usage examples. * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -1027,8 +1080,6 @@ public SparseSegmentSqrtN sparseSegmentSqrtN(Operand d * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". * - * @param data type for {@code output} output - * @param data type for {@code sorted_unique_indices} output * @param grad gradient propagated to the SparseSegmentSqrtN op. * @param indices indices passed to the corresponding SparseSegmentSqrtN op. * @param segmentIds segment_ids passed to the corresponding SparseSegmentSqrtN op. @@ -1052,7 +1103,6 @@ public SparseSegmentSqrtNGrad spars * the section on segmentation * for an explanation of segments. * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -1097,7 +1147,6 @@ public SparseSegmentSqrtNWithNumSegments sparseSegmentSqr * tf.segment_sum(c, tf.constant([0, 0, 1])) * * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -1117,8 +1166,6 @@ public SparseSegmentSum sparseSegmentSum(Operand data, * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". * - * @param data type for {@code output} output - * @param data type for {@code sorted_unique_indices} output * @param grad gradient propagated to the SparseSegmentSum op. * @param indices indices passed to the corresponding SparseSegmentSum op. * @param segmentIds segment_ids passed to the corresponding SparseSegmentSum op. @@ -1160,7 +1207,6 @@ public SparseSegmentSumGrad sparseS * # [ 0 0 0 0]] * * - * @param data type for {@code output} output * @param data The data value * @param indices A 1-D tensor. Has same rank as {@code segment_ids}. * @param segmentIds A 1-D tensor. Values should be sorted and can be repeated. @@ -1194,7 +1240,6 @@ public SparseSegmentSumWithNumSegments sparseSegmentSumWi * [ ] * * - * @param data type for {@code output_values} output * @param indices 2-D tensor represents the indices of the sparse tensor. * @param values 1-D tensor represents the values of the sparse tensor. * @param shape 1-D. tensor represents the shape of the sparse tensor. @@ -1216,7 +1261,6 @@ public SparseSlice sparseSlice(Operand indices, Ope * the sliced {@code SparseTensor}, and outputs the gradients w.r.t. * the non-empty values of input {@code SparseTensor}. * - * @param data type for {@code val_grad} output * @param backpropValGrad 1-D. The gradient with respect to * the non-empty values of the sliced {@code SparseTensor}. * @param inputIndices 2-D. The {@code indices} of the input {@code SparseTensor}. @@ -1245,7 +1289,6 @@ public SparseSliceGrad sparseSliceGrad(Operand backpropV *

Hence, the {@code SparseTensor} result has exactly the same non-zero indices and * shape. * - * @param data type for {@code output} output * @param spIndices 2-D. {@code NNZ x R} matrix with the indices of non-empty values in a * SparseTensor, in canonical ordering. * @param spValues 1-D. {@code NNZ} non-empty values corresponding to {@code sp_indices}. @@ -1262,7 +1305,6 @@ public SparseSoftmax sparseSoftmax(Operand spIndi * Returns the element-wise max of two SparseTensors. * Assumes the two SparseTensors have the same shape, i.e., no broadcasting. * - * @param data type for {@code output_values} output * @param aIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, in the canonical lexicographic ordering. * @param aValues 1-D. {@code N} non-empty values corresponding to {@code a_indices}. @@ -1283,7 +1325,6 @@ public SparseSparseMaximum sparseSparseMaximum(Operand data type for {@code output_values} output * @param aIndices 2-D. {@code N x R} matrix with the indices of non-empty values in a * SparseTensor, in the canonical lexicographic ordering. * @param aValues 1-D. {@code N} non-empty values corresponding to {@code a_indices}. @@ -1321,7 +1362,6 @@ public SparseSparseMinimum sparseSparseMinimum(Operand * - * @param data type for {@code output_values} output * @param splitDim 0-D. The dimension along which to split. Must be in the range * {@code [0, rank(shape))}. * @param indices 2-D tensor represents the indices of the sparse tensor. @@ -1342,7 +1382,6 @@ public SparseSplit sparseSplit(Operand splitDim, * Adds up a {@code SparseTensor} and a dense {@code Tensor}, producing a dense {@code Tensor}. * This Op does not require {@code a_indices} be sorted in standard lexicographic order. * - * @param data type for {@code output} output * @param aIndices 2-D. The {@code indices} of the {@code SparseTensor}, with shape {@code [nnz, ndims]}. * @param aValues 1-D. The {@code values} of the {@code SparseTensor}, with shape {@code [nnz]}. * @param aShape 1-D. The {@code shape} of the {@code SparseTensor}, with shape {@code [ndims]}. @@ -1367,7 +1406,6 @@ public SparseTensorDenseAdd sparseTensor * A should be sorted in order of increasing dimension 1 (i.e., "column major" * order instead of "row major" order). * - * @param data type for {@code product} output * @param aIndices 2-D. The {@code indices} of the {@code SparseTensor}, size {@code [nnz, 2]} Matrix. * @param aValues 1-D. The {@code values} of the {@code SparseTensor}, size {@code [nnz]} Vector. * @param aShape 1-D. The {@code shape} of the {@code SparseTensor}, size {@code [2]} Vector. @@ -1401,7 +1439,6 @@ public SparseTensorDenseMatMul sparseTensorDenseMatMul( * contain any repeats. If {@code validate_indices} is true, these properties * are checked during execution. * - * @param data type for {@code dense} output * @param sparseIndices 0-D, 1-D, or 2-D. {@code sparse_indices[i]} contains the complete * index where {@code sparse_values[i]} will be placed. * @param outputShape 1-D. Shape of the dense output tensor. @@ -1441,7 +1478,6 @@ public SparseToDense sparseToDense( * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. * - * @param data type for {@code result_values} output * @param set1Indices 2D {@code Tensor}, indices of a {@code SparseTensor}. Must be in row-major * order. * @param set1Values 1D {@code Tensor}, values of a {@code SparseTensor}. Must be in row-major @@ -1511,7 +1547,6 @@ public SparseToSparseSetOperation sparseToSparseSetOperatio * shape = [2 50] * * - * @param data type for {@code sparse_values} output * @param sparseHandles 1-D, The {@code N} serialized {@code SparseTensor} objects. * Shape: {@code [N]}. * @param dtype The {@code dtype} of the {@code SparseTensor} objects stored in the diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java index b7d38d58553..56a82c2dbf6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/StringsOps.java @@ -260,7 +260,6 @@ public StringLength stringLength(Operand input, StringLength.Options... * strings and outputs a ragged tensor with 1 ragged dimension containing ngrams * of that string, joined along the innermost axis. * - * @param data type for {@code ngrams_splits} output * @param data The values tensor of the ragged string tensor to make ngrams out of. Must be a * 1D string tensor. * @param dataSplits The splits tensor of the ragged string tensor to make ngrams out of. @@ -510,7 +509,6 @@ public ToHashBucketStrong toHashBucketStrong(Operand input, Long numBuc * * * - * @param data type for {@code output} output * @param stringTensor The stringTensor value * @return a new instance of ToNumber, with default output types */ @@ -533,7 +531,6 @@ public ToNumber toNumber(Operand stringTensor) { * * * - * @param data type for {@code output} output * @param stringTensor The stringTensor value * @param outType The numeric type to interpret each string in {@code string_tensor} as. * @param data type for {@code StringToNumber} output and operands @@ -559,7 +556,6 @@ public ToNumber toNumber(Operand stringTensor, C * string (in row-major order). * * - * @param data type for {@code row_splits} output * @param input The text to be decoded. Can have any shape. Note that the output is flattened * to a vector of char values. * @param inputEncoding Text encoding of the input strings. This is any of the encodings supported @@ -588,7 +584,6 @@ public UnicodeDecode unicodeDecode(Operand input, String inputE * string (in row-major order). * * - * @param data type for {@code row_splits} output * @param input The text to be decoded. Can have any shape. Note that the output is flattened * to a vector of char values. * @param inputEncoding Text encoding of the input strings. This is any of the encodings supported @@ -623,7 +618,6 @@ public UnicodeDecode unicodeDecode(Operand input * string (in row-major order). * * - * @param data type for {@code row_splits} output * @param input The text to be decoded. Can have any shape. Note that the output is flattened * to a vector of char values. * @param inputEncoding Text encoding of the input strings. This is any of the encodings supported @@ -656,7 +650,6 @@ public UnicodeDecodeWithOffsets unicodeDecodeWithOffsets(Operand * * - * @param data type for {@code row_splits} output * @param input The text to be decoded. Can have any shape. Note that the output is flattened * to a vector of char values. * @param inputEncoding Text encoding of the input strings. This is any of the encodings supported diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TpuOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TpuOps.java index 59a9f973858..f6ea8e12178 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TpuOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TpuOps.java @@ -26,8 +26,6 @@ import org.tensorflow.op.tpu.CompilationResult; import org.tensorflow.op.tpu.Compile; import org.tensorflow.op.tpu.CompileSucceededAssert; -import org.tensorflow.op.tpu.ComputeDedupDataSize; -import org.tensorflow.op.tpu.ComputeDedupDataTupleMask; import org.tensorflow.op.tpu.ConfigureAndInitializeGlobalTPU; import org.tensorflow.op.tpu.ConfigureDistributedTPU; import org.tensorflow.op.tpu.ConfigureTPUEmbedding; @@ -52,6 +50,7 @@ import org.tensorflow.op.tpu.FinalizeTPUEmbedding; import org.tensorflow.op.tpu.GetMinibatchSplitsWithPhysicalReplica; import org.tensorflow.op.tpu.GetMinibatchesInCsrWithPhysicalReplica; +import org.tensorflow.op.tpu.GetTpuTaskId; import org.tensorflow.op.tpu.GlobalIterId; import org.tensorflow.op.tpu.InfeedDequeue; import org.tensorflow.op.tpu.InfeedDequeueTuple; @@ -158,7 +157,6 @@ public final class TpuOps { *

replica 0's output: {@code [[A], [C]]} * replica 1's output: {@code [[B], [D]]} * - * @param data type for {@code output} output * @param input The local input to the sum. * @param groupAssignment An int32 tensor with shape * [num_groups, num_replicas_per_group]. {@code group_assignment[i]} represents the @@ -242,32 +240,6 @@ public CompileSucceededAssert compileSucceededAssert(Operand compilatio return CompileSucceededAssert.create(scope, compilationStatus); } - /** - * An op computes the size of the deduplication data from embedding core and returns the updated config. - * This op is to compute size of the deduplication data so to provide this - * information to the op that computes the tuple mask of deduplication data can - * have static output shape. - * - * @param config Serialized TPUEmbeddingConfiguration proto. - * @return a new instance of ComputeDedupDataSize - */ - public ComputeDedupDataSize computeDedupDataSize(String config) { - return ComputeDedupDataSize.create(scope, config); - } - - /** - * An op computes tuple mask of deduplication data from embedding core. - * The deduplication data receiving from embedding core is a Tensor with - * type=DT_VARIANT. The tensor itself is an XLA nested tuple, whose elements are - * rank 1 tensors. This op is to represents types and length of these elements. - * - * @param config Serialized TPUEmbeddingConfiguration proto. - * @return a new instance of ComputeDedupDataTupleMask - */ - public ComputeDedupDataTupleMask computeDedupDataTupleMask(String config) { - return ComputeDedupDataTupleMask.create(scope, config); - } - /** * An op that sets up the centralized structures for a distributed TPU system. * @@ -365,7 +337,6 @@ public ConvertToCooTensor convertToCooTensor(Operand indicesOrRowSplits, * and {@code B, D, F, H} as group 1. Thus we get the outputs: * {@code [A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H]}. * - * @param data type for {@code output} output * @param input The local input to the sum. * @param groupAssignment An int32 tensor with shape * [num_groups, num_replicas_per_group]. {@code group_assignment[i]} represents the @@ -789,6 +760,16 @@ public GetMinibatchesInCsrWithPhysicalReplica getMinibatchesInCsrWithPhysicalRep return GetMinibatchesInCsrWithPhysicalReplica.create(scope, programKey, rowIds, colIds, gains, splits, idCounts, sampleCount, numReplica, maxMinibatchesPerSc, maxIdsPerChipPerSample, tableVocabSize, featureWidth, numScPerChip, tableName, miniBatchInCsr); } + /** + * An op returns the TPU task ID from TPU topology. + * This op is to return the TPU task ID from TPU topology. + * + * @return a new instance of GetTpuTaskId + */ + public GetTpuTaskId getTpuTaskId() { + return GetTpuTaskId.create(scope); + } + /** * The GlobalIterId operation * @@ -801,7 +782,6 @@ public GlobalIterId globalIterId() { /** * A placeholder op for a value that will be fed into the computation. * - * @param data type for {@code output} output * @param dtype The type of elements in the tensor. * @param shape The shape of the tensor. * @param data type for {@code InfeedDequeue} output and operands @@ -1252,7 +1232,6 @@ public OrdinalSelector ordinalSelector() { * Retrieves a single tensor from the computation outfeed. * This operation will block indefinitely until data is available. * - * @param data type for {@code output} output * @param dtype The type of elements in the tensor. * @param shape The shape of the tensor. * @param options carries optional attribute values @@ -1302,7 +1281,6 @@ public OutfeedDequeueTupleV2 outfeedDequeueTupleV2(Operand deviceOrdinal * tensor allowing dynamic outfeed. * This operation will block indefinitely until data is available. * - * @param data type for {@code output} output * @param deviceOrdinal An int scalar tensor, representing the TPU device to use. This should be -1 when * the Op is running on a TPU device, and >= 0 when the Op is running on the CPU * device. @@ -1355,7 +1333,6 @@ public PartitionedCall partitionedCall(Iterable> args, Operand data type for {@code output} output * @param inputs A list of partitioned inputs which must have the same shape. * @param partitionDims A list of integers describing how each dimension is partitioned. Emptiness * indicates the inputs are replicated. @@ -1372,7 +1349,6 @@ public PartitionedInput partitionedInput(Iterable data type for {@code output} output * @param inputs A tensor which represents the full shape of partitioned tensors. * @param numSplits The value of the numSplits attribute * @param partitionDims A list of integers describing how each dimension is partitioned. Emptiness @@ -1454,7 +1430,6 @@ public ReplicateMetadata replicateMetadata(Long numReplicas, * *

The above computation has a replicated input of two replicas. * - * @param data type for {@code output} output * @param inputs The inputs value * @param options carries optional attribute values * @param data type for {@code TPUReplicatedInput} output and operands @@ -1476,7 +1451,6 @@ public ReplicatedInput replicatedInput(Iterable> * *

The above computation has a replicated output of two replicas. * - * @param data type for {@code outputs} output * @param input The input value * @param numReplicas The value of the numReplicas attribute * @param data type for {@code TPUReplicatedOutput} output and operands @@ -1784,8 +1758,6 @@ public ShutdownTPUSystem shutdownTPUSystem() { * values. This op is to split these values into two groups for two types, and * construct each group as one tensor to return. * - * @param data type for {@code integer_tensor} output - * @param data type for {@code float_tensor} output * @param input An XLA tuple including integer and float elements as deduplication data tuple. * @param integerType integer_tensor type. Allowed types: int32, int64, uint32, uint64. * @param floatType float_tensor type. Allowed types: half, bfloat16, float. @@ -1913,7 +1885,6 @@ public TPUReplicateMetadata tPUReplicateMetadata(Long numReplicas, * *

The above computation has a replicated input of two replicas. * - * @param data type for {@code output} output * @deprecated use {@link org.tensorflow.op.tpu.ReplicatedInput} instead * @param inputs The inputs value * @param options carries optional attribute values @@ -1937,7 +1908,6 @@ public TPUReplicatedInput tPUReplicatedInput(Iterable *

The above computation has a replicated output of two replicas. * - * @param data type for {@code outputs} output * @deprecated use {@link org.tensorflow.op.tpu.ReplicatedOutput} instead * @param input The input value * @param numReplicas The value of the numReplicas attribute diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java index 0442b896828..3ee5b8de813 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/TrainOps.java @@ -166,7 +166,6 @@ public AccumulatorSetGlobalStep accumulatorSetGlobalStep(Operand handle * the accumulated gradients. Also automatically increments the recorded * global_step in the accumulator by 1, and resets the aggregate to 0. * - * @param data type for {@code average} output * @param handle The handle to an accumulator. * @param numRequired Number of gradients required before we return an aggregate. * @param dtype The data type of accumulated gradients. Needs to correspond to the type @@ -185,7 +184,6 @@ public AccumulatorTakeGradient accumulatorTakeGradient( * v_t <- max(beta2 * v_{t-1}, abs(g)) * variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon) * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param m Should be from a Variable(). * @param v Should be from a Variable(). @@ -212,7 +210,6 @@ public ApplyAdaMax applyAdaMax(Operand var, Operand m * update_accum = rho() * update_accum + (1 - rho()) * update.square(); * var -= update; * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param accumUpdate Should be from a Variable(). @@ -235,7 +232,6 @@ public ApplyAdadelta applyAdadelta(Operand var, Operand< * accum += grad * grad * var -= lr * grad * (1 / sqrt(accum)) * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -252,7 +248,6 @@ public ApplyAdagrad applyAdagrad(Operand var, Operand /** * Update '*var' according to the proximal adagrad scheme. * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param gradientAccumulator Should be from a Variable(). * @param gradientSquaredAccumulator Should be from a Variable(). @@ -277,7 +272,6 @@ public ApplyAdagradDa applyAdagradDa(Operand var, * accum += grad * grad * var -= lr * grad * (1 / sqrt(accum)) * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -299,7 +293,6 @@ public ApplyAdagradV2 applyAdagradV2(Operand var, Operan * $$v_t := \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g^2$$ * $$\text{var} := \begin{cases} \text{var} - (m_t \beta_1 + g \cdot (1 - \beta_1))\cdot\text{lr}_t/(\sqrt{v_t} + \epsilon), &\text{if use_nesterov}\\ \text{var} - m_t \cdot \text{lr}_t /(\sqrt{v_t} + \epsilon), &\text{otherwise} \end{cases}$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param m Should be from a Variable(). * @param v Should be from a Variable(). @@ -326,7 +319,6 @@ public ApplyAdam applyAdam(Operand var, Operand m, Op * update <- (alpha + sign_decay * sign(g) *sign(m)) * g * variable <- variable - lr_t * update * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param m Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -361,7 +353,6 @@ public ApplyAddSign applyAddSign(Operand var, Operand * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon) * var <- var - mom * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param mg Should be from a Variable(). * @param ms Should be from a Variable(). @@ -392,7 +383,6 @@ public ApplyCenteredRmsProp applyCenteredRmsProp(Operand * var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 * accum = accum_new * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param linear Should be from a Variable(). @@ -415,7 +405,6 @@ public ApplyFtrl applyFtrl(Operand var, Operand accum /** * Update '*var' by subtracting 'alpha' * 'delta' from it. * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param alpha Scaling factor. Must be a scalar. * @param delta The change. @@ -434,7 +423,6 @@ public ApplyGradientDescent applyGradientDescent(Operand *

accum = accum * momentum + grad * var -= lr * accum * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -455,7 +443,6 @@ public ApplyMomentum applyMomentum(Operand var, Operand< * update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g * variable <- variable - lr_t * update * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param m Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -479,7 +466,6 @@ public ApplyPowerSign applyPowerSign(Operand var, Operan * prox_v = var - lr * grad * (1 / sqrt(accum)) * var = sign(prox_v)/(1+lrl2) * max{|prox_v|-lrl1,0} * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Scaling factor. Must be a scalar. @@ -501,7 +487,6 @@ public ApplyProximalAdagrad applyProximalAdagrad(Operand * prox_v = var - alpha * delta * var = sign(prox_v)/(1+alphal2) * max{|prox_v|-alphal1,0} * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param alpha Scaling factor. Must be a scalar. * @param l1 L1 regularization. Must be a scalar. @@ -528,7 +513,6 @@ public ApplyProximalGradientDescent applyProximalGradientDe * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) * var <- var - mom * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param ms Should be from a Variable(). * @param mom Should be from a Variable(). @@ -570,7 +554,6 @@ public ApplyRmsProp applyRmsProp(Operand var, Operand * about broadcasting * here . * - * @param data type for {@code output} output * @param x 2-D or higher with shape {@code [..., r_x, c_x]}. * @param y 2-D or higher with shape {@code [..., r_y, c_y]}. * @param Tout If not spcified, Tout is the same type to input type. @@ -717,7 +700,6 @@ public NegTrain negTrain(Operand wIn, Operand wOut, Operand< * op exists to prevent subtle bugs from silently returning unimplemented * gradients in some corner cases. * - * @param data type for {@code output} output * @param input any tensor. * @param options carries optional attribute values * @param data type for {@code PreventGradient} output and operands @@ -776,7 +758,6 @@ public ResourceAccumulatorSetGlobalStep resourceAccumulatorSetGlobalStep( * the accumulated gradients. Also automatically increments the recorded * global_step in the accumulator by 1, and resets the aggregate to 0. * - * @param data type for {@code average} output * @param handle The handle to an accumulator. * @param numRequired Number of gradients required before we return an aggregate. * @param dtype The data type of accumulated gradients. Needs to correspond to the type @@ -1535,7 +1516,6 @@ public Restore restore(Operand prefix, Operand tensorNames, *

The {@code shape_and_slice} input has the same format as the * elements of the {@code shapes_and_slices} input of the {@code SaveSlices} op. * - * @param data type for {@code tensor} output * @param filePattern Must have a single element. The pattern of the files from * which we read the tensor. * @param tensorName Must have a single element. The name of the tensor to be @@ -1687,7 +1667,6 @@ public SdcaShrinkL1 sdcaShrinkL1(Iterable> weights, Float l1, /** * var: Should be from a Variable(). * - * @param data type for {@code out} output * @param var The var value * @param accum Should be from a Variable(). * @param accumUpdate : Should be from a Variable(). @@ -1712,7 +1691,6 @@ public SparseApplyAdadelta sparseApplyAdadelta(Operand v * $$accum += grad * grad$$ * $$var -= lr * grad * (1 / sqrt(accum))$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Learning rate. Must be a scalar. @@ -1732,7 +1710,6 @@ public SparseApplyAdagrad sparseApplyAdagrad(Operand var /** * Update entries in '*var' and '*accum' according to the proximal adagrad scheme. * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param gradientAccumulator Should be from a Variable(). * @param gradientSquaredAccumulator Should be from a Variable(). @@ -1769,7 +1746,6 @@ public SparseApplyAdagradDa sparseApplyAdagradDa(Operand * $$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$ * $$var <- var - mom$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param mg Should be from a Variable(). * @param ms Should be from a Variable(). @@ -1802,7 +1778,6 @@ public SparseApplyCenteredRmsProp sparseApplyCenteredRmsPro * var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 * accum = accum_new * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param linear Should be from a Variable(). @@ -1831,7 +1806,6 @@ public SparseApplyFtrl sparseApplyFtrl(Operand var, Oper *

$$accum = accum * momentum + grad$$ * $$var -= lr * accum$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Learning rate. Must be a scalar. @@ -1856,7 +1830,6 @@ public SparseApplyMomentum sparseApplyMomentum(Operand v * $$prox_v -= lr * grad * (1 / sqrt(accum))$$ * $$var = sign(prox_v)/(1+lrl2) * max{|prox_v|-lrl1,0}$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param accum Should be from a Variable(). * @param lr Learning rate. Must be a scalar. @@ -1880,7 +1853,6 @@ public SparseApplyProximalAdagrad sparseApplyProximalAdagra * $$prox_v = var - alpha * grad$$ * $$var = sign(prox_v)/(1+alphal2) * max{|prox_v|-alphal1,0}$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param alpha Scaling factor. Must be a scalar. * @param l1 L1 regularization. Must be a scalar. @@ -1908,7 +1880,6 @@ public SparseApplyProximalGradientDescent sparseApplyProxim * $$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$ * $$var <- var - mom$$ * - * @param data type for {@code out} output * @param var Should be from a Variable(). * @param ms Should be from a Variable(). * @param mom Should be from a Variable(). @@ -1960,7 +1931,6 @@ public SymbolicGradient symbolicGradient(Iterable> input, * along each dimension, {@code train.TileGrad} takes in {@code multiples} and aggregates * each repeated tile of {@code input} into {@code output}. * - * @param data type for {@code output} output * @param input The input value * @param multiples The multiples value * @param data type for {@code TileGrad} output and operands diff --git a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java index 75f9104ce4b..22a2ef5ae85 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/annotations/org/tensorflow/op/XlaOps.java @@ -27,9 +27,6 @@ import org.tensorflow.op.xla.SplitND; import org.tensorflow.op.xla.XlaHostCompute; import org.tensorflow.op.xla.XlaRecvFromHost; -import org.tensorflow.op.xla.XlaRecvTPUEmbeddingActivations; -import org.tensorflow.op.xla.XlaRecvTPUEmbeddingDeduplicationData; -import org.tensorflow.op.xla.XlaSendTPUEmbeddingGradients; import org.tensorflow.op.xla.XlaSendToHost; import org.tensorflow.op.xla.XlaSparseCoreAdagrad; import org.tensorflow.op.xla.XlaSparseCoreAdagradMomentum; @@ -95,18 +92,8 @@ public final class XlaOps { * * * @param resource Resource variable for concatenated input tensors across all dimensions. - * } - * in_arg { - * name: "inputs" - * description: <<END - * Input tensor slices in row-major order to merge across all dimensions. All + * @param inputs Input tensor slices in row-major order to merge across all dimensions. All * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. - * @param inputs The inputs value * @param numConcats Number of ways to merge per dimension. * @param options carries optional attribute values * @return a new instance of AssignVariableConcatND @@ -149,14 +136,8 @@ public AssignVariableConcatND assignVariableConcatND(Operand re * [8, 9, 10]] * * - * @param data type for {@code output} output * @param inputs Input tensor slices in row-major order to merge across all dimensions. All * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. * @param numConcats Number of ways to merge per dimension. * @param options carries optional attribute values * @param data type for {@code XlaConcatND} output and operands @@ -199,13 +180,7 @@ public ConcatND concatND(Iterable> inputs, List< * [0, 0]] * * - * @param data type for {@code outputs} output * @param resource Resource variable of input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. * @param T The value of the T attribute * @param N The value of the N attribute * @param numSplits Number of ways to split per dimension. Shape dimensions must be evenly @@ -252,13 +227,7 @@ public ReadVariableSplitND readVariableSplitND( * [0, 0]] * * - * @param data type for {@code outputs} output * @param input Input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. * @param N The value of the N attribute * @param numSplits Number of ways to split per dimension. Shape dimensions must be evenly * divisible. @@ -298,7 +267,6 @@ public XlaHostCompute xlaHostCompute(Iterable> inputs, * shape: shape for output. * key: A unique identifier for this region used to match up host transfers. * - * @param data type for {@code output} output * @param Toutput The value of the Toutput attribute * @param shape The value of the shape attribute * @param key The value of the key attribute @@ -310,76 +278,6 @@ public XlaRecvFromHost xlaRecvFromHost(Class Toutput, Sh return XlaRecvFromHost.create(scope, Toutput, shape, key); } - /** - * An op that receives embedding activations on the TPU. - * The TPU system performs the embedding lookups and aggregations. The results of - * these aggregations are visible to the Tensorflow Graph as the outputs of a - * XlaRecvTPUEmbeddingActivations Op. This op returns a list containing one - * Tensor of activations per table specified in the model. - * - * @param deduplicationData A Tensor with type=DT_VARIANT containing the deduplication - * data. The tensor is an XLA nested tuple containing N elements (where N is - * the ratio of the number of embedding to tensor cores per TPU chip). Each - * element of the nested tuple is a tuple of rank 1 tensors. Each tensor either - * contains indices (DT_UINT32) for embedding lookup on the TensorCore or - * weights (DT_FLOAT) to apply to the output of the embedding lookup operation. - * @param numTables The number of output activation tensors. If feature descriptor is - * present in the tpu embedding config, it is equal to the number of features - * otherwise equal to number of embedding tables in the model. - * @param config Serialized TPUEmbeddingConfiguration proto. - * @return a new instance of XlaRecvTPUEmbeddingActivations - */ - public XlaRecvTPUEmbeddingActivations xlaRecvTPUEmbeddingActivations( - Operand deduplicationData, Long numTables, String config) { - return XlaRecvTPUEmbeddingActivations.create(scope, deduplicationData, numTables, config); - } - - /** - * Receives deduplication data (indices and weights) from the embedding core. - * The deduplication data is a Tensor with type=DT_VARIANT. The tensor itself is an - * XLA nested tuple containing N elements (where N is the ratio of the number of - * embedding to tensor cores per TPU chip). Each element of the nested tuple is a - * tuple of rank 1 tensors. Each tensor either contains indices (DT_UINT32) for - * embedding lookup on the TensorCore or weights (DT_FLOAT) to apply to the output - * of the embedding lookup operation. - * - * @param config Serialized TPUEmbeddingConfiguration proto. - * @return a new instance of XlaRecvTPUEmbeddingDeduplicationData - */ - public XlaRecvTPUEmbeddingDeduplicationData xlaRecvTPUEmbeddingDeduplicationData(String config) { - return XlaRecvTPUEmbeddingDeduplicationData.create(scope, config); - } - - /** - * An op that performs gradient updates of embedding tables. - * The gradients argument is a TensorList having the same length and shapes as the - * return value of XlaRecvTPUEmbeddingActivations, but contains gradients of the - * model's loss with respect to the embedding activations. The embedding tables are - * updated from these gradients via the optimizer specified in the - * TPUEmbeddingConfiguration proto given to tpu.initialize_system. - * - * @param gradients A TensorList of gradients with which to update embedding tables. - * @param learningRates A TensorList of learning rates used for updating the embedding - * tables via the optimizer. The length of the TensorList must be equal to the - * number of dynamic learning rate tags specified in the - * TPUEmbeddingConfiguration proto. - * @param deduplicationData A Tensor with type=DT_VARIANT containing the deduplication - * data. The tensor is an XLA nested tuple containing N elements (where N is - * the ratio of the number of embedding to tensor cores per TPU chip). Each - * element of the nested tuple is a tuple of rank 1 tensors. Each tensor either - * contains indices (DT_UINT32) for embedding lookup on the TensorCore or - * weights (DT_FLOAT) to apply to the output of the embedding lookup operation. - * @param config Serialized TPUEmbeddingConfiguration proto. - * @param options carries optional attribute values - * @return a new instance of XlaSendTPUEmbeddingGradients - */ - public XlaSendTPUEmbeddingGradients xlaSendTPUEmbeddingGradients( - Iterable> gradients, Iterable> learningRates, - Operand deduplicationData, String config, - XlaSendTPUEmbeddingGradients.Options... options) { - return XlaSendTPUEmbeddingGradients.create(scope, gradients, learningRates, deduplicationData, config, options); - } - /** * An op to send a tensor to the host. * input: the tensor that will be sent to the host. diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseAnd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseAnd.java index 34789dce80c..7fea36a03b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseAnd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseAnd.java @@ -52,8 +52,6 @@ * res = bitwise_ops.bitwise_and(lhs, rhs) * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * - * - * @param data type for {@code z} output */ @OpMetadata( opType = BitwiseAnd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java index afa384f6e38..1e57451698b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseOr.java @@ -52,8 +52,6 @@ * res = bitwise_ops.bitwise_or(lhs, rhs) * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * - * - * @param data type for {@code z} output */ @OpMetadata( opType = BitwiseOr.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java index dc26dc145aa..52953422482 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/BitwiseXor.java @@ -52,8 +52,6 @@ * res = bitwise_ops.bitwise_xor(lhs, rhs) * tf.assert_equal(tf.cast(res, tf.float32), exp) # TRUE * - * - * @param data type for {@code z} output */ @OpMetadata( opType = BitwiseXor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java index a2d9a985bae..8dcb5a72de7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/Invert.java @@ -73,8 +73,6 @@ * expected = tf.constant([dtype.max - x for x in inputs], dtype=tf.float32) * tf.assert_equal(tf.cast(inverted, tf.float32), tf.cast(expected, tf.float32)) * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Invert.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java index 5874dc12979..ccf41c473f8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/LeftShift.java @@ -63,8 +63,6 @@ * bitwise_ops.left_shift(lhs, rhs) * # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)> * - * - * @param data type for {@code z} output */ @OpMetadata( opType = LeftShift.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java index 22c95c81136..6c1407b9d19 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/bitwise/RightShift.java @@ -65,8 +65,6 @@ * bitwise_ops.right_shift(lhs, rhs) * # <tf.Tensor: shape=(4,), dtype=int8, numpy=array([ -2, 64, 101, 32], dtype=int8)> * - * - * @param data type for {@code z} output */ @OpMetadata( opType = RightShift.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveAllToAll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveAllToAll.java index 99ccff79289..9c513486b9b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveAllToAll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveAllToAll.java @@ -37,8 +37,6 @@ /** * Mutually exchanges multiple tensors of identical type and shape. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveAllToAll.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastRecv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastRecv.java index 332b5dcf9ab..a66995e4d4e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastRecv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastRecv.java @@ -38,8 +38,6 @@ /** * Receives a tensor value broadcast from another device. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveBcastRecv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastSend.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastSend.java index ee495b56951..df7a315413f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastSend.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveBcastSend.java @@ -36,8 +36,6 @@ /** * Broadcasts a tensor value to one or more other devices. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveBcastSend.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveGather.java index d3997e8743f..57a2b134ff6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveGather.java @@ -41,8 +41,6 @@ * {@code is_stateless} means each op does not need control dependencies to other * collective ops. In this case, keys that are unique at runtime * (e.g. {@code instance_key}) should be used to distinguish collective groups. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveGather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectivePermute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectivePermute.java index 9fd029facf3..380a949a664 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectivePermute.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectivePermute.java @@ -40,8 +40,6 @@ *

For example, suppose there are 4 TPU instances: {@code [A, B, C, D]}. Passing * source_target_pairs={@code [[0,1],[1,2],[2,3],[3,0]]} gets the outputs: * {@code [D, A, B, C]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CollectivePermute.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduce.java index 7eab3bb0f17..8f6c26778e1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduce.java @@ -37,8 +37,6 @@ /** * Mutually reduces multiple tensors of identical type and shape. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveReduce.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduceScatter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduceScatter.java index 5ab06edf273..8b89dbaf183 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduceScatter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/collective/CollectiveReduceScatter.java @@ -41,8 +41,6 @@ * {@code is_stateless} means each op does not need control dependencies to other * collective ops. In this case, keys that are unique at runtime * (e.g. {@code instance_key}) should be used to distinguish collective groups. - * - * @param data type for {@code data} output */ @OpMetadata( opType = CollectiveReduceScatter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ApproxTopK.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ApproxTopK.java index 1daca9f077e..48f4f94315b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ApproxTopK.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ApproxTopK.java @@ -38,8 +38,6 @@ * Returns min/max k values and their indices of the input operand in an approximate manner. * See https://arxiv.org/abs/2206.14286 for the algorithm details. * This op is only optimized on TPU currently. - * - * @param data type for {@code values} output */ @OpMetadata( opType = ApproxTopK.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java index a8001c6103a..e49f3eafacc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Assign.java @@ -37,8 +37,6 @@ * Update 'ref' by assigning 'value' to it. * This operation outputs "ref" after the assignment is done. * This makes it easier to chain operations that need to use the reset value. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = Assign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java index 2b6f78046ca..848231d569a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignAdd.java @@ -37,8 +37,6 @@ * Update 'ref' by adding 'value' to it. * This operation outputs "ref" after the update is done. * This makes it easier to chain operations that need to use the reset value. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = AssignAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java index 162fc069e92..cc96d634945 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/AssignSub.java @@ -37,8 +37,6 @@ * Update 'ref' by subtracting 'value' from it. * This operation outputs "ref" after the update is done. * This makes it easier to chain operations that need to use the reset value. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = AssignSub.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchFunction.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchFunction.java index d544fdeca5a..577f213f47d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchFunction.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchFunction.java @@ -163,6 +163,12 @@ public static BatchFunction create(Scope scope, Iterable> inTensors, if (opts.lowPriorityMaxEnqueuedBatches != null) { opBuilder.setAttr("low_priority_max_enqueued_batches", opts.lowPriorityMaxEnqueuedBatches); } + if (opts.mixedPriorityPolicy != null) { + opBuilder.setAttr("mixed_priority_policy", opts.mixedPriorityPolicy); + } + if (opts.batchPaddingPolicy != null) { + opBuilder.setAttr("batch_padding_policy", opts.batchPaddingPolicy); + } if (opts.enableLargeBatchSplitting != null) { opBuilder.setAttr("enable_large_batch_splitting", opts.enableLargeBatchSplitting); } @@ -291,6 +297,26 @@ public static Options lowPriorityMaxEnqueuedBatches(Long lowPriorityMaxEnqueuedB return new Options().lowPriorityMaxEnqueuedBatches(lowPriorityMaxEnqueuedBatches); } + /** + * Sets the mixedPriorityPolicy option. + * + * @param mixedPriorityPolicy the mixedPriorityPolicy option + * @return this Options instance. + */ + public static Options mixedPriorityPolicy(String mixedPriorityPolicy) { + return new Options().mixedPriorityPolicy(mixedPriorityPolicy); + } + + /** + * Sets the batchPaddingPolicy option. + * + * @param batchPaddingPolicy the batchPaddingPolicy option + * @return this Options instance. + */ + public static Options batchPaddingPolicy(String batchPaddingPolicy) { + return new Options().batchPaddingPolicy(batchPaddingPolicy); + } + /** * Sets the enableLargeBatchSplitting option. * @@ -339,6 +365,10 @@ public static class Options { private Long lowPriorityMaxEnqueuedBatches; + private String mixedPriorityPolicy; + + private String batchPaddingPolicy; + private Boolean enableLargeBatchSplitting; private Options() { @@ -475,6 +505,28 @@ public Options lowPriorityMaxEnqueuedBatches(Long lowPriorityMaxEnqueuedBatches) return this; } + /** + * Sets the mixedPriorityPolicy option. + * + * @param mixedPriorityPolicy the mixedPriorityPolicy option + * @return this Options instance. + */ + public Options mixedPriorityPolicy(String mixedPriorityPolicy) { + this.mixedPriorityPolicy = mixedPriorityPolicy; + return this; + } + + /** + * Sets the batchPaddingPolicy option. + * + * @param batchPaddingPolicy the batchPaddingPolicy option + * @return this Options instance. + */ + public Options batchPaddingPolicy(String batchPaddingPolicy) { + this.batchPaddingPolicy = batchPaddingPolicy; + return this; + } + /** * Sets the enableLargeBatchSplitting option. * @@ -571,6 +623,16 @@ public static class Inputs extends RawOpInputs { */ public final long lowPriorityMaxEnqueuedBatches; + /** + * The mixedPriorityPolicy attribute + */ + public final String mixedPriorityPolicy; + + /** + * The batchPaddingPolicy attribute + */ + public final String batchPaddingPolicy; + /** * the types of tensors to be batched. */ @@ -593,7 +655,7 @@ public static class Inputs extends RawOpInputs { public final boolean enableLargeBatchSplitting; public Inputs(GraphOperation op) { - super(new BatchFunction(op), op, Arrays.asList("num_batch_threads", "max_batch_size", "batch_timeout_micros", "max_enqueued_batches", "allowed_batch_sizes", "container", "shared_name", "batching_queue", "low_priority_max_batch_size", "low_priority_batch_timeout_micros", "low_priority_allowed_batch_sizes", "low_priority_max_enqueued_batches", "Tin", "Tcaptured", "Tout", "enable_large_batch_splitting")); + super(new BatchFunction(op), op, Arrays.asList("num_batch_threads", "max_batch_size", "batch_timeout_micros", "max_enqueued_batches", "allowed_batch_sizes", "container", "shared_name", "batching_queue", "low_priority_max_batch_size", "low_priority_batch_timeout_micros", "low_priority_allowed_batch_sizes", "low_priority_max_enqueued_batches", "mixed_priority_policy", "batch_padding_policy", "Tin", "Tcaptured", "Tout", "enable_large_batch_splitting")); int inputIndex = 0; int inTensorsLength = op.inputListLength("in_tensors"); inTensors = Arrays.asList((Operand[]) op.inputList(inputIndex, inTensorsLength)); @@ -613,6 +675,8 @@ public Inputs(GraphOperation op) { lowPriorityBatchTimeoutMicros = op.attributes().getAttrInt("low_priority_batch_timeout_micros"); lowPriorityAllowedBatchSizes = op.attributes().getAttrIntList("low_priority_allowed_batch_sizes"); lowPriorityMaxEnqueuedBatches = op.attributes().getAttrInt("low_priority_max_enqueued_batches"); + mixedPriorityPolicy = op.attributes().getAttrString("mixed_priority_policy"); + batchPaddingPolicy = op.attributes().getAttrString("batch_padding_policy"); Tin = op.attributes().getAttrTypeList("Tin"); Tcaptured = op.attributes().getAttrTypeList("Tcaptured"); Tout = op.attributes().getAttrTypeList("Tout"); diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java index 889bd521e0d..09fa1d49bcb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpace.java @@ -42,8 +42,6 @@ * this op outputs a copy of the input tensor where values from the {@code batch} * dimension are moved in spatial blocks to the {@code height} and {@code width} dimensions, * followed by cropping along the {@code height} and {@code width} dimensions. - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchToSpace.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java index c7cf592d517..65a98188342 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BatchToSpaceNd.java @@ -42,8 +42,6 @@ * the input. The spatial dimensions of this intermediate result are then * optionally cropped according to {@code crops} to produce the output. This is the * reverse of SpaceToBatch. See below for a precise description. - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchToSpaceNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java index c1bd2421b15..82a2a99d295 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Bitcast.java @@ -96,8 +96,6 @@ * endian orderings will give different results. A copy from input buffer to output * buffer is made on BE machines when types are of different sizes in order to get * the same casting results as on LE machines. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Bitcast.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java index 96cfa009842..165e7e12b9a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastDynamicShape.java @@ -37,8 +37,6 @@ * Return the shape of s0 op s1 with broadcast. * Given {@code s0} and {@code s1}, tensors that represent shapes, compute {@code r0}, the * broadcasted shape. {@code s0}, {@code s1} and {@code r0} are all integer vectors. - * - * @param data type for {@code r0} output */ @OpMetadata( opType = BroadcastDynamicShape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java index fe9cf0e7039..f29d66c8de6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastGradientArgs.java @@ -36,8 +36,6 @@ /** * Return the reduction indices for computing gradients of s0 op s1 with broadcast. * This is typically used by gradient computations for a broadcasting operation. - * - * @param data type for {@code r0} output */ @OpMetadata( opType = BroadcastGradientArgs.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java index d9ada9ae323..f27247cd37a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/BroadcastTo.java @@ -72,8 +72,6 @@ * The newly-created tensor takes the full memory of the broadcasted * shape. (In a graph context, {@code broadcast_to} might be fused to * subsequent operation and then be optimized away, however.) - * - * @param data type for {@code output} output */ @OpMetadata( opType = BroadcastTo.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CheckPinned.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CheckPinned.java new file mode 100644 index 00000000000..2708bcad2bf --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CheckPinned.java @@ -0,0 +1,115 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.core; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.proto.DataType; +import org.tensorflow.types.family.TType; + +/** + * Checks whether a tensor is located in host memory pinned for GPU. + * When run: + *

    + *
  • Reports an {@code InvalidArgument} error if {@code tensor} is not in pinned memory.
  • + *
  • Reports a {@code FailedPrecondition} error if not built with CUDA.
  • + *
+ */ +@OpMetadata( + opType = CheckPinned.OP_NAME, + inputsClass = CheckPinned.Inputs.class +) +@Operator +public final class CheckPinned extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "CheckPinned"; + + private Output output; + + public CheckPinned(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + output = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new CheckPinned operation. + * + * @param scope current scope + * @param tensor The tensor value + * @param data type for {@code CheckPinned} output and operands + * @return a new instance of CheckPinned + */ + @Endpoint( + describeByClass = true + ) + public static CheckPinned create(Scope scope, Operand tensor) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "CheckPinned"); + opBuilder.addInput(tensor.asOutput()); + return new CheckPinned<>(opBuilder.build()); + } + + /** + * Gets output. + * + * @return output. + */ + public Output output() { + return output; + } + + @Override + public Output asOutput() { + return output; + } + + @OpInputsMetadata( + outputsClass = CheckPinned.class + ) + public static class Inputs extends RawOpInputs> { + /** + * The tensor input + */ + public final Operand tensor; + + /** + * The T attribute + */ + public final DataType T; + + public Inputs(GraphOperation op) { + super(new CheckPinned<>(op), op, Arrays.asList("T")); + int inputIndex = 0; + tensor = (Operand) op.input(inputIndex++); + T = op.attributes().getAttrType("T"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java index 4477b0d4924..2ae7185a7e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ClipByValue.java @@ -39,8 +39,6 @@ * shape as {@code t} with its values clipped to {@code clip_value_min} and {@code clip_value_max}. * Any values less than {@code clip_value_min} are set to {@code clip_value_min}. Any values * greater than {@code clip_value_max} are set to {@code clip_value_max}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ClipByValue.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java index 894b3a574be..cf3b735f4be 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Concat.java @@ -37,8 +37,6 @@ /** * Concatenates tensors along one dimension. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Concat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConcatOffset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConcatOffset.java index df14b30a11b..9b9a8d813c3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConcatOffset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ConcatOffset.java @@ -47,14 +47,12 @@ * y = [2, 3, 7] * z = [2, 9, 7] * offsets = concat_offset(1, [x, y, z]) - * [list(off.numpy()) for off in offsets] + * [[a.item() for a in list(off.numpy())] for off in offsets] * [[0, 0, 0], [0, 2, 0], [0, 5, 0]] * * * *

This is typically used by gradient computations for a concat operation. - * - * @param data type for {@code offset} output */ @OpMetadata( opType = ConcatOffset.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java index 9b55fac9069..a04de48877b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Copy.java @@ -42,8 +42,6 @@ * deep-copying. See the documentation of Debug* ops for more details. *

Unlike the CopyHost Op, this op does not have HostMemory constraint on its * input or output. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Copy.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java index 59af18c8b33..055c9d878bf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyHost.java @@ -40,8 +40,6 @@ * gRPC gating status, the output will simply forward the input tensor without * deep-copying. See the documentation of Debug* ops for more details. *

Unlike the Copy Op, this op has HostMemory constraint on its input or output. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CopyHost.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMesh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMesh.java index f83d6c6ad61..166d4613d54 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMesh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMesh.java @@ -35,8 +35,6 @@ /** * The CopyToMesh operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = CopyToMesh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMeshGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMeshGrad.java index fa3467cd849..095d5b5d7ce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMeshGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CopyToMeshGrad.java @@ -35,8 +35,6 @@ /** * The CopyToMeshGrad operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = CopyToMeshGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java index 7a81a4419e6..0f404fa1419 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/CountUpTo.java @@ -35,8 +35,6 @@ /** * Increments 'ref' until it reaches 'limit'. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CountUpTo.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java index ca15dbb9a55..f0b9b3927a8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DeepCopy.java @@ -35,8 +35,6 @@ /** * Makes a copy of {@code x}. - * - * @param data type for {@code y} output */ @OpMetadata( opType = DeepCopy.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java index cc8f2bafb2f..876a1e46ee5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DestroyTemporaryVariable.java @@ -41,8 +41,6 @@ * This is typically achieved by chaining the ref through each assign op, or by * using control dependencies. *

Outputs the final value of the tensor pointed to by 'ref'. - * - * @param data type for {@code value} output */ @OpMetadata( opType = DestroyTemporaryVariable.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java index b851e0cccdf..d7d7bf7c328 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicPartition.java @@ -78,8 +78,6 @@ * * * - * - * @param data type for {@code outputs} output */ @OpMetadata( opType = DynamicPartition.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java index 9aba2968627..d160ab8255c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/DynamicStitch.java @@ -90,8 +90,6 @@ *

* *
- * - * @param data type for {@code merged} output */ @OpMetadata( opType = DynamicStitch.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java index 02c76780ba2..6f7d74d94e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Empty.java @@ -38,8 +38,6 @@ /** * Creates a tensor with the given shape. *

This operation creates a tensor of {@code shape} and {@code dtype}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Empty.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EnsureShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EnsureShape.java index 131285dc0e6..bbada3714ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EnsureShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/EnsureShape.java @@ -38,8 +38,6 @@ * Ensures that the tensor's shape matches the expected shape. * Raises an error if the input tensor's shape does not match the specified shape. * Returns the input tensor otherwise. - * - * @param data type for {@code output} output */ @OpMetadata( opType = EnsureShape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java index baed3b18053..309e5700eb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Enter.java @@ -40,8 +40,6 @@ * {@code is_constant} is true, {@code output} is a constant in the child frame; otherwise * it may be changed in the child frame. At most {@code parallel_iterations} iterations * are run in parallel in the child frame. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Enter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java index c1535016b59..8dea6a66fe6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Exit.java @@ -36,8 +36,6 @@ /** * Exits the current frame to its parent frame. * Exit makes its input {@code data} available to the parent frame. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Exit.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java index bf17427d228..0f0e030b71d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExpandDims.java @@ -59,8 +59,6 @@ *

{@code -1-input.dims() <= dim <= input.dims()} *

This operation is related to {@code squeeze()}, which removes dimensions of * size 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ExpandDims.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java index 12afb6060b3..350c416e235 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ExtractVolumePatches.java @@ -36,8 +36,6 @@ /** * Extract {@code patches} from {@code input} and put them in the {@code "depth"} output dimension. 3D extension of {@code extract_image_patches}. - * - * @param data type for {@code patches} output */ @OpMetadata( opType = ExtractVolumePatches.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/FakeParam.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/FakeParam.java index ee07de5268d..79e63958dda 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/FakeParam.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/FakeParam.java @@ -40,8 +40,6 @@ * valid output when run, so must either be removed (e.g. replaced with a * function input) or guaranteed not to be used (e.g. if mirroring an * intermediate output needed for the gradient computation of the other branch). - * - * @param data type for {@code output} output */ @OpMetadata( opType = FakeParam.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java index 5ba5931795e..8634981f57c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Fill.java @@ -53,8 +53,6 @@ *

  • Because {@code tf.fill} evaluates at graph runtime, it supports dynamic shapes * based on other runtime Tensors, unlike {@code tf.constant}.
  • * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Fill.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java index 1b1e3f888ee..43e09807b66 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Gather.java @@ -57,9 +57,10 @@ *

    Note that on CPU, if an out of bound index is found, an error is returned. * On GPU, if an out of bound index is found, a 0 is stored in the * corresponding output value. + *

    Note that on TPU, if any dimension of {@code params} is of size 0 then the output will + * be the expected shape filled with zeros. On CPU and GPU an error will be + * returned. *

    See also {@code tf.batch_gather} and {@code tf.gather_nd}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Gather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java index b1a05118129..755bf4e7905 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GatherNd.java @@ -57,9 +57,17 @@ *

      * indices.shape[:-1] + params.shape[indices.shape[-1]:]
      * 
    - *

    Note that on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, a 0 is stored in the - * corresponding output value. + *

    If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

      + *
    1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
    2. + *
    3. "ERROR": raises error; GPU does not support this value.
    4. + *
    5. "IGNORE": ignore error and set the corresponding output to 0; + * supported on both CPU and GPU.
    6. + *
    *

    Some examples below. *

    Simple indexing into a matrix: *

    @@ -125,8 +133,6 @@
      *     output = [['b0', 'b1'], ['d0', 'c1']]
      * 
    *

    See also {@code tf.gather} and {@code tf.batch_gather}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = GatherNd.OP_NAME, @@ -153,6 +159,7 @@ public GatherNd(Operation operation) { * @param scope current scope * @param params The tensor from which to gather values. * @param indices Index tensor. + * @param options carries optional attribute values * @param data type for {@code GatherNd} output and operands * @return a new instance of GatherNd */ @@ -160,13 +167,30 @@ public GatherNd(Operation operation) { describeByClass = true ) public static GatherNd create(Scope scope, Operand params, - Operand indices) { + Operand indices, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "GatherNd"); opBuilder.addInput(params.asOutput()); opBuilder.addInput(indices.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new GatherNd<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * Values from {@code params} gathered from indices given by {@code indices}, with @@ -182,6 +206,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.GatherNd} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = GatherNd.class ) @@ -206,13 +251,19 @@ public static class Inputs extends RawOpInputs> { */ public final DataType Tindices; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new GatherNd<>(op), op, Arrays.asList("Tparams", "Tindices")); + super(new GatherNd<>(op), op, Arrays.asList("Tparams", "Tindices", "bad_indices_policy")); int inputIndex = 0; params = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); Tparams = op.attributes().getAttrType("Tparams"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java index a2445004e6d..0cccfb42045 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GetSessionTensor.java @@ -37,8 +37,6 @@ /** * Get the value of the tensor specified by its handle. - * - * @param data type for {@code value} output */ @OpMetadata( opType = GetSessionTensor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java index 8839f77471f..c4235de8ff2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/GuaranteeConst.java @@ -39,8 +39,6 @@ *

    Only accepts value typed tensors as inputs and rejects resource variable handles * as input. *

    Returns the input tensor without modification. - * - * @param data type for {@code output} output */ @OpMetadata( opType = GuaranteeConst.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java index 0846ac056c0..782cfc69f05 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HistogramFixedWidth.java @@ -51,8 +51,6 @@ * variables.global_variables_initializer().run() * sess.run(hist) => [2, 1, 1, 0, 2] * - * - * @param data type for {@code out} output */ @OpMetadata( opType = HistogramFixedWidth.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HostConst.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HostConst.java index 8aa7bf2e13c..82f5ef8f295 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HostConst.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/HostConst.java @@ -37,8 +37,6 @@ /** * Returns a constant tensor on the host. Only for writing C++ tests. - * - * @param data type for {@code output} output */ @OpMetadata( opType = HostConst.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java index 12c84344373..d0729ab93da 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Identity.java @@ -35,8 +35,6 @@ /** * Return a tensor with the same shape and contents as the input tensor or value. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Identity.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java index 47cbe749ee9..12d647268ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ImmutableConst.java @@ -38,8 +38,6 @@ /** * Returns immutable tensor from memory region. * The current implementation memmaps the tensor from a file. - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = ImmutableConst.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java index c42388fc55c..78f37851589 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceAdd.java @@ -39,8 +39,6 @@ *

      * Computes y = x; y[i, :] += v; return y.
      * 
    - * - * @param data type for {@code y} output */ @OpMetadata( opType = InplaceAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java index a39bf6d741b..31d0287aab2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceSub.java @@ -40,8 +40,6 @@ * * Computes y = x; y[i, :] -= v; return y. * - * - * @param data type for {@code y} output */ @OpMetadata( opType = InplaceSub.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java index 8aecb6edf8c..d34e0f15011 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/InplaceUpdate.java @@ -39,8 +39,6 @@ * Computes {@code x[i, :] = v; return x}. *

    Originally this function is mutative however for compilation we make this * operation create / operate on a copy of {@code x}. - * - * @param data type for {@code y} output */ @OpMetadata( opType = InplaceUpdate.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java index 3473ddf487e..317eb054e29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LinSpace.java @@ -42,8 +42,6 @@ *

      * tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0  11.0  12.0]
      * 
    - * - * @param data type for {@code output} output */ @OpMetadata( opType = LinSpace.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java index 7406671423c..7546b26f8f4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableExport.java @@ -36,10 +36,6 @@ /** * Outputs all keys and values in the table. - * - * @param data type for {@code keys} output - * - * @param data type for {@code values} output */ @OpMetadata( opType = LookupTableExport.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java index b097f2ee81d..1155c94662f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LookupTableFind.java @@ -39,8 +39,6 @@ * The output {@code values} is of the type of the table values. *

    The scalar {@code default_value} is the value output for keys not present in the * table. It must also be of the same type as the table values. - * - * @param data type for {@code values} output */ @OpMetadata( opType = LookupTableFind.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java index 8cf633e2d7f..2a4b761a8fd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/LowerBound.java @@ -51,8 +51,6 @@ *

    result = LowerBound(sorted_sequence, values) *

    result == [[1, 2, 2], * [0, 1, 5]] - * - * @param data type for {@code output} output */ @OpMetadata( opType = LowerBound.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java index fb03ee5c942..04c4f1481d3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Max.java @@ -39,8 +39,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Max.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java index 7e4c77434b9..f5a189c9c58 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Merge.java @@ -41,8 +41,6 @@ * It is usually combined with {@code Switch} to implement branching. *

    {@code Merge} forwards the first tensor to become available to {@code output}, and sets * {@code value_index} to its index in {@code inputs}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Merge.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java index f3db8fedac0..89ac31b5854 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Min.java @@ -39,8 +39,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Min.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java index e63036ec117..751bec8fd66 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPad.java @@ -57,8 +57,6 @@ * [5, 4, 4, 5, 6, 6, 5] * [5, 4, 4, 5, 6, 6, 5]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = MirrorPad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java index 64235a34e0a..d1286e4bd89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/MirrorPadGrad.java @@ -50,8 +50,6 @@ * pad(t, paddings) ==> [[ 1, 5] * [11, 28]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = MirrorPadGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java index d49045a1bad..5e8f5709b65 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclAllReduce.java @@ -46,8 +46,6 @@ * num_devices: The number of devices participating in this reduction. * shared_name: Identifier that shared between ops of the same reduction. * - * @param data type for {@code data} output - * * @deprecated use {@link org.tensorflow.op.distribute.NcclAllReduce} instead */ @OpMetadata( diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java index 4d5c2d771de..5e6c2a583ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclBroadcast.java @@ -43,8 +43,6 @@ * output: The same as input. * shape: The shape of the input tensor. * - * @param data type for {@code output} output - * * @deprecated use {@link org.tensorflow.op.distribute.NcclBroadcast} instead */ @OpMetadata( diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java index 8b050aba7e3..cd3dea3af6f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NcclReduce.java @@ -43,8 +43,6 @@ * data: the value of the reduction across all {@code num_devices} devices. * reduction: the reduction operation to perform. * - * @param data type for {@code data} output - * * @deprecated use {@link org.tensorflow.op.distribute.NcclReduce} instead */ @OpMetadata( diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java index 33e50ce1b5d..1f0f73c672f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/NextIteration.java @@ -35,8 +35,6 @@ /** * Makes its input available to the next iteration. - * - * @param data type for {@code output} output */ @OpMetadata( opType = NextIteration.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java index 09f55f7eaff..8ed3c25bd8e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OneHot.java @@ -111,8 +111,6 @@ * [0.0, 0.0, 0.0] // one_hot(-1) * ] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = OneHot.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java index b69df0d0952..51178e062f4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/OnesLike.java @@ -35,8 +35,6 @@ /** * Returns a tensor of ones with the same shape and type as x. - * - * @param data type for {@code y} output */ @OpMetadata( opType = OnesLike.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java index d80e87f0f2d..60ddbcf6817 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Pad.java @@ -56,8 +56,6 @@ * [0, 0, 2, 2, 0, 0] * [0, 0, 0, 0, 0, 0]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Pad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java index c5cbde1618c..b12c3b896aa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelConcat.java @@ -50,8 +50,6 @@ * that the input shapes be known during graph construction. Parallel concat * will copy pieces of the input into the output as they become available, in * some situations this can provide a performance benefit. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ParallelConcat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java index a23c3d135a8..c9fd16880ca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ParallelDynamicStitch.java @@ -89,8 +89,6 @@ *

    * *
    - * - * @param data type for {@code merged} output */ @OpMetadata( opType = ParallelDynamicStitch.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java index 634500dcfc0..f4c450973da 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Placeholder.java @@ -40,8 +40,6 @@ * N.B. This operation will fail with an error if it is executed. It is * intended as a way to represent a value that will always be fed, and to * provide attrs that enable the fed value to be checked at runtime. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Placeholder.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java index 9604ea0a92a..202d4cc476c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/PlaceholderWithDefault.java @@ -36,8 +36,6 @@ /** * A placeholder op that passes through {@code input} when its output is not fed. - * - * @param data type for {@code output} output */ @OpMetadata( opType = PlaceholderWithDefault.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java index 71c7f986eb6..3f1c696a0bc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Prod.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Prod.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java index 6e92b83bf89..84816c6893f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/QuantizedReshape.java @@ -37,8 +37,6 @@ /** * Reshapes a quantized tensor as per the Reshape op. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedReshape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RandomIndexShuffle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RandomIndexShuffle.java index 68cd7f9f0eb..76538abf9cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RandomIndexShuffle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RandomIndexShuffle.java @@ -39,8 +39,6 @@ *

    If multiple inputs are vectors (matrix in case of seed) then the size of the * first dimension must match. *

    The outputs are deterministic. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomIndexShuffle.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java index 0699bd59b09..702214095a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Range.java @@ -44,8 +44,6 @@ * # 'delta' is 3 * tf.range(start, limit, delta) ==> [3, 6, 9, 12, 15] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Range.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java index 236991942ee..f57c2781c3f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReadVariableOp.java @@ -41,8 +41,6 @@ * writes on which this operation depends directly or indirectly, and to not be * influenced by any of the writes which depend directly or indirectly on this * operation. - * - * @param data type for {@code value} output */ @OpMetadata( opType = ReadVariableOp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java index 1853328543d..5b3caab37b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Recv.java @@ -36,8 +36,6 @@ /** * Receives the named tensor from send_device on recv_device. - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = Recv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java index 529841fd5fa..dca6c6a5ffc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMax.java @@ -39,8 +39,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReduceMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java index f349357096b..a7e544cfaab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceMin.java @@ -39,8 +39,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReduceMin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java index 49008ad1a36..3dc53ad9c58 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceProd.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReduceProd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java index 05851e60764..bbe161f9210 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReduceSum.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReduceSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java index 888c0ee977b..218092a2563 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefEnter.java @@ -39,8 +39,6 @@ * {@code is_constant} is true, {@code output} is a constant in the child frame; otherwise * it may be changed in the child frame. At most {@code parallel_iterations} iterations * are run in parallel in the child frame. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefEnter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java index c23ff2d03d7..9a840da2c3d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefExit.java @@ -36,8 +36,6 @@ /** * Exits the current frame to its parent frame. * Exit makes its input {@code data} available to the parent frame. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefExit.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java index 53d515be8e1..c3bb004b548 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefIdentity.java @@ -35,8 +35,6 @@ /** * Return the same ref tensor as the input ref tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefIdentity.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java index 9354cb2847b..4baf6cc6260 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefMerge.java @@ -41,8 +41,6 @@ * It is usually combined with {@code Switch} to implement branching. *

    {@code Merge} forwards the first tensor for become available to {@code output}, and sets * {@code value_index} to its index in {@code inputs}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefMerge.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java index 5c7f1d2c4b7..ef647c70cd6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefNextIteration.java @@ -35,8 +35,6 @@ /** * Makes its input available to the next iteration. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefNextIteration.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java index 02c6ddc8e2f..d7ffa33956e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSelect.java @@ -37,8 +37,6 @@ /** * Forwards the {@code index}th element of {@code inputs} to {@code output}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RefSelect.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java index 04a2d4811ab..2e97b2bbcad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RefSwitch.java @@ -39,8 +39,6 @@ * If {@code pred} is true, the {@code data} input is forwarded to {@code output_true}. Otherwise, * the data goes to {@code output_false}. *

    See also {@code Switch} and {@code Merge}. - * - * @param data type for {@code output_false} output */ @OpMetadata( opType = RefSwitch.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Relayout.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Relayout.java index 959987e6200..503d3cfe42a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Relayout.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Relayout.java @@ -35,8 +35,6 @@ /** * The Relayout operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = Relayout.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RelayoutLike.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RelayoutLike.java index 7fd8a91fb8b..499cb8d6c72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RelayoutLike.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/RelayoutLike.java @@ -35,8 +35,6 @@ /** * The RelayoutLike operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = RelayoutLike.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java index 4b1ce466a7d..54c0aba057e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reshape.java @@ -90,8 +90,6 @@ * # shape `[]` reshapes to a scalar * reshape(t, []) ==> 7 * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Reshape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java index f8e5cf5abef..0ca0faa179e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceCountUpTo.java @@ -37,8 +37,6 @@ /** * Increments variable pointed to by 'resource' until it reaches 'limit'. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResourceCountUpTo.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java index 5dff2d95dc2..c458bacea4c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGather.java @@ -49,8 +49,6 @@ * # Higher rank indices * output[i, ..., j, :, ... :] = params[indices[i, ..., j], :, ..., :] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResourceGather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java index 1a86a282ab9..f9c6b72b544 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceGatherNd.java @@ -37,8 +37,6 @@ /** * The ResourceGatherNd operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResourceGatherNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java index 4c1d9d3820c..ee6c1cf7d61 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdAdd.java @@ -103,6 +103,9 @@ public static ResourceScatterNdAdd create(Scope scope, Operand if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ResourceScatterNdAdd(opBuilder.build()); @@ -120,12 +123,24 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Optional attributes for {@link org.tensorflow.op.core.ResourceScatterNdAdd} */ public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -141,6 +156,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -181,8 +207,13 @@ public static class Inputs extends RawOpInputs { */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ResourceScatterNdAdd(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ResourceScatterNdAdd(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -190,6 +221,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java index 193d4c7dfda..379843a67c7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMax.java @@ -77,6 +77,9 @@ public static ResourceScatterNdMax create(Scope scope, Operand if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ResourceScatterNdMax(opBuilder.build()); @@ -94,12 +97,24 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Optional attributes for {@link org.tensorflow.op.core.ResourceScatterNdMax} */ public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -115,6 +130,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -155,8 +181,13 @@ public static class Inputs extends RawOpInputs { */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ResourceScatterNdMax(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ResourceScatterNdMax(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -164,6 +195,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java index 9a1023916fd..ba46417abba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdMin.java @@ -77,6 +77,9 @@ public static ResourceScatterNdMin create(Scope scope, Operand if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ResourceScatterNdMin(opBuilder.build()); @@ -94,12 +97,24 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Optional attributes for {@link org.tensorflow.op.core.ResourceScatterNdMin} */ public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -115,6 +130,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -155,8 +181,13 @@ public static class Inputs extends RawOpInputs { */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ResourceScatterNdMin(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ResourceScatterNdMin(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -164,6 +195,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java index 4c321416231..f39e42e742b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdSub.java @@ -103,6 +103,9 @@ public static ResourceScatterNdSub create(Scope scope, Operand if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ResourceScatterNdSub(opBuilder.build()); @@ -120,12 +123,24 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Optional attributes for {@link org.tensorflow.op.core.ResourceScatterNdSub} */ public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -141,6 +156,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -181,8 +207,13 @@ public static class Inputs extends RawOpInputs { */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ResourceScatterNdSub(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ResourceScatterNdSub(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -190,6 +221,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java index 1a21fa30916..588d923c05a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ResourceScatterNdUpdate.java @@ -104,6 +104,9 @@ public static ResourceScatterNdUpdate create(Scope scope, Operand { */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ResourceScatterNdUpdate(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ResourceScatterNdUpdate(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -191,6 +222,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java index 65a6ac9ab0c..711b7148209 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Reverse.java @@ -76,8 +76,6 @@ * [16, 17, 18, 19], * [12, 13, 14, 15]]]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Reverse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java index b7eb3fb25a2..e18f16874f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ReverseSequence.java @@ -84,8 +84,6 @@ * output[3:, :, 2, :, ...] = input[3:, :, 2, :, ...] * output[2:, :, 3, :, ...] = input[2:, :, 3, :, ...] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReverseSequence.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java index a2f04750d53..e190730b970 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Roll.java @@ -54,8 +54,6 @@ * # 't' is [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] * roll(t, shift=[2, -3], axis=[1, 1]) ==> [[1, 2, 3, 4, 0], [6, 7, 8, 9, 5]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Roll.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java index bc66b56b3d1..9f0bc6a526f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterAdd.java @@ -55,8 +55,6 @@ *

    * *
    - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java index 083f4de2a81..902d11400e5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterDiv.java @@ -52,8 +52,6 @@ *

    Duplicate entries are handled correctly: if multiple {@code indices} reference * the same location, their contributions divide. *

    Requires {@code updates.shape = indices.shape + ref.shape[1:]} or {@code updates.shape = []}. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterDiv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java index 162556fb11c..9b761e52419 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMax.java @@ -54,8 +54,6 @@ *

    * *
    - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java index 4264f92bc7e..7f725ad19d0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMin.java @@ -54,8 +54,6 @@ *
    * *
    - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterMin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java index 7fb20e9d36e..ae8bbca9670 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterMul.java @@ -52,8 +52,6 @@ *

    Duplicate entries are handled correctly: if multiple {@code indices} reference * the same location, their contributions multiply. *

    Requires {@code updates.shape = indices.shape + ref.shape[1:]} or {@code updates.shape = []}. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java index 34487ebf9d7..ad6bcd00a16 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNd.java @@ -107,10 +107,16 @@ * [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], * [[5, 5, 5, 5], [6, 6, 6, 6], [7, 7, 7, 7], [8, 8, 8, 8]]] * - *

    Note that on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, the index is ignored. - * - * @param data type for {@code output} output + *

    If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

      + *
    1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
    2. + *
    3. "ERROR": raises error; GPU does not support this value.
    4. + *
    5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
    6. + *
    */ @OpMetadata( opType = ScatterNd.OP_NAME, @@ -138,6 +144,7 @@ public ScatterNd(Operation operation) { * @param indices Tensor of indices. * @param updates Values to scatter into the output tensor. * @param shape 1-D. The shape of the output tensor. + * @param options carries optional attribute values * @param data type for {@code ScatterNd} output and operands * @param data type for {@code ScatterNd} output and operands * @return a new instance of ScatterNd @@ -146,14 +153,31 @@ public ScatterNd(Operation operation) { describeByClass = true ) public static ScatterNd create(Scope scope, - Operand indices, Operand updates, Operand shape) { + Operand indices, Operand updates, Operand shape, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ScatterNd"); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); opBuilder.addInput(shape.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new ScatterNd<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor with the given shape and updates applied according @@ -169,6 +193,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.ScatterNd} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = ScatterNd.class ) @@ -198,14 +243,20 @@ public static class Inputs extends RawOpInpu */ public final DataType Tindices; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ScatterNd<>(op), op, Arrays.asList("T", "Tindices")); + super(new ScatterNd<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); shape = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java index aef9eed4a32..257dce25682 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdAdd.java @@ -62,8 +62,6 @@ * *

    See {@code tf.scatter_nd} for more details about how to make updates to * slices. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterNdAdd.OP_NAME, @@ -111,6 +109,9 @@ public static ScatterNdAdd create(Scope scope, Operand r if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ScatterNdAdd<>(opBuilder.build()); @@ -128,6 +129,16 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets outputRef. * Same as ref. Returned as a convenience for operations that want @@ -149,6 +160,8 @@ public Output asOutput() { public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -164,6 +177,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -204,8 +228,13 @@ public static class Inputs extends RawOpInputs> */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ScatterNdAdd<>(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ScatterNdAdd<>(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -213,6 +242,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java index 0adccafee2a..a7ebdf162d6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMax.java @@ -36,8 +36,6 @@ /** * Computes element-wise maximum. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterNdMax.OP_NAME, @@ -85,6 +83,9 @@ public static ScatterNdMax create(Scope scope, Operand r if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ScatterNdMax<>(opBuilder.build()); @@ -102,6 +103,16 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets outputRef. * Same as ref. Returned as a convenience for operations that want @@ -123,6 +134,8 @@ public Output asOutput() { public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -138,6 +151,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -178,8 +202,13 @@ public static class Inputs extends RawOpInputs> */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ScatterNdMax<>(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ScatterNdMax<>(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -187,6 +216,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java index d2780381fcb..3ade02671ed 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdMin.java @@ -36,8 +36,6 @@ /** * Computes element-wise minimum. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterNdMin.OP_NAME, @@ -85,6 +83,9 @@ public static ScatterNdMin create(Scope scope, Operand r if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ScatterNdMin<>(opBuilder.build()); @@ -102,6 +103,16 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets outputRef. * Same as ref. Returned as a convenience for operations that want @@ -123,6 +134,8 @@ public Output asOutput() { public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -138,6 +151,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -178,8 +202,13 @@ public static class Inputs extends RawOpInputs> */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ScatterNdMin<>(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ScatterNdMin<>(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -187,6 +216,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java index 4d29ef748d8..c152dadc35e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdNonAliasingAdd.java @@ -63,8 +63,6 @@ * [1, 13, 3, 14, 14, 6, 7, 20] * *

    See {@code tf.scatter_nd} for more details about how to make updates to slices. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ScatterNdNonAliasingAdd.OP_NAME, @@ -94,6 +92,7 @@ public ScatterNdNonAliasingAdd(Operation operation) { * A tensor of indices into {@code input}. * @param updates A Tensor. Must have the same type as ref. A tensor of updated values * to add to {@code input}. + * @param options carries optional attribute values * @param data type for {@code ScatterNdNonAliasingAdd} output and operands * @return a new instance of ScatterNdNonAliasingAdd */ @@ -101,14 +100,31 @@ public ScatterNdNonAliasingAdd(Operation operation) { describeByClass = true ) public static ScatterNdNonAliasingAdd create(Scope scope, Operand input, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ScatterNdNonAliasingAdd"); opBuilder.addInput(input.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new ScatterNdNonAliasingAdd<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A {@code Tensor} with the same shape as {@code input}, containing values of {@code input} @@ -124,6 +140,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.ScatterNdNonAliasingAdd} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = ScatterNdNonAliasingAdd.class ) @@ -155,14 +192,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new ScatterNdNonAliasingAdd<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; input = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java index b2018d27511..21654611e88 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdSub.java @@ -63,8 +63,6 @@ * *

    See {@code tf.scatter_nd} for more details about how to make updates to * slices. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterNdSub.OP_NAME, @@ -112,6 +110,9 @@ public static ScatterNdSub create(Scope scope, Operand r if (opts.useLocking != null) { opBuilder.setAttr("use_locking", opts.useLocking); } + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } } } return new ScatterNdSub<>(opBuilder.build()); @@ -129,6 +130,16 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets outputRef. * Same as ref. Returned as a convenience for operations that want @@ -150,6 +161,8 @@ public Output asOutput() { public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -165,6 +178,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -205,8 +229,13 @@ public static class Inputs extends RawOpInputs> */ public final boolean useLocking; + /** + * The badIndicesPolicy attribute + */ + public final String badIndicesPolicy; + public Inputs(GraphOperation op) { - super(new ScatterNdSub<>(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ScatterNdSub<>(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -214,6 +243,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java index 56427f20fac..5bf1e30fe35 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterNdUpdate.java @@ -62,8 +62,6 @@ *

    See {@code tf.scatter_nd} for more details about how to make updates to * slices. *

    See also {@code tf.scatter_update} and {@code tf.batch_scatter_update}. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterNdUpdate.OP_NAME, @@ -111,6 +109,9 @@ public static ScatterNdUpdate create(Scope scope, Operand(opBuilder.build()); @@ -128,6 +129,16 @@ public static Options useLocking(Boolean useLocking) { return new Options().useLocking(useLocking); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets outputRef. * Same as ref. Returned as a convenience for operations that want to @@ -149,6 +160,8 @@ public Output asOutput() { public static class Options { private Boolean useLocking; + private String badIndicesPolicy; + private Options() { } @@ -164,6 +177,17 @@ public Options useLocking(Boolean useLocking) { this.useLocking = useLocking; return this; } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } } @OpInputsMetadata( @@ -204,8 +228,13 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices", "use_locking")); + super(new ScatterNdUpdate<>(op), op, Arrays.asList("T", "Tindices", "use_locking", "bad_indices_policy")); int inputIndex = 0; ref = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); @@ -213,6 +242,7 @@ public Inputs(GraphOperation op) { T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); useLocking = op.attributes().getAttrBool("use_locking"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java index 06d274ff356..4686a81470f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterSub.java @@ -54,8 +54,6 @@ *

    * *
    - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterSub.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java index 711cbf7485f..60e22039589 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ScatterUpdate.java @@ -57,8 +57,6 @@ * * *

    See also {@code tf.batch_scatter_update} and {@code tf.scatter_nd_update}. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = ScatterUpdate.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java index 71caff86d14..c88ea468f39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Select.java @@ -36,8 +36,6 @@ /** * The SelectV2 operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = Select.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java index 61af8e762a2..562b2088b93 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SetDiff1d.java @@ -54,10 +54,6 @@ * out ==> [2, 4, 6] * idx ==> [1, 3, 5] * - * - * @param data type for {@code out} output - * - * @param data type for {@code idx} output */ @OpMetadata( opType = SetDiff1d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java index 4f9f9115847..2f7592fbc03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Shape.java @@ -44,8 +44,6 @@ * # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] * shape(t) ==> [2, 2, 3] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Shape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java index b56a39452d5..b53a00a1a82 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ShapeN.java @@ -41,8 +41,6 @@ /** * Returns shape of tensors. * This operation returns N 1-D integer tensors representing shape of {@code input[i]s}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ShapeN.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java index 1ad02bc0f9b..2be90850900 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Size.java @@ -45,8 +45,6 @@ * # 't' is [[[1, 1,, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]]] * size(t) ==> 12 * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Size.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java index b53cae539a0..37a168fb6f7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Slice.java @@ -41,8 +41,6 @@ * 'begin'. *

    Requirements: * 0 <= begin[i] <= begin[i] + size[i] <= Di for i in [0, n) - * - * @param data type for {@code output} output */ @OpMetadata( opType = Slice.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java index d8b1ed563d9..bafca31221f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Snapshot.java @@ -35,8 +35,6 @@ /** * Returns a copy of the input tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Snapshot.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java index d56e6ef8709..2a366e46641 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SpaceToBatchNd.java @@ -132,8 +132,6 @@ * *

    Among others, this operation is useful for reducing atrous convolution into * regular convolution. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SpaceToBatchNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java index f6a01ed1950..dc4fad88677 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Split.java @@ -38,8 +38,6 @@ /** * Splits a tensor into {@code num_split} tensors along one dimension. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Split.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java index 8d1beb3fc5b..cc0525e9645 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SplitV.java @@ -39,8 +39,6 @@ /** * Splits a tensor into {@code num_split} tensors along one dimension. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SplitV.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java index 3ccc9dff638..52155b47d43 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Squeeze.java @@ -50,8 +50,6 @@ * # 't' is a tensor of shape [1, 2, 1, 3, 1, 1] * shape(squeeze(t, [2, 4])) ==> [1, 2, 3, 1] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Squeeze.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java index 0022997321a..976a86955b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Stack.java @@ -51,8 +51,6 @@ * pack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]] * *

    This is the opposite of {@code unpack}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Stack.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPop.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPop.java index a6a3021ce14..502cfcc8c06 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPop.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPop.java @@ -36,8 +36,6 @@ /** * Pop the element at the top of the stack. - * - * @param data type for {@code elem} output */ @OpMetadata( opType = StackPop.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPush.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPush.java index c43aa1de30e..f9f05ff1912 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPush.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StackPush.java @@ -35,8 +35,6 @@ /** * Push an element onto the stack. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StackPush.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StochasticCastToInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StochasticCastToInt.java index 29da2cb9a53..a06a2c8017d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StochasticCastToInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StochasticCastToInt.java @@ -40,8 +40,6 @@ * Stochastically cast a given tensor from floats to ints. * The values are cast with a deterministic pseudo-random tensor from a uniform distribution generated from user given key, counter, algorithm. Values will saturate if out of the specified integer type range, and will become zero if inputs are NaN. *

    The outputs are a deterministic function of {@code input}, {@code key}, {@code counter}, {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StochasticCastToInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java index c2086cb3e92..fb486c42253 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StopGradient.java @@ -85,8 +85,6 @@ *

  • Adversarial training, where no backprop should happen through the adversarial * example generation process.
  • * - * - * @param data type for {@code output} output */ @OpMetadata( opType = StopGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java index 6b8953f7995..ec55dae1c24 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSlice.java @@ -133,8 +133,6 @@ *

    Requirements: * {@code 0 != strides[i] for i in [0, m)} * {@code ellipsis_mask must be a power of two (only one ellipsis)} - * - * @param data type for {@code output} output */ @OpMetadata( opType = StridedSlice.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java index b2ab8d606e2..2911a675905 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceAssign.java @@ -41,8 +41,6 @@ * {@code begin}, {@code end}, {@code strides}, etc. work exactly as in {@code StridedSlice}. *

    NOTE this op currently does not support broadcasting and so {@code value}'s * shape must be exactly the shape produced by the slice of {@code ref}. - * - * @param data type for {@code output_ref} output */ @OpMetadata( opType = StridedSliceAssign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java index 2a234c9ab7a..fcd7518dd87 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/StridedSliceGrad.java @@ -43,8 +43,6 @@ *

    Arguments are the same as StridedSliceGrad with the exception that * {@code dy} is the input gradient to be propagated and {@code shape} is the * shape of {@code StridedSlice}'s {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StridedSliceGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java index 15957ea2189..abcdb1ee9ef 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Sum.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Sum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java index c6a8f810467..c6842c9ab87 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/SwitchCond.java @@ -39,8 +39,6 @@ * If {@code pred} is true, the {@code data} input is forwarded to {@code output_true}. Otherwise, * the data goes to {@code output_false}. *

    See also {@code RefSwitch} and {@code Merge}. - * - * @param data type for {@code output_false} output */ @OpMetadata( opType = SwitchCond.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java index 3e8c8a70ec8..d66021bb728 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TemporaryVariable.java @@ -48,8 +48,6 @@ * var = state_ops.assign(var, [[4.0, 5.0]]) * var = state_ops.assign_add(var, [[6.0, 7.0]]) * final = state_ops._destroy_temporary_variable(var, var_name=var_name) - * - * @param data type for {@code ref} output */ @OpMetadata( opType = TemporaryVariable.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java index b3dbc08ef3e..75ba48a0102 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayConcat.java @@ -48,8 +48,6 @@ * (n0 + n1 + ... + n(T-1) x d0 x d1 x ...) * *

    All elements must have the same shape (excepting the first dimension). - * - * @param data type for {@code value} output */ @OpMetadata( opType = TensorArrayConcat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java index 0f7fd351089..60d8b437b00 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayGather.java @@ -40,8 +40,6 @@ /** * Gather specific elements from the TensorArray into output {@code value}. * All elements selected by {@code indices} must have the same shape. - * - * @param data type for {@code value} output */ @OpMetadata( opType = TensorArrayGather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java index 6e52e6ef906..d1cf5c89e65 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayPack.java @@ -39,8 +39,6 @@ /** * The TensorArrayPack operation - * - * @param data type for {@code value} output */ @OpMetadata( opType = TensorArrayPack.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java index 6765205c463..f5a0aa073a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorArrayRead.java @@ -38,8 +38,6 @@ /** * Read an element from the TensorArray into output {@code value}. - * - * @param data type for {@code value} output */ @OpMetadata( opType = TensorArrayRead.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java index 664783a09c5..70ef65f9314 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListConcat.java @@ -48,8 +48,6 @@ * is not already set. * tensor: The concated result. * lengths: Output tensor containing sizes of the 0th dimension of tensors in the list, used for computing the gradient. - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = TensorListConcat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java index d955a6a636d..6190f9c1c01 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListElementShape.java @@ -39,8 +39,6 @@ * The shape of the elements of the given list, as a tensor. * input_handle: the list * element_shape: the shape of elements of the list - * - * @param data type for {@code element_shape} output */ @OpMetadata( opType = TensorListElementShape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java index 27a627b4759..ac725c72b97 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGather.java @@ -42,8 +42,6 @@ *

    input_handle: The input tensor list. * indices: The indices used to index into the list. * values: The tensor. - * - * @param data type for {@code values} output */ @OpMetadata( opType = TensorListGather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java index 1ea76d2101e..244704b5754 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListGetItem.java @@ -40,8 +40,6 @@ * input_handle: the list * index: the position in the list from which an element will be retrieved * item: the element at that position - * - * @param data type for {@code item} output */ @OpMetadata( opType = TensorListGetItem.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java index ee7a5cde1c9..af805e71f9b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListPopBack.java @@ -42,8 +42,6 @@ * tensor: the withdrawn last element of the list * element_dtype: the type of elements in the list * element_shape: the shape of the output tensor - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = TensorListPopBack.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java index fec4f942658..2d058b8e00d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorListStack.java @@ -41,8 +41,6 @@ *

    input_handle: the input list * tensor: the gathered result * num_elements: optional. If not -1, the number of elements in the list. - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = TensorListStack.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapLookup.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapLookup.java index dccdc1ee996..a3e8b54e888 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapLookup.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapLookup.java @@ -39,8 +39,6 @@ * input_handle: the input map * key: the key to be looked up * value: the value found from the given key - * - * @param data type for {@code value} output */ @OpMetadata( opType = TensorMapLookup.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapStackKeys.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapStackKeys.java index b2a217c98e6..8942b2f9f8b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapStackKeys.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorMapStackKeys.java @@ -38,8 +38,6 @@ * Returns a Tensor stack of all keys in a tensor map. * input_handle: the input map * keys: the returned Tensor of all keys in the map - * - * @param data type for {@code keys} output */ @OpMetadata( opType = TensorMapStackKeys.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java index a72a1defde1..77d1dd111d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdAdd.java @@ -94,10 +94,16 @@ * * * - *

    Note: on CPU, if an out of bound index is found, an error is returned. - * On GPU, if an out of bound index is found, the index is ignored. - * - * @param data type for {@code output} output + *

    If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

      + *
    1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
    2. + *
    3. "ERROR": raises error; GPU does not support this value.
    4. + *
    5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
    6. + *
    */ @OpMetadata( opType = TensorScatterNdAdd.OP_NAME, @@ -125,6 +131,7 @@ public TensorScatterNdAdd(Operation operation) { * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterAdd} output and operands * @return a new instance of TensorScatterNdAdd */ @@ -132,14 +139,31 @@ public TensorScatterNdAdd(Operation operation) { describeByClass = true ) public static TensorScatterNdAdd create(Scope scope, Operand tensor, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "TensorScatterNdAdd"); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new TensorScatterNdAdd<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor copied from tensor and updates added according to the indices. @@ -154,6 +178,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.TensorScatterNdAdd} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = TensorScatterNdAdd.class ) @@ -183,14 +228,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new TensorScatterNdAdd<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; tensor = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java index ceddda24a20..cbf9b2dd471 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMax.java @@ -50,8 +50,6 @@ * * *

    Refer to {@code tf.tensor_scatter_nd_update} for more details. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorScatterNdMax.OP_NAME, @@ -79,6 +77,7 @@ public TensorScatterNdMax(Operation operation) { * @param tensor Tensor to update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterMax} output and operands * @return a new instance of TensorScatterNdMax */ @@ -86,14 +85,31 @@ public TensorScatterNdMax(Operation operation) { describeByClass = true ) public static TensorScatterNdMax create(Scope scope, Operand tensor, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "TensorScatterNdMax"); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new TensorScatterNdMax<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor copied from tensor whose values are element-wise maximum between tensor and updates according to the indices. @@ -108,6 +124,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.TensorScatterNdMax} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = TensorScatterNdMax.class ) @@ -137,14 +174,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new TensorScatterNdMax<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; tensor = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java index b6da07b4c31..7db99c551d1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdMin.java @@ -36,8 +36,6 @@ /** * The TensorScatterMin operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorScatterNdMin.OP_NAME, @@ -65,6 +63,7 @@ public TensorScatterNdMin(Operation operation) { * @param tensor Tensor to update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterMin} output and operands * @return a new instance of TensorScatterNdMin */ @@ -72,14 +71,31 @@ public TensorScatterNdMin(Operation operation) { describeByClass = true ) public static TensorScatterNdMin create(Scope scope, Operand tensor, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "TensorScatterNdMin"); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new TensorScatterNdMin<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor copied from tensor whose values are element-wise minimum between tensor and updates according to the indices. @@ -94,6 +110,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.TensorScatterNdMin} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = TensorScatterNdMin.class ) @@ -123,14 +160,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new TensorScatterNdMin<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; tensor = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java index 3623707e77e..095e0428962 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdSub.java @@ -91,8 +91,6 @@ * *

    Note that on CPU, if an out of bound index is found, an error is returned. * On GPU, if an out of bound index is found, the index is ignored. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorScatterNdSub.OP_NAME, @@ -120,6 +118,7 @@ public TensorScatterNdSub(Operation operation) { * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterSub} output and operands * @return a new instance of TensorScatterNdSub */ @@ -127,14 +126,31 @@ public TensorScatterNdSub(Operation operation) { describeByClass = true ) public static TensorScatterNdSub create(Scope scope, Operand tensor, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "TensorScatterNdSub"); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new TensorScatterNdSub<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor copied from tensor and updates subtracted according to the indices. @@ -149,6 +165,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.TensorScatterNdSub} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = TensorScatterNdSub.class ) @@ -178,14 +215,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new TensorScatterNdSub<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; tensor = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java index 3c53fca7eab..96323c0db29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorScatterNdUpdate.java @@ -42,7 +42,6 @@ * scattered onto an existing tensor (as opposed to a zero-tensor). If the memory * for the existing tensor cannot be re-used, a copy is made and updated. *

    If {@code indices} contains duplicates, then we pick the last update for the index. - *

    If an out of bound index is found on CPU, an error is returned. *

    WARNING: There are some GPU specific semantics for this operation. *

      *
    • If an out of bound index is found, the index is ignored.
    • @@ -64,9 +63,17 @@ *
        * indices.shape[:-1] + tensor.shape[indices.shape[-1]:]
        * 
      + *

      If {@code indices} contains any out-of-bound indices, depending on + * {@code bad_indices_policy}, the op will either return an error or ignore the + * out-of-bound indices. {@code bad_indices_policy} can be one of the following values: + *

        + *
      1. "" or "DEFAULT": raises on CPU and ignore on GPU. This is because + * historically on CPU and GPU we handle errors in different ways, and for + * backward compatibility we keep the default behavior.
      2. + *
      3. "ERROR": raises error; GPU does not support this value.
      4. + *
      5. "IGNORE": ignore the bad indices; supported on both CPU and GPU.
      6. + *
      *

      For usage examples see the python tf.tensor_scatter_nd_update {@link org.tensorflow.op.Ops#tensorScatterNdUpdate} function - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorScatterNdUpdate.OP_NAME, @@ -94,6 +101,7 @@ public TensorScatterNdUpdate(Operation operation) { * @param tensor Tensor to copy/update. * @param indices Index tensor. * @param updates Updates to scatter into output. + * @param options carries optional attribute values * @param data type for {@code TensorScatterUpdate} output and operands * @return a new instance of TensorScatterNdUpdate */ @@ -101,14 +109,31 @@ public TensorScatterNdUpdate(Operation operation) { describeByClass = true ) public static TensorScatterNdUpdate create(Scope scope, Operand tensor, - Operand indices, Operand updates) { + Operand indices, Operand updates, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "TensorScatterNdUpdate"); opBuilder.addInput(tensor.asOutput()); opBuilder.addInput(indices.asOutput()); opBuilder.addInput(updates.asOutput()); + if (options != null) { + for (Options opts : options) { + if (opts.badIndicesPolicy != null) { + opBuilder.setAttr("bad_indices_policy", opts.badIndicesPolicy); + } + } + } return new TensorScatterNdUpdate<>(opBuilder.build()); } + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public static Options badIndicesPolicy(String badIndicesPolicy) { + return new Options().badIndicesPolicy(badIndicesPolicy); + } + /** * Gets output. * A new tensor with the given shape and updates applied according @@ -124,6 +149,27 @@ public Output asOutput() { return output; } + /** + * Optional attributes for {@link org.tensorflow.op.core.TensorScatterNdUpdate} + */ + public static class Options { + private String badIndicesPolicy; + + private Options() { + } + + /** + * Sets the badIndicesPolicy option. + * + * @param badIndicesPolicy the badIndicesPolicy option + * @return this Options instance. + */ + public Options badIndicesPolicy(String badIndicesPolicy) { + this.badIndicesPolicy = badIndicesPolicy; + return this; + } + } + @OpInputsMetadata( outputsClass = TensorScatterNdUpdate.class ) @@ -153,14 +199,20 @@ public static class Inputs extends RawOpInputs(op), op, Arrays.asList("T", "Tindices")); + super(new TensorScatterNdUpdate<>(op), op, Arrays.asList("T", "Tindices", "bad_indices_policy")); int inputIndex = 0; tensor = (Operand) op.input(inputIndex++); indices = (Operand) op.input(inputIndex++); updates = (Operand) op.input(inputIndex++); T = op.attributes().getAttrType("T"); Tindices = op.attributes().getAttrType("Tindices"); + badIndicesPolicy = op.attributes().getAttrString("bad_indices_policy"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java index 23b2d386a05..de80c141d72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/TensorStridedSliceUpdate.java @@ -41,8 +41,6 @@ * {@code strides} etc. work exactly as in {@code StridedSlice}. *

      NOTE this op currently does not support broadcasting and so {@code value}'s shape * must be exactly the shape produced by the slice of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorStridedSliceUpdate.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java index c9a58b9158c..7339fdbb3de 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Tile.java @@ -67,8 +67,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Tile.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unbatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unbatch.java index a49747c48ca..fa4c04f3c27 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unbatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unbatch.java @@ -53,8 +53,6 @@ * shared_name: Instances of Unbatch with the same container and shared_name are * assumed to possibly belong to the same batch. If left empty, the op name will * be used as the shared name. - * - * @param data type for {@code unbatched_tensor} output */ @OpMetadata( opType = Unbatch.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java index 912e08c3a6b..25418f3986f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnbatchGrad.java @@ -49,8 +49,6 @@ * shared_name: Instances of UnbatchGrad with the same container and shared_name * are assumed to possibly belong to the same batch. If left empty, the op name * will be used as the shared name. - * - * @param data type for {@code batched_grad} output */ @OpMetadata( opType = UnbatchGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniformQuantizedClipByValue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniformQuantizedClipByValue.java index ca3c5dfdd14..f1a4eb739d1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniformQuantizedClipByValue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniformQuantizedClipByValue.java @@ -40,8 +40,6 @@ * Given quantized {@code operand} which was quantized using {@code scales} and {@code zero_points}, performs clip by value using {@code min} and {@code max} values. * If quantization_axis is -1 (per-tensor quantized), the entire operand is clipped using scalar min, max. * Otherwise (per-channel quantized), the clipping is also done per-channel. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedClipByValue.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java index c4324a9f324..4d17cf9f141 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unique.java @@ -74,10 +74,6 @@ * [2, 0]] * idx ==> [0, 1, 1] * - * - * @param data type for {@code y} output - * - * @param data type for {@code idx} output */ @OpMetadata( opType = Unique.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java index 80a1804887f..8046082f95b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UniqueWithCounts.java @@ -78,10 +78,6 @@ * idx ==> [0, 1, 1] * count ==> [1, 2] * - * - * @param data type for {@code y} output - * - * @param data type for {@code idx} output */ @OpMetadata( opType = UniqueWithCounts.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java index 5393635bc69..ec7c8f8c6e9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UnravelIndex.java @@ -52,8 +52,6 @@ *

      {@literal @}compatibility(numpy)
      * Equivalent to np.unravel_index *
      {@literal @}end_compatibility - * - * @param data type for {@code output} output */ @OpMetadata( opType = UnravelIndex.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java index fd20a76940d..64c8de23911 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Unstack.java @@ -46,8 +46,6 @@ * and each tensor in {@code output} will have shape {@code (A, C, D)}. * Etc. *

      This is the opposite of {@code pack}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Unstack.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java index d5e939ffde6..78e45391c8a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/UpperBound.java @@ -51,8 +51,6 @@ *

      result = UpperBound(sorted_sequence, values) *

      result == [[1, 2, 4], * [0, 2, 5]] - * - * @param data type for {@code output} output */ @OpMetadata( opType = UpperBound.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java index a0febf9c223..d8b09bfddde 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/Variable.java @@ -40,8 +40,6 @@ * Outputs a ref to the tensor state so it may be read or modified. * TODO(zhifengc/mrry): Adds a pointer to a more detail document * about sharing states in tensorflow. - * - * @param data type for {@code ref} output */ @OpMetadata( opType = Variable.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java index 3f94b9efbd6..abfd8d7c504 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/VariableShape.java @@ -44,8 +44,6 @@ * # 't' is [[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]]] * shape(t) ==> [2, 2, 3] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = VariableShape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java index 792a37d112c..497cf5128b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/core/ZerosLike.java @@ -35,8 +35,6 @@ /** * Returns a tensor of zeros with the same shape and type as x. - * - * @param data type for {@code y} output */ @OpMetadata( opType = ZerosLike.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/GlobalShuffleDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/GlobalShuffleDataset.java new file mode 100644 index 00000000000..19ec4cd2e96 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/GlobalShuffleDataset.java @@ -0,0 +1,230 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.data; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.proto.DataType; +import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; + +/** + * The GlobalShuffleDataset operation + */ +@OpMetadata( + opType = GlobalShuffleDataset.OP_NAME, + inputsClass = GlobalShuffleDataset.Inputs.class +) +public final class GlobalShuffleDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "GlobalShuffleDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + public GlobalShuffleDataset(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new GlobalShuffleDataset operation. + * + * @param scope current scope + * @param inputDataset The inputDataset value + * @param seed The seed value + * @param seed2 The seed2 value + * @param seedGenerator The seedGenerator value + * @param outputTypes The value of the outputTypes attribute + * @param outputShapes The value of the outputShapes attribute + * @param options carries optional attribute values + * @return a new instance of GlobalShuffleDataset + */ + @Endpoint( + describeByClass = true + ) + public static GlobalShuffleDataset create(Scope scope, Operand inputDataset, + Operand seed, Operand seed2, Operand seedGenerator, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "GlobalShuffleDataset"); + opBuilder.addInput(inputDataset.asOutput()); + opBuilder.addInput(seed.asOutput()); + opBuilder.addInput(seed2.asOutput()); + opBuilder.addInput(seedGenerator.asOutput()); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.reshuffleEachIteration != null) { + opBuilder.setAttr("reshuffle_each_iteration", opts.reshuffleEachIteration); + } + if (opts.metadata != null) { + opBuilder.setAttr("metadata", opts.metadata); + } + } + } + return new GlobalShuffleDataset(opBuilder.build()); + } + + /** + * Sets the reshuffleEachIteration option. + * + * @param reshuffleEachIteration the reshuffleEachIteration option + * @return this Options instance. + */ + public static Options reshuffleEachIteration(Boolean reshuffleEachIteration) { + return new Options().reshuffleEachIteration(reshuffleEachIteration); + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public static Options metadata(String metadata) { + return new Options().metadata(metadata); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.data.GlobalShuffleDataset} + */ + public static class Options { + private Boolean reshuffleEachIteration; + + private String metadata; + + private Options() { + } + + /** + * Sets the reshuffleEachIteration option. + * + * @param reshuffleEachIteration the reshuffleEachIteration option + * @return this Options instance. + */ + public Options reshuffleEachIteration(Boolean reshuffleEachIteration) { + this.reshuffleEachIteration = reshuffleEachIteration; + return this; + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public Options metadata(String metadata) { + this.metadata = metadata; + return this; + } + } + + @OpInputsMetadata( + outputsClass = GlobalShuffleDataset.class + ) + public static class Inputs extends RawOpInputs { + /** + * The inputDataset input + */ + public final Operand inputDataset; + + /** + * The seed input + */ + public final Operand seed; + + /** + * The seed2 input + */ + public final Operand seed2; + + /** + * The seedGenerator input + */ + public final Operand seedGenerator; + + /** + * The reshuffleEachIteration attribute + */ + public final boolean reshuffleEachIteration; + + /** + * The outputTypes attribute + */ + public final DataType[] outputTypes; + + /** + * The outputShapes attribute + */ + public final Shape[] outputShapes; + + /** + * The metadata attribute + */ + public final String metadata; + + public Inputs(GraphOperation op) { + super(new GlobalShuffleDataset(op), op, Arrays.asList("reshuffle_each_iteration", "output_types", "output_shapes", "metadata")); + int inputIndex = 0; + inputDataset = (Operand) op.input(inputIndex++); + seed = (Operand) op.input(inputIndex++); + seed2 = (Operand) op.input(inputIndex++); + seedGenerator = (Operand) op.input(inputIndex++); + reshuffleEachIteration = op.attributes().getAttrBool("reshuffle_each_iteration"); + outputTypes = op.attributes().getAttrTypeList("output_types"); + outputShapes = op.attributes().getAttrShapeList("output_shapes"); + metadata = op.attributes().getAttrString("metadata"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IndexFlatMapDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IndexFlatMapDataset.java new file mode 100644 index 00000000000..b5d3f116ad5 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IndexFlatMapDataset.java @@ -0,0 +1,224 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.data; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.ConcreteFunction; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.proto.DataType; +import org.tensorflow.types.TInt64; +import org.tensorflow.types.family.TType; + +/** + * The IndexFlatMapDataset operation + */ +@OpMetadata( + opType = IndexFlatMapDataset.OP_NAME, + inputsClass = IndexFlatMapDataset.Inputs.class +) +@Operator( + group = "data" +) +public final class IndexFlatMapDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "IndexFlatMapDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + public IndexFlatMapDataset(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new IndexFlatMapDataset operation. + * + * @param scope current scope + * @param inputDataset The inputDataset value + * @param mapFuncOtherArgs The mapFuncOtherArgs value + * @param indexMapFuncOtherArgs The indexMapFuncOtherArgs value + * @param outputCardinality The outputCardinality value + * @param mapFunc The value of the mapFunc attribute + * @param indexMapFunc The value of the indexMapFunc attribute + * @param outputTypes The value of the outputTypes attribute + * @param outputShapes The value of the outputShapes attribute + * @param options carries optional attribute values + * @return a new instance of IndexFlatMapDataset + */ + @Endpoint( + describeByClass = true + ) + public static IndexFlatMapDataset create(Scope scope, Operand inputDataset, + Iterable> mapFuncOtherArgs, Iterable> indexMapFuncOtherArgs, + Operand outputCardinality, ConcreteFunction mapFunc, ConcreteFunction indexMapFunc, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "IndexFlatMapDataset"); + opBuilder.addInput(inputDataset.asOutput()); + opBuilder.addInputList(Operands.asOutputs(mapFuncOtherArgs)); + opBuilder.addInputList(Operands.asOutputs(indexMapFuncOtherArgs)); + opBuilder.addInput(outputCardinality.asOutput()); + opBuilder.setAttr("map_func", mapFunc); + opBuilder.setAttr("index_map_func", indexMapFunc); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.metadata != null) { + opBuilder.setAttr("metadata", opts.metadata); + } + } + } + return new IndexFlatMapDataset(opBuilder.build()); + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public static Options metadata(String metadata) { + return new Options().metadata(metadata); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.data.IndexFlatMapDataset} + */ + public static class Options { + private String metadata; + + private Options() { + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public Options metadata(String metadata) { + this.metadata = metadata; + return this; + } + } + + @OpInputsMetadata( + outputsClass = IndexFlatMapDataset.class + ) + public static class Inputs extends RawOpInputs { + /** + * The inputDataset input + */ + public final Operand inputDataset; + + /** + * The mapFuncOtherArgs input + */ + public final Iterable> mapFuncOtherArgs; + + /** + * The indexMapFuncOtherArgs input + */ + public final Iterable> indexMapFuncOtherArgs; + + /** + * The outputCardinality input + */ + public final Operand outputCardinality; + + /** + * The TmapFuncArgs attribute + */ + public final DataType[] TmapFuncArgs; + + /** + * The TindexMapFuncArgs attribute + */ + public final DataType[] TindexMapFuncArgs; + + /** + * The outputTypes attribute + */ + public final DataType[] outputTypes; + + /** + * The outputShapes attribute + */ + public final Shape[] outputShapes; + + /** + * The metadata attribute + */ + public final String metadata; + + public Inputs(GraphOperation op) { + super(new IndexFlatMapDataset(op), op, Arrays.asList("Tmap_func_args", "Tindex_map_func_args", "output_types", "output_shapes", "metadata")); + int inputIndex = 0; + inputDataset = (Operand) op.input(inputIndex++); + int mapFuncOtherArgsLength = op.inputListLength("map_func_other_args"); + mapFuncOtherArgs = Arrays.asList((Operand[]) op.inputList(inputIndex, mapFuncOtherArgsLength)); + inputIndex += mapFuncOtherArgsLength; + int indexMapFuncOtherArgsLength = op.inputListLength("index_map_func_other_args"); + indexMapFuncOtherArgs = Arrays.asList((Operand[]) op.inputList(inputIndex, indexMapFuncOtherArgsLength)); + inputIndex += indexMapFuncOtherArgsLength; + outputCardinality = (Operand) op.input(inputIndex++); + TmapFuncArgs = op.attributes().getAttrTypeList("Tmap_func_args"); + TindexMapFuncArgs = op.attributes().getAttrTypeList("Tindex_map_func_args"); + outputTypes = op.attributes().getAttrTypeList("output_types"); + outputShapes = op.attributes().getAttrShapeList("output_shapes"); + metadata = op.attributes().getAttrString("metadata"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetModelProto.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetModelProto.java new file mode 100644 index 00000000000..1ad0de4c183 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/IteratorGetModelProto.java @@ -0,0 +1,102 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.data; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TString; +import org.tensorflow.types.family.TType; + +/** + * Returns the serialized model proto of an iterator resource. + * Returns the serialized model proto of an iterator resource. + */ +@OpMetadata( + opType = IteratorGetModelProto.OP_NAME, + inputsClass = IteratorGetModelProto.Inputs.class +) +public final class IteratorGetModelProto extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "IteratorGetModelProto"; + + private Output modelProto; + + public IteratorGetModelProto(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + modelProto = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new IteratorGetModelProto operation. + * + * @param scope current scope + * @param iterator An resource from an dataset iterator. + * @return a new instance of IteratorGetModelProto + */ + @Endpoint( + describeByClass = true + ) + public static IteratorGetModelProto create(Scope scope, Operand iterator) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "IteratorGetModelProto"); + opBuilder.addInput(iterator.asOutput()); + return new IteratorGetModelProto(opBuilder.build()); + } + + /** + * Gets modelProto. + * A serialized model proto. + * @return modelProto. + */ + public Output modelProto() { + return modelProto; + } + + @Override + public Output asOutput() { + return modelProto; + } + + @OpInputsMetadata( + outputsClass = IteratorGetModelProto.class + ) + public static class Inputs extends RawOpInputs { + /** + * An resource from an dataset iterator. + */ + public final Operand iterator; + + public Inputs(GraphOperation op) { + super(new IteratorGetModelProto(op), op, Arrays.asList()); + int inputIndex = 0; + iterator = (Operand) op.input(inputIndex++); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java index a42cc0f51d2..131903f2fc1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/LeakyReluGrad.java @@ -35,8 +35,6 @@ /** * Computes rectified linear gradients for a LeakyRelu operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = LeakyReluGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MapDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MapDataset.java index 6e8ca298f38..4b6e7355a51 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MapDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/MapDataset.java @@ -98,6 +98,9 @@ public static MapDataset create(Scope scope, Operand inputDatas if (opts.preserveCardinality != null) { opBuilder.setAttr("preserve_cardinality", opts.preserveCardinality); } + if (opts.forceSynchronous != null) { + opBuilder.setAttr("force_synchronous", opts.forceSynchronous); + } if (opts.metadata != null) { opBuilder.setAttr("metadata", opts.metadata); } @@ -126,6 +129,16 @@ public static Options preserveCardinality(Boolean preserveCardinality) { return new Options().preserveCardinality(preserveCardinality); } + /** + * Sets the forceSynchronous option. + * + * @param forceSynchronous the forceSynchronous option + * @return this Options instance. + */ + public static Options forceSynchronous(Boolean forceSynchronous) { + return new Options().forceSynchronous(forceSynchronous); + } + /** * Sets the metadata option. * @@ -159,6 +172,8 @@ public static class Options { private Boolean preserveCardinality; + private Boolean forceSynchronous; + private String metadata; private Options() { @@ -186,6 +201,17 @@ public Options preserveCardinality(Boolean preserveCardinality) { return this; } + /** + * Sets the forceSynchronous option. + * + * @param forceSynchronous the forceSynchronous option + * @return this Options instance. + */ + public Options forceSynchronous(Boolean forceSynchronous) { + this.forceSynchronous = forceSynchronous; + return this; + } + /** * Sets the metadata option. * @@ -237,13 +263,18 @@ public static class Inputs extends RawOpInputs { */ public final boolean preserveCardinality; + /** + * The forceSynchronous attribute + */ + public final boolean forceSynchronous; + /** * The metadata attribute */ public final String metadata; public Inputs(GraphOperation op) { - super(new MapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "preserve_cardinality", "metadata")); + super(new MapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "preserve_cardinality", "force_synchronous", "metadata")); int inputIndex = 0; inputDataset = (Operand) op.input(inputIndex++); int otherArgumentsLength = op.inputListLength("other_arguments"); @@ -254,6 +285,7 @@ public Inputs(GraphOperation op) { outputShapes = op.attributes().getAttrShapeList("output_shapes"); useInterOpParallelism = op.attributes().getAttrBool("use_inter_op_parallelism"); preserveCardinality = op.attributes().getAttrBool("preserve_cardinality"); + forceSynchronous = op.attributes().getAttrBool("force_synchronous"); metadata = op.attributes().getAttrString("metadata"); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ParallelMapDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ParallelMapDataset.java index 68e97058b5c..6b783929411 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ParallelMapDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/ParallelMapDataset.java @@ -107,6 +107,9 @@ public static ParallelMapDataset create(Scope scope, Operand in if (opts.preserveCardinality != null) { opBuilder.setAttr("preserve_cardinality", opts.preserveCardinality); } + if (opts.useUnboundedThreadpool != null) { + opBuilder.setAttr("use_unbounded_threadpool", opts.useUnboundedThreadpool); + } if (opts.metadata != null) { opBuilder.setAttr("metadata", opts.metadata); } @@ -145,6 +148,16 @@ public static Options preserveCardinality(Boolean preserveCardinality) { return new Options().preserveCardinality(preserveCardinality); } + /** + * Sets the useUnboundedThreadpool option. + * + * @param useUnboundedThreadpool the useUnboundedThreadpool option + * @return this Options instance. + */ + public static Options useUnboundedThreadpool(Boolean useUnboundedThreadpool) { + return new Options().useUnboundedThreadpool(useUnboundedThreadpool); + } + /** * Sets the metadata option. * @@ -180,6 +193,8 @@ public static class Options { private Boolean preserveCardinality; + private Boolean useUnboundedThreadpool; + private String metadata; private Options() { @@ -218,6 +233,17 @@ public Options preserveCardinality(Boolean preserveCardinality) { return this; } + /** + * Sets the useUnboundedThreadpool option. + * + * @param useUnboundedThreadpool the useUnboundedThreadpool option + * @return this Options instance. + */ + public Options useUnboundedThreadpool(Boolean useUnboundedThreadpool) { + this.useUnboundedThreadpool = useUnboundedThreadpool; + return this; + } + /** * Sets the metadata option. * @@ -280,13 +306,18 @@ public static class Inputs extends RawOpInputs { */ public final boolean preserveCardinality; + /** + * The useUnboundedThreadpool attribute + */ + public final boolean useUnboundedThreadpool; + /** * The metadata attribute */ public final String metadata; public Inputs(GraphOperation op) { - super(new ParallelMapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "deterministic", "preserve_cardinality", "metadata")); + super(new ParallelMapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "deterministic", "preserve_cardinality", "use_unbounded_threadpool", "metadata")); int inputIndex = 0; inputDataset = (Operand) op.input(inputIndex++); int otherArgumentsLength = op.inputListLength("other_arguments"); @@ -299,6 +330,7 @@ public Inputs(GraphOperation op) { useInterOpParallelism = op.attributes().getAttrBool("use_inter_op_parallelism"); deterministic = op.attributes().getAttrString("deterministic"); preserveCardinality = op.attributes().getAttrBool("preserve_cardinality"); + useUnboundedThreadpool = op.attributes().getAttrBool("use_unbounded_threadpool"); metadata = op.attributes().getAttrString("metadata"); } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WeightedFlatMapDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WeightedFlatMapDataset.java new file mode 100644 index 00000000000..2f97c1e168c --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/WeightedFlatMapDataset.java @@ -0,0 +1,186 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.data; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.proto.DataType; +import org.tensorflow.types.TFloat64; +import org.tensorflow.types.family.TType; + +/** + * The WeightedFlatMapDataset operation + */ +@OpMetadata( + opType = WeightedFlatMapDataset.OP_NAME, + inputsClass = WeightedFlatMapDataset.Inputs.class +) +public final class WeightedFlatMapDataset extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "WeightedFlatMapDataset"; + + private Output handle; + + @SuppressWarnings("unchecked") + public WeightedFlatMapDataset(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + handle = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new WeightedFlatMapDataset operation. + * + * @param scope current scope + * @param inputDatasets The inputDatasets value + * @param weights The weights value + * @param outputTypes The value of the outputTypes attribute + * @param outputShapes The value of the outputShapes attribute + * @param options carries optional attribute values + * @return a new instance of WeightedFlatMapDataset + */ + @Endpoint( + describeByClass = true + ) + public static WeightedFlatMapDataset create(Scope scope, + Iterable> inputDatasets, Iterable> weights, + List> outputTypes, List outputShapes, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "WeightedFlatMapDataset"); + opBuilder.addInputList(Operands.asOutputs(inputDatasets)); + opBuilder.addInputList(Operands.asOutputs(weights)); + opBuilder.setAttr("output_types", Operands.toDataTypes(outputTypes)); + Shape[] outputShapesArray = new Shape[outputShapes.size()]; + for (int i = 0 ; i < outputShapesArray.length ; i++) { + outputShapesArray[i] = outputShapes.get(i); + } + opBuilder.setAttr("output_shapes", outputShapesArray); + if (options != null) { + for (Options opts : options) { + if (opts.metadata != null) { + opBuilder.setAttr("metadata", opts.metadata); + } + } + } + return new WeightedFlatMapDataset(opBuilder.build()); + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public static Options metadata(String metadata) { + return new Options().metadata(metadata); + } + + /** + * Gets handle. + * + * @return handle. + */ + public Output handle() { + return handle; + } + + @Override + @SuppressWarnings("unchecked") + public Output asOutput() { + return (Output) handle; + } + + /** + * Optional attributes for {@link org.tensorflow.op.data.WeightedFlatMapDataset} + */ + public static class Options { + private String metadata; + + private Options() { + } + + /** + * Sets the metadata option. + * + * @param metadata the metadata option + * @return this Options instance. + */ + public Options metadata(String metadata) { + this.metadata = metadata; + return this; + } + } + + @OpInputsMetadata( + outputsClass = WeightedFlatMapDataset.class + ) + public static class Inputs extends RawOpInputs { + /** + * The inputDatasets input + */ + public final Iterable> inputDatasets; + + /** + * The weights input + */ + public final Iterable> weights; + + /** + * The outputTypes attribute + */ + public final DataType[] outputTypes; + + /** + * The outputShapes attribute + */ + public final Shape[] outputShapes; + + /** + * The metadata attribute + */ + public final String metadata; + + public Inputs(GraphOperation op) { + super(new WeightedFlatMapDataset(op), op, Arrays.asList("output_types", "output_shapes", "metadata")); + int inputIndex = 0; + int inputDatasetsLength = op.inputListLength("input_datasets"); + inputDatasets = Arrays.asList((Operand[]) op.inputList(inputIndex, inputDatasetsLength)); + inputIndex += inputDatasetsLength; + int weightsLength = op.inputListLength("weights"); + weights = Arrays.asList((Operand[]) op.inputList(inputIndex, weightsLength)); + inputIndex += weightsLength; + outputTypes = op.attributes().getAttrTypeList("output_types"); + outputShapes = op.attributes().getAttrShapeList("output_shapes"); + metadata = op.attributes().getAttrString("metadata"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MapDataset.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MapDataset.java index f02bba6e46a..7c8cfafc8f4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MapDataset.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/data/experimental/MapDataset.java @@ -98,6 +98,9 @@ public static MapDataset create(Scope scope, Operand inputDatas if (opts.preserveCardinality != null) { opBuilder.setAttr("preserve_cardinality", opts.preserveCardinality); } + if (opts.forceSynchronous != null) { + opBuilder.setAttr("force_synchronous", opts.forceSynchronous); + } } } return new MapDataset(opBuilder.build()); @@ -123,6 +126,16 @@ public static Options preserveCardinality(Boolean preserveCardinality) { return new Options().preserveCardinality(preserveCardinality); } + /** + * Sets the forceSynchronous option. + * + * @param forceSynchronous the forceSynchronous option + * @return this Options instance. + */ + public static Options forceSynchronous(Boolean forceSynchronous) { + return new Options().forceSynchronous(forceSynchronous); + } + /** * Gets handle. * @@ -146,6 +159,8 @@ public static class Options { private Boolean preserveCardinality; + private Boolean forceSynchronous; + private Options() { } @@ -170,6 +185,17 @@ public Options preserveCardinality(Boolean preserveCardinality) { this.preserveCardinality = preserveCardinality; return this; } + + /** + * Sets the forceSynchronous option. + * + * @param forceSynchronous the forceSynchronous option + * @return this Options instance. + */ + public Options forceSynchronous(Boolean forceSynchronous) { + this.forceSynchronous = forceSynchronous; + return this; + } } @OpInputsMetadata( @@ -211,8 +237,13 @@ public static class Inputs extends RawOpInputs { */ public final boolean preserveCardinality; + /** + * The forceSynchronous attribute + */ + public final boolean forceSynchronous; + public Inputs(GraphOperation op) { - super(new MapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "preserve_cardinality")); + super(new MapDataset(op), op, Arrays.asList("Targuments", "output_types", "output_shapes", "use_inter_op_parallelism", "preserve_cardinality", "force_synchronous")); int inputIndex = 0; inputDataset = (Operand) op.input(inputIndex++); int otherArgumentsLength = op.inputListLength("other_arguments"); @@ -223,6 +254,7 @@ public Inputs(GraphOperation op) { outputShapes = op.attributes().getAttrShapeList("output_shapes"); useInterOpParallelism = op.attributes().getAttrBool("use_inter_op_parallelism"); preserveCardinality = op.attributes().getAttrBool("preserve_cardinality"); + forceSynchronous = op.attributes().getAttrBool("force_synchronous"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java index d1aae3e74ad..86215fa9a9c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/CheckNumerics.java @@ -39,8 +39,6 @@ * that are not a number (NaN) or infinity (Inf). Otherwise, returns the input * tensor. Unlike CheckNumerics (V1), CheckNumericsV2 distinguishes -Inf and +Inf * in the errors it throws. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CheckNumerics.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java index 37f2fec7d91..776a971ef27 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientIdentity.java @@ -37,8 +37,6 @@ * This op is hidden from public in Python. It is used by TensorFlow Debugger to * register gradient tensors for gradient debugging. * This op operates on non-reference-type tensors. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DebugGradientIdentity.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java index 5071299a66a..76a9e9029ca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugGradientRefIdentity.java @@ -37,8 +37,6 @@ * This op is hidden from public in Python. It is used by TensorFlow Debugger to * register gradient tensors for gradient debugging. * This op operates on reference-type tensors. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DebugGradientRefIdentity.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java index 63c7105e3c8..10edd71d4b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugIdentity.java @@ -36,8 +36,6 @@ /** * Provides an identity mapping of the non-Ref type input tensor for debugging. * Provides an identity mapping of the non-Ref type input tensor for debugging. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DebugIdentity.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java index ec63e9da708..4ff0f11c7bc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/debugging/DebugNumericsSummary.java @@ -40,8 +40,6 @@ * Computes a numeric summary of the input tensor. The shape of the output * depends on the tensor_debug_mode attribute. * This op is used internally by TensorFlow Debugger (tfdbg) v2. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DebugNumericsSummary.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclAllReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclAllReduce.java index c5416746198..7cc17dd9d36 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclAllReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclAllReduce.java @@ -45,8 +45,6 @@ * reduction: the reduction operation to perform. * num_devices: The number of devices participating in this reduction. * shared_name: Identifier that shared between ops of the same reduction. - * - * @param data type for {@code data} output */ @OpMetadata( opType = NcclAllReduce.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclBroadcast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclBroadcast.java index 3824d6a10dd..41a2050e44f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclBroadcast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclBroadcast.java @@ -42,8 +42,6 @@ *

      input: The input to the broadcast. * output: The same as input. * shape: The shape of the input tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = NcclBroadcast.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclReduce.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclReduce.java index 2a80593be6c..8fcf62bf4cc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclReduce.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/distribute/NcclReduce.java @@ -42,8 +42,6 @@ *

      input: The input to the reduction. * data: the value of the reduction across all {@code num_devices} devices. * reduction: the reduction operation to perform. - * - * @param data type for {@code data} output */ @OpMetadata( opType = NcclReduce.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java index 806ad99e2ea..af516490d88 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Cast.java @@ -36,8 +36,6 @@ /** * Cast x of type SrcT to y of DstT. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Cast.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java index 6b0a717157c..0da2678549f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/dtypes/Complex.java @@ -48,8 +48,6 @@ * # tensor `imag` is [4.75, 5.75] * tf.complex(real, imag) ==> [[2.25 + 4.75j], [3.25 + 5.75j]] * - * - * @param data type for {@code out} output */ @OpMetadata( opType = Complex.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java index 0a6a141c036..123c74afd50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustContrast.java @@ -43,8 +43,6 @@ *

      For each channel, the Op first computes the mean of the image pixels in the * channel and then adjusts each component of each pixel to * {@code (x - mean) * contrast_factor + mean}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AdjustContrast.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java index 45fe50175c4..b0001085638 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustHue.java @@ -41,8 +41,6 @@ *

      The input image is considered in the RGB colorspace. Conceptually, the RGB * colors are first mapped into HSV. A delta is then applied all the hue values, * and then remapped back to RGB colorspace. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AdjustHue.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java index a7fea42d8fb..5f0c063dc1d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/AdjustSaturation.java @@ -41,8 +41,6 @@ *

      The input image is considered in the RGB colorspace. Conceptually, the RGB * colors are first mapped into HSV. A scale is then applied all the saturation * values, and then remapped back to RGB colorspace. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AdjustSaturation.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java index 59e98a3252d..e639b0f2cb7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/CropAndResizeGradImage.java @@ -38,8 +38,6 @@ /** * Computes the gradient of the crop_and_resize op wrt the input image tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CropAndResizeGradImage.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeImage.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeImage.java index ae91e89973a..a5c7ee7845e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeImage.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodeImage.java @@ -53,8 +53,6 @@ * unoccupied areas (in the first frame) with zeros (black). For frames after the * first frame that does not occupy the entire canvas, it uses the previous * frame to fill the unoccupied areas. - * - * @param data type for {@code image} output */ @OpMetadata( opType = DecodeImage.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java index db44c3b3146..dd6384caf7c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DecodePng.java @@ -51,8 +51,6 @@ * of color channels. *

      This op also supports decoding JPEGs and non-animated GIFs since the interface * is the same, though it is cleaner to use {@code tf.io.decode_image}. - * - * @param data type for {@code image} output */ @OpMetadata( opType = DecodePng.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java index 8033cecb4c9..56c64a5e50c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/DrawBoundingBoxes.java @@ -45,8 +45,6 @@ * box is {@code [0.1, 0.2, 0.5, 0.9]}, the upper-left and bottom-right coordinates of * the bounding box will be {@code (40, 10)} to {@code (100, 50)} (in (x,y) coordinates). *

      Parts of the bounding box may fall outside the image. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DrawBoundingBoxes.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java index 69492ac2873..54395a44acc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractImagePatches.java @@ -36,8 +36,6 @@ /** * Extract {@code patches} from {@code images} and put them in the "depth" output dimension. - * - * @param data type for {@code patches} output */ @OpMetadata( opType = ExtractImagePatches.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java index 368fe5cfd02..4ca887e7e72 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ExtractJpegShape.java @@ -39,8 +39,6 @@ /** * Extract the shape information of a JPEG-encoded image. * This op only parses the image header, so it is much faster than DecodeJpeg. - * - * @param data type for {@code image_shape} output */ @OpMetadata( opType = ExtractJpegShape.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java index 6e32b95ca11..abd3d53d884 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/HsvToRgb.java @@ -39,8 +39,6 @@ * value of the pixels. The output is only well defined if the value in {@code images} * are in {@code [0,1]}. *

      See {@code rgb_to_hsv} for a description of the HSV encoding. - * - * @param data type for {@code output} output */ @OpMetadata( opType = HsvToRgb.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java index 572b3e59d16..cef590ad519 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV2.java @@ -42,8 +42,6 @@ * {@code (x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)}, where * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input * image, the output pixel is set to 0. - * - * @param data type for {@code transformed_images} output */ @OpMetadata( opType = ImageProjectiveTransformV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java index 2c448fc9397..59f06c2b982 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ImageProjectiveTransformV3.java @@ -42,8 +42,6 @@ * {@code (x', y') = ((a0 x + a1 y + a2) / k, (b0 x + b1 y + b2) / k)}, where * {@code k = c0 x + c1 y + 1}. If the transformed point lays outside of the input * image, the output pixel is set to fill_value. - * - * @param data type for {@code transformed_images} output */ @OpMetadata( opType = ImageProjectiveTransformV3.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java index 65c6f7f7f2a..f682bfd1f5a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/NonMaxSuppression.java @@ -58,8 +58,6 @@ * of other overlapping boxes instead of directly causing them to be pruned. * To enable this Soft-NMS mode, set the {@code soft_nms_sigma} parameter to be * larger than 0. - * - * @param data type for {@code selected_scores} output */ @OpMetadata( opType = NonMaxSuppression.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/QuantizedResizeBilinear.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/QuantizedResizeBilinear.java index def6ca5246e..94b4e077416 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/QuantizedResizeBilinear.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/QuantizedResizeBilinear.java @@ -38,8 +38,6 @@ /** * Resize quantized {@code images} to {@code size} using quantized bilinear interpolation. * Input images and output images must be quantized types. - * - * @param data type for {@code resized_images} output */ @OpMetadata( opType = QuantizedResizeBilinear.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java index 966401d271c..063b7b8f529 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RandomCrop.java @@ -41,8 +41,6 @@ *

      This Op picks a random location in {@code image} and crops a {@code height} by {@code width} * rectangle from that location. The random location is picked so the cropped * area will fit inside the original image. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomCrop.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java index 16d5af61802..c04fe6d13e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBicubicGrad.java @@ -36,8 +36,6 @@ /** * Computes the gradient of bicubic interpolation. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResizeBicubicGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java index dbd172bfbf2..166d6b46de6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeBilinearGrad.java @@ -36,8 +36,6 @@ /** * Computes the gradient of bilinear interpolation. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResizeBilinearGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java index 1fc40174782..355ac564de1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighbor.java @@ -36,8 +36,6 @@ /** * Resize {@code images} to {@code size} using nearest neighbor interpolation. - * - * @param data type for {@code resized_images} output */ @OpMetadata( opType = ResizeNearestNeighbor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java index 485aa4ba63b..36df9e12b2d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ResizeNearestNeighborGrad.java @@ -36,8 +36,6 @@ /** * Computes the gradient of nearest neighbor interpolation. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ResizeNearestNeighborGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java index 3709f0bd4f7..be3c84d9b66 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/RgbToHsv.java @@ -56,8 +56,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = RgbToHsv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java index 152f96ce75f..a7378278309 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/SampleDistortedBoundingBox.java @@ -70,8 +70,6 @@ * {@code use_image_if_no_bounding_boxes = true} will assume there is a single implicit * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is * false and no bounding boxes are supplied, an error is raised. - * - * @param data type for {@code begin} output */ @OpMetadata( opType = SampleDistortedBoundingBox.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java index 55dae2a4ae8..1749d046b37 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/ScaleAndTranslateGrad.java @@ -36,8 +36,6 @@ /** * The ScaleAndTranslateGrad operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = ScaleAndTranslateGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/StatelessSampleDistortedBoundingBox.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/StatelessSampleDistortedBoundingBox.java index ac9dfdfe74d..31c4de5388d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/StatelessSampleDistortedBoundingBox.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/image/StatelessSampleDistortedBoundingBox.java @@ -95,8 +95,6 @@ * {@code use_image_if_no_bounding_boxes = true} will assume there is a single implicit * bounding box covering the whole image. If {@code use_image_if_no_bounding_boxes} is * false and no bounding boxes are supplied, an error is raised. - * - * @param data type for {@code begin} output */ @OpMetadata( opType = StatelessSampleDistortedBoundingBox.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java index 0ef81b9eff2..07eac6679d4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodePaddedRaw.java @@ -38,8 +38,6 @@ /** * Reinterpret the bytes of a string as a vector of numbers. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DecodePaddedRaw.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java index 068d203c2b0..217c843796f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DecodeRaw.java @@ -37,8 +37,6 @@ /** * Reinterpret the bytes of a string as a vector of numbers. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DecodeRaw.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java index 1ff234ea6b6..9704bd78d15 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/DeserializeManySparse.java @@ -77,8 +77,6 @@ * values = [1, 2, 3, 4, 5] * shape = [2 50] * - * - * @param data type for {@code sparse_values} output */ @OpMetadata( opType = DeserializeManySparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java index 66a64b13c0b..039ff1546f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/ParseTensor.java @@ -37,8 +37,6 @@ /** * Transforms a serialized tensorflow.TensorProto proto into a Tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ParseTensor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java index b0e447608f3..70f9327d112 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeManySparse.java @@ -44,8 +44,6 @@ * {@code SparseTensor} objects going into each row of {@code serialized_sparse} will have * rank {@code R-1}. *

      The minibatch size {@code N} is extracted from {@code sparse_shape[0]}. - * - * @param data type for {@code serialized_sparse} output */ @OpMetadata( opType = SerializeManySparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java index 2f450dcf3bd..b0c2b5935bf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/io/SerializeSparse.java @@ -38,8 +38,6 @@ /** * Serialize a {@code SparseTensor} into a {@code [3]} {@code Tensor} object. - * - * @param data type for {@code serialized_sparse} output */ @OpMetadata( opType = SerializeSparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java index 34f179ed2b0..a521e77b040 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandPart.java @@ -65,8 +65,6 @@ * tf.linalg.band_part(input, -1, 0) ==> Lower triangular part. * tf.linalg.band_part(input, 0, 0) ==> Diagonal. * - * - * @param data type for {@code band} output */ @OpMetadata( opType = BandPart.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java index 9dc6dba4348..532d4fe148b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BandedTriangularSolve.java @@ -35,8 +35,6 @@ /** * The BandedTriangularSolve operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BandedTriangularSolve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java index 0016839b211..b43cf15b48e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholesky.java @@ -35,8 +35,6 @@ /** * The BatchCholesky operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchCholesky.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java index d9ce332f7e2..5e917e740b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchCholeskyGrad.java @@ -35,8 +35,6 @@ /** * The BatchCholeskyGrad operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchCholeskyGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java index 55e8a0d6a75..99cb57ff97f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixBandPart.java @@ -36,8 +36,6 @@ /** * The BatchMatrixBandPart operation - * - * @param data type for {@code band} output */ @OpMetadata( opType = BatchMatrixBandPart.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java index c50a706e073..7f1bd32a749 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDeterminant.java @@ -35,8 +35,6 @@ /** * The BatchMatrixDeterminant operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixDeterminant.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java index bba3cae6292..edc731b1f36 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiag.java @@ -35,8 +35,6 @@ /** * The BatchMatrixDiag operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixDiag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java index 63e7e0e3026..ac379b960aa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixDiagPart.java @@ -35,8 +35,6 @@ /** * The BatchMatrixDiagPart operation - * - * @param data type for {@code diagonal} output */ @OpMetadata( opType = BatchMatrixDiagPart.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java index 081dab67e8b..009deec3658 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixInverse.java @@ -35,8 +35,10 @@ /** * The BatchMatrixInverse operation - * - * @param data type for {@code output} output + * DEPRECATED: This operation is deprecated and will be removed in a future version. + * Use tf.linalg.inv instead. + *

      Computes the inverse of one or more square invertible matrices or their + * adjoints (conjugate transposes). */ @OpMetadata( opType = BatchMatrixInverse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java index 67a97a485c0..eaea0c7db31 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSetDiag.java @@ -35,8 +35,6 @@ /** * The BatchMatrixSetDiag operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixSetDiag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java index dc65bb1dce1..5b6749c53e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolve.java @@ -35,8 +35,6 @@ /** * The BatchMatrixSolve operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixSolve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java index 801c5262946..7cb6714696f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixSolveLs.java @@ -36,8 +36,6 @@ /** * The BatchMatrixSolveLs operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixSolveLs.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java index ae63e405dd7..d7b326bae21 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchMatrixTriangularSolve.java @@ -35,8 +35,6 @@ /** * The BatchMatrixTriangularSolve operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatrixTriangularSolve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java index 1d6588ac785..637625bd5db 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSelfAdjointEig.java @@ -35,8 +35,6 @@ /** * The BatchSelfAdjointEigV2 operation - * - * @param data type for {@code e} output */ @OpMetadata( opType = BatchSelfAdjointEig.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java index cf723ceeedc..a2411601e63 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/BatchSvd.java @@ -35,8 +35,6 @@ /** * The BatchSvd operation - * - * @param data type for {@code s} output */ @OpMetadata( opType = BatchSvd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java index 294a41889da..ef6d0ca1a3d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cholesky.java @@ -45,8 +45,6 @@ *

      Note: The gradient computation on GPU is faster for large matrices but * not for large batch dimensions when the submatrices are small. In this * case it might be faster to use the CPU. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Cholesky.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java index f2529b61318..ce7975bbb29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/CholeskyGrad.java @@ -37,8 +37,6 @@ * Computes the reverse mode backpropagated gradient of the Cholesky algorithm. * For an explanation see "Differentiation of the Cholesky algorithm" by * Iain Murray http://arxiv.org/abs/1602.07527. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CholeskyGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java index e14f2e71ef9..561e4fecbf1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/ConjugateTranspose.java @@ -39,8 +39,6 @@ * The output {@code y} has the same rank as {@code x}. The shapes of {@code x} and {@code y} satisfy: * {@code y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]} * {@code y[i,j,k,...,s,t,u] == conj(x[perm[i], perm[j], perm[k],...,perm[s], perm[t], perm[u]])} - * - * @param data type for {@code y} output */ @OpMetadata( opType = ConjugateTranspose.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java index 68ee2a65439..5c942c1e41b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Cross.java @@ -38,8 +38,6 @@ * {@code a} and {@code b} must be the same shape; they can either be simple 3-element vectors, * or any shape where the innermost dimension is 3. In the latter case, each pair * of corresponding 3-element vectors is cross-multiplied independently. - * - * @param data type for {@code product} output */ @OpMetadata( opType = Cross.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java index 62aafcde736..d63118c9f73 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Det.java @@ -38,8 +38,6 @@ * The input is a tensor of shape {@code [..., M, M]} whose inner-most 2 dimensions * form square matrices. The output is a tensor containing the determinants * for all input submatrices {@code [..., :, :]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Det.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java index 783950dfde9..3276bbb78fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Eig.java @@ -46,8 +46,6 @@ * e, v = eig(a) * e = eig(a, compute_v=False) * - * - * @param data type for {@code e} output */ @OpMetadata( opType = Eig.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java index 51d3eeb3fa6..5b57bad8aa4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Einsum.java @@ -99,8 +99,6 @@ * supported by {@code numpy.einsum}. *
      {@literal @}end_compatibility *

    - * - * @param data type for {@code output} output */ @OpMetadata( opType = Einsum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java index ab6f58f4885..f544381e1a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/EuclideanNorm.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = EuclideanNorm.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java index 6b02bc2a059..93338f1df07 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Inv.java @@ -42,8 +42,6 @@ *

    If a matrix is not invertible there is no guarantee what the op does. It * may detect the condition and raise an exception or it may simply return a * garbage result. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Inv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java index 298e01306db..a144ac2d31c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/LogMatrixDeterminant.java @@ -43,8 +43,6 @@ * The {@code log_abs_determinant} is computed as {@code det(P)*sum(log(diag(LU)))} where {@code LU} * is the {@code LU} decomposition of the input and {@code P} is the corresponding * permutation matrix. - * - * @param data type for {@code sign} output */ @OpMetadata( opType = LogMatrixDeterminant.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java index 480ed23e696..9063fab1875 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Lu.java @@ -51,10 +51,6 @@ *

    P represents a permutation matrix encoded as a list of indices each between {@code 0} * and {@code M-1}, inclusive. If P_mat denotes the permutation matrix corresponding to * P, then the L, U and P satisfies P_mat * input = L * U. - * - * @param data type for {@code lu} output - * - * @param data type for {@code p} output */ @OpMetadata( opType = Lu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java index a592a65396a..c817cbc9037 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatMul.java @@ -41,8 +41,6 @@ * true). *

    Note: The default kernel implementation for MatMul on GPUs uses * cublas. - * - * @param data type for {@code product} output */ @OpMetadata( opType = MatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java index 0a292c9d1b1..5241708f71a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiag.java @@ -116,8 +116,6 @@ * [1, 9], * [9, 2]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixDiag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java index 084c946193e..a818b134cbe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPart.java @@ -96,8 +96,6 @@ * [3, 4, 9], * [4, 3, 8]]] * - * - * @param data type for {@code diagonal} output */ @OpMetadata( opType = MatrixDiagPart.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java index d4794ab7571..c6ecab46bab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagPartV3.java @@ -126,8 +126,6 @@ * [4, 3, 8]]] * * - * - * @param data type for {@code diagonal} output */ @OpMetadata( opType = MatrixDiagPartV3.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java index 943b92e2c95..67b5b3b74b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixDiagV3.java @@ -144,8 +144,6 @@ * [9, 2]] * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixDiagV3.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixExponential.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixExponential.java index 961f57037f4..9332cd02b3e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixExponential.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixExponential.java @@ -35,8 +35,6 @@ /** * Deprecated, use python implementation tf.linalg.matrix_exponential. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixExponential.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java index b3876d3a572..f1529a1c264 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixLogarithm.java @@ -46,8 +46,6 @@ *

    The input is a tensor of shape {@code [..., M, M]} whose inner-most 2 dimensions * form square matrices. The output is a tensor of the same shape as the input * containing the exponential for all input submatrices {@code [..., :, :]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixLogarithm.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java index 0ae2c206569..1ec3a1444f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSetDiag.java @@ -132,8 +132,6 @@ * [7, 4, 2, 4]]] * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixSetDiag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java index 3b340034827..d0601c6ee57 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/MatrixSolveLs.java @@ -66,8 +66,6 @@ * least-squares solution, even when \(A\) is rank deficient. This path is * typically 6-7 times slower than the fast path. If {@code fast} is {@code False} then * {@code l2_regularizer} is ignored. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MatrixSolveLs.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java index 9e73edaf6b8..037f024d04b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Qr.java @@ -47,8 +47,6 @@ * q, r = qr(a) * q_full, r_full = qr(a, full_matrices=True) * - * - * @param data type for {@code q} output */ @OpMetadata( opType = Qr.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java index 93ca4112092..d3136668a39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMul.java @@ -41,8 +41,6 @@ * {@code a} (after being transposed if {@code transpose_a} is non-zero) must match the * outer dimension of {@code b} (after being transposed if {@code transposed_b} is * non-zero). - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBias.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBias.java index 4ff470d2594..0cc43361bf4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBias.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBias.java @@ -43,8 +43,6 @@ * match the outer dimension of {@code b} (after being transposed if {@code transposed_b} is * non-zero). Then do broadcast add operation with bias values on the matrix * multiplication result. The bias size must match inner dimension of {@code b}. - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMulWithBias.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndRelu.java index ad1182c50de..eee116597b9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndRelu.java @@ -44,8 +44,6 @@ * non-zero). Then do broadcast add operation with bias values on the matrix * multiplication result. The bias size must match inner dimension of {@code b}. Then do * relu activation to get non-negative result. - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMulWithBiasAndRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java index 91eefc72f1b..82bdde439f1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/QuantizedMatMulWithBiasAndReluAndRequantize.java @@ -45,8 +45,6 @@ * multiplication result. The bias size must match inner dimension of {@code b}. Then do * relu activation to get non-negative result. Then do requantize operation to get * final uint8 result. - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMulWithBiasAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/SelfAdjointEig.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/SelfAdjointEig.java index 2d64ddb4dda..75c06a99f2a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/SelfAdjointEig.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/SelfAdjointEig.java @@ -45,8 +45,6 @@ * e, v = self_adjoint_eig(a) * e = self_adjoint_eig(a, compute_v=False) * - * - * @param data type for {@code e} output */ @OpMetadata( opType = SelfAdjointEig.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java index a0f41eda3f5..d1057183227 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Solve.java @@ -41,8 +41,6 @@ * satisfies {@code matrix[..., :, :] * output[..., :, :] = rhs[..., :, :]}. * If {@code adjoint} is {@code True} then each output matrix satisfies * {@code adjoint(matrix[..., :, :]) * output[..., :, :] = rhs[..., :, :]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Solve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java index 224688c8e1d..cf48c52605a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Sqrtm.java @@ -47,8 +47,6 @@ *

    The input is a tensor of shape {@code [..., M, M]} whose inner-most 2 dimensions * form square matrices. The output is a tensor of the same shape as the input * containing the matrix square root for all input submatrices {@code [..., :, :]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Sqrtm.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java index b17b01cf88e..b11eafdccfc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Svd.java @@ -45,8 +45,6 @@ * s, u, v = svd(a) * s, _, _ = svd(a, compute_uv=False) * - * - * @param data type for {@code s} output */ @OpMetadata( opType = Svd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java index 6292194a118..69ee9258392 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiag.java @@ -48,8 +48,6 @@ * [0, 0, 3, 0] * [0, 0, 0, 4]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = TensorDiag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java index ae21a73b071..838a036f84b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TensorDiagPart.java @@ -49,8 +49,6 @@ * * tf.diag_part(input) ==> [1, 2, 3, 4] * - * - * @param data type for {@code diagonal} output */ @OpMetadata( opType = TensorDiagPart.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java index 65f22dfe32b..712576c0989 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/Transpose.java @@ -38,8 +38,6 @@ * Shuffle dimensions of x according to a permutation. * The output {@code y} has the same rank as {@code x}. The shapes of {@code x} and {@code y} satisfy: * {@code y.shape[i] == x.shape[perm[i]] for i in [0, 1, ..., rank(x) - 1]} - * - * @param data type for {@code y} output */ @OpMetadata( opType = Transpose.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java index 891f4e1f608..026fbfb70bf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TriangularSolve.java @@ -77,8 +77,6 @@ * # [4. ], * # [1.9999999]], dtype=float32)> * - * - * @param data type for {@code output} output */ @OpMetadata( opType = TriangularSolve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalMatMul.java index bd69ed483e4..a6122dabc83 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalMatMul.java @@ -36,8 +36,6 @@ /** * Calculate product with tridiagonal matrix. * Calculates product of two matrices, where left matrix is a tridiagonal matrix. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TridiagonalMatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java index 57c0864ef7d..6b0a890d12e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/TridiagonalSolve.java @@ -42,8 +42,6 @@ * pivoting, depending on {@code partial_pivoting} attribute. On GPU, Nvidia's cuSPARSE * library is used: https://docs.nvidia.com/cuda/cusparse/index.html#gtsv * Partial pivoting is not yet supported by XLA backends. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TridiagonalSolve.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java index 27d77557bfb..7fd47c7c6f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixComponents.java @@ -39,8 +39,6 @@ * Reads out the CSR components at batch {@code index}. * This op is meant only for debugging / testing, and its interface is not expected * to be stable. - * - * @param data type for {@code values} output */ @OpMetadata( opType = CSRSparseMatrixComponents.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java index 51bed06f6ba..97fb87d7250 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToDense.java @@ -36,8 +36,6 @@ /** * Convert a (possibly batched) CSRSparseMatrix to dense. - * - * @param data type for {@code dense_output} output */ @OpMetadata( opType = CSRSparseMatrixToDense.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java index 5c111887894..ad365783cea 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/CSRSparseMatrixToSparseTensor.java @@ -37,8 +37,6 @@ /** * Converts a (possibly batched) CSRSparesMatrix to a SparseTensor. - * - * @param data type for {@code values} output */ @OpMetadata( opType = CSRSparseMatrixToSparseTensor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java index 2de2e93ec3b..5d9ed9bbbf2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/linalg/sparse/SparseMatrixMatMul.java @@ -56,8 +56,6 @@ * C = conjugate(transpose(A . B)) = conjugate(transpose(B)) . * conjugate(transpose(A)) * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseMatrixMatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java index ef53c5f5693..0f4ee840704 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Abs.java @@ -38,8 +38,6 @@ * Given a tensor {@code x}, this operation returns a tensor containing the absolute * value of each element in {@code x}. For example, if x is an input element and y is * an output element, this operation computes \(y = |x|\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Abs.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java index 61d1df63943..3a0e466e8cd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AccumulateN.java @@ -43,8 +43,6 @@ * storage is proportional to the output size rather than the inputs size. *

    Unlike the original {@code accumulate_n}, {@code accumulate_n_v2} is differentiable. *

    Returns a {@code Tensor} of same shape and type as the elements of {@code inputs}. - * - * @param data type for {@code sum} output */ @OpMetadata( opType = AccumulateN.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java index 078326e1891..915e5b98b63 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acos.java @@ -37,8 +37,6 @@ * Computes acos of x element-wise. * Provided an input tensor, the {@code tf.math.acos} operation returns the inverse cosine of each element of the tensor. If {@code y = tf.math.cos(x)} then, {@code x = tf.math.acos(y)}. *

    Input range is {@code [-1, 1]} and the output has a range of {@code [0, pi]}. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Acos.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java index 60edbd7880f..8ade37b1990 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Acosh.java @@ -41,8 +41,6 @@ * x = tf.constant([-2, -0.5, 1, 1.2, 200, 10000, float("inf")]) * tf.math.acosh(x) ==> [nan nan 0. 0.62236255 5.9914584 9.903487 inf] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Acosh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java index 4f32acd9ee1..61db4d2e4ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Add.java @@ -39,8 +39,6 @@ * here *

    Given two input tensors, the {@code tf.add} operation computes the sum for every element in the tensor. *

    Both input and output have a range {@code (-inf, inf)}. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Add.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java index 6cd47212eef..f2ef9209796 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/AddN.java @@ -41,8 +41,6 @@ * x = [9, 7, 10] * tf.math.add_n(x) ==> 26 * - * - * @param data type for {@code sum} output */ @OpMetadata( opType = AddN.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java index a9c7814636f..6ad1ff84bba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Angle.java @@ -51,8 +51,6 @@ *

    {@literal @}compatibility(numpy)
    * Equivalent to np.angle. *
    {@literal @}end_compatibility - * - * @param data type for {@code output} output */ @OpMetadata( opType = Angle.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java index 5a7b5adec69..c222f3d54d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMax.java @@ -48,8 +48,6 @@ * # c = 4 * # here a[4] = 166.32 which is the largest element of a across axis 0 * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ArgMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java index ff138655b1f..41aa45a10ad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ArgMin.java @@ -48,8 +48,6 @@ * # c = 0 * # here a[0] = 1 which is the smallest element of a across axis 0 * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ArgMin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java index 050107db969..810aeb5fa3b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asin.java @@ -47,8 +47,6 @@ * * tf.math.asin(y) # [1.047, 0.785] = x * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Asin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java index d4170db292a..918518f2b82 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Asinh.java @@ -42,8 +42,6 @@ * x = tf.constant([-float("inf"), -2, -0.5, 1, 1.2, 200, 10000, float("inf")]) * tf.math.asinh(x) ==> [-inf -1.4436355 -0.4812118 0.8813736 1.0159732 5.991471 9.903487 inf] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Asinh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java index aab73783c10..8979ab75d9e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan.java @@ -47,8 +47,6 @@ * * tf.math.atan(y) # [1.047, 0.785] = x * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Atan.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java index dfff4a48676..2d566d3cc22 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atan2.java @@ -51,8 +51,6 @@ * * * - * - * @param data type for {@code z} output */ @OpMetadata( opType = Atan2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java index ea5729193bf..c4dd0f1ead2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Atanh.java @@ -44,8 +44,6 @@ * x = tf.constant([-float("inf"), -1, -0.5, 1, 0, 0.5, 10, float("inf")]) * tf.math.atanh(x) ==> [nan -inf -0.54930615 inf 0. 0.54930615 nan nan] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Atanh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java index d3782706f20..945d2107a39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0.java @@ -35,8 +35,6 @@ /** * The BesselI0 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselI0.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java index eec8b3281a3..7e27d3e4263 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI0e.java @@ -35,8 +35,6 @@ /** * The BesselI0e operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselI0e.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java index bb59dc19f5c..28304567e86 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1.java @@ -35,8 +35,6 @@ /** * The BesselI1 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselI1.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java index fe929e32eb1..df3b3f937e8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/BesselI1e.java @@ -35,8 +35,6 @@ /** * The BesselI1e operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselI1e.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java index f7b9904c100..1a895c89f00 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Betainc.java @@ -41,8 +41,6 @@ *

    \(B(x; a, b) = \int_0^x t^{a-1} (1 - t)^{b-1} dt\) *

    is the incomplete beta function and \(B(a, b)\) is the complete * beta function. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Betainc.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java index 6e78f0799fc..463dc277eae 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Bincount.java @@ -42,8 +42,6 @@ * the value in {@code weights} at each index where the corresponding value in {@code arr} is * {@code i}. *

    Values in {@code arr} outside of the range [0, size) are ignored. - * - * @param data type for {@code bins} output */ @OpMetadata( opType = Bincount.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java index 3db46461d7c..1a69b94a8e4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ceil.java @@ -35,8 +35,6 @@ /** * Returns element-wise smallest integer not less than x. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Ceil.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java index 798b2a9cb1a..9461d599888 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ComplexAbs.java @@ -52,8 +52,6 @@ * * * - * - * @param data type for {@code y} output */ @OpMetadata( opType = ComplexAbs.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java index 266da810658..d46b7f2ae5b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Conj.java @@ -45,8 +45,6 @@ * # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] * tf.conj(input) ==> [-2.25 - 4.75j, 3.25 - 5.75j] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conj.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java index 0ab0152ff02..b6b5b9595c5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cos.java @@ -43,8 +43,6 @@ * x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")]) * tf.math.cos(x) ==> [nan -0.91113025 0.87758255 0.5403023 0.36235774 0.48718765 -0.95215535 nan] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Cos.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java index 76a98abe533..391d2efd7ab 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cosh.java @@ -42,8 +42,6 @@ * x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")]) * tf.math.cosh(x) ==> [inf 4.0515420e+03 1.1276259e+00 1.5430807e+00 1.8106556e+00 3.7621956e+00 1.1013233e+04 inf] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Cosh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java index 3e901959c5d..90bdcdc0038 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumprod.java @@ -56,8 +56,6 @@ *

      * tf.cumprod([a, b, c], exclusive=True, reverse=True)  # => [b * c, c, 1]
      * 
    - * - * @param data type for {@code out} output */ @OpMetadata( opType = Cumprod.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java index 12b3346db25..ff8dca235c9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Cumsum.java @@ -56,8 +56,6 @@ *
      * tf.cumsum([a, b, c], exclusive=True, reverse=True)  # => [b + c, c, 0]
      * 
    - * - * @param data type for {@code out} output */ @OpMetadata( opType = Cumsum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java index 52595f56eea..f7367703a41 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/CumulativeLogsumexp.java @@ -51,8 +51,6 @@ * floating point type is used instead. *

    By setting the {@code reverse} kwarg to {@code True}, the cumulative log-sum-exp is performed in the * opposite direction. - * - * @param data type for {@code out} output */ @OpMetadata( opType = CumulativeLogsumexp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java index ff9a38ba24d..808be372c5f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DenseBincount.java @@ -41,8 +41,6 @@ * the value in {@code weights} at each index where the corresponding value in {@code arr} is * {@code i}. *

    Values in {@code arr} outside of the range [0, size) are ignored. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DenseBincount.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java index 37117f4e1b8..3a48d548bd4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Digamma.java @@ -36,8 +36,6 @@ /** * Computes Psi, the derivative of Lgamma (the log of the absolute value of * {@code Gamma(x)}), element-wise. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Digamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java index 62a15f37da7..8ad37113d3f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Div.java @@ -37,8 +37,6 @@ * Returns x / y element-wise. * NOTE: {@code math.Div} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Div.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java index bb098cfdf14..43047bad3c6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/DivNoNan.java @@ -37,8 +37,6 @@ * Returns 0 if the denominator is zero. * NOTE: {@code math.DivNoNan} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = DivNoNan.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java index 1e2046e2892..ef607d7778b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erf.java @@ -35,8 +35,6 @@ /** * Computes the Gauss error function of {@code x} element-wise. In statistics, for non-negative values of $x$, the error function has the following interpretation: for a random variable $Y$ that is normally distributed with mean 0 and variance $1/\sqrt{2}$, $erf(x)$ is the probability that $Y$ falls in the range $[−x, x]$. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Erf.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java index b8d11327b94..25fdbcd648c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Erfc.java @@ -35,8 +35,6 @@ /** * Computes the complementary error function of {@code x} element-wise. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Erfc.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java index 1a5c7456b51..fe1d6ed1515 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Exp.java @@ -56,8 +56,6 @@ * x = tf.constant(1 + 1j) * tf.math.exp(x) ==> 1.4686939399158851+2.2873552871788423j * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Exp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java index a6f8f64ab43..b9c80edf84b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Expm1.java @@ -47,8 +47,6 @@ * x = tf.constant(1 + 1j) * tf.math.expm1(x) ==> (0.46869393991588515+2.2873552871788423j) * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Expm1.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java index bb9dbc4aa32..27ed6af66ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Floor.java @@ -35,8 +35,6 @@ /** * Returns element-wise largest integer not greater than x. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Floor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java index 47887e1a4dd..61d57ac8c4f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorDiv.java @@ -37,8 +37,6 @@ * Returns x // y element-wise. * NOTE: {@code math.FloorDiv} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = FloorDiv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java index 58c90f87123..b41e5d112b2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/FloorMod.java @@ -40,8 +40,6 @@ * {@code floor(x / y) * y + floormod(x, y) = x}, regardless of the signs of x and y. *

    NOTE: {@code math.FloorMod} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = FloorMod.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java index 4f116ba6e63..224c434af9f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igamma.java @@ -42,8 +42,6 @@ *

    is the lower incomplete Gamma function. *

    Note, above {@code Q(a, x)} ({@code Igammac}) is the upper regularized complete * Gamma function. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Igamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java index f9e7aced432..a3c6c4f20ad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/IgammaGradA.java @@ -35,8 +35,6 @@ /** * Computes the gradient of {@code igamma(a, x)} wrt {@code a}. - * - * @param data type for {@code z} output */ @OpMetadata( opType = IgammaGradA.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java index 1cc0549ad00..80f2545ce69 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Igammac.java @@ -42,8 +42,6 @@ *

    is the upper incomplete Gamma function. *

    Note, above {@code P(a, x)} ({@code Igamma}) is the lower regularized complete * Gamma function. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Igammac.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java index fe04cd17336..509de2b8c7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Imag.java @@ -47,8 +47,6 @@ * # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] * tf.imag(input) ==> [4.75, 5.75] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Imag.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java index 3035d46e60c..a466109898c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/InvertPermutation.java @@ -46,8 +46,6 @@ * # tensor `x` is [3, 4, 0, 2, 1] * invert_permutation(x) ==> [2, 4, 3, 0, 1] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = InvertPermutation.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java index d8c6b4889a2..4c5aea1de84 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Lgamma.java @@ -42,8 +42,6 @@ * x = tf.constant([0, 0.5, 1, 4.5, -4, -5.6]) * tf.math.lgamma(x) ==> [inf, 0.5723649, 0., 2.4537368, inf, -4.6477685] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Lgamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java index 32ee589536a..911ab61ff0c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log.java @@ -41,8 +41,6 @@ * x = tf.constant([0, 0.5, 1, 5]) * tf.math.log(x) ==> [-inf, -0.6931472, 0. , 1.609438] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Log.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java index f280d8b0062..05fe31ad376 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Log1p.java @@ -41,8 +41,6 @@ * x = tf.constant([0, 0.5, 1, 5]) * tf.math.log1p(x) ==> [0., 0.4054651, 0.6931472, 1.7917595] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Log1p.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java index c46c8c6e384..0c864b79f5e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Maximum.java @@ -37,8 +37,6 @@ * Returns the max of x and y (i.e. x > y ? x : y) element-wise. * NOTE: {@code math.Maximum} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Maximum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java index 94de9fc5bd4..9018aa2bd6d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mean.java @@ -40,8 +40,6 @@ * {@code keep_dims} is true, the rank of the tensor is reduced by 1 for each entry in * {@code axis}. If {@code keep_dims} is true, the reduced dimensions are * retained with length 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Mean.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java index 588bcb3328b..b516ee5c302 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Minimum.java @@ -37,8 +37,6 @@ * Returns the min of x and y (i.e. x < y ? x : y) element-wise. * NOTE: {@code math.Minimum} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Minimum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java index d318de97c9c..60ccc32e855 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mod.java @@ -39,8 +39,6 @@ * {@code tf.truncatediv(x, y) * y + truncate_mod(x, y) = x}. *

    NOTE: {@code math.Mod} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Mod.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java index d7466085ada..d18a48a6472 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Mul.java @@ -37,8 +37,6 @@ * Returns x * y element-wise. * NOTE: {@code math.Mul} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Mul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java index 85429b70ca1..7e85f94c31d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/MulNoNan.java @@ -37,8 +37,6 @@ * Returns x * y element-wise. Returns zero if y is zero, even if x if infinite or NaN. * NOTE: {@code math.MulNoNan} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = MulNoNan.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java index 37d1ffb8fc9..2c9b4f4719f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Ndtri.java @@ -35,8 +35,6 @@ /** * The Ndtri operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = Ndtri.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java index e0ec5783144..e11b274470a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Neg.java @@ -36,8 +36,6 @@ /** * Computes numerical negative value element-wise. * I.e., \(y = -x\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Neg.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java index 45ff3a179ca..fef32810db3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/NextAfter.java @@ -40,8 +40,6 @@ *

    {@literal @}compatibility(cpp)
    * Equivalent to C++ std::nextafter function. *
    {@literal @}end_compatibility - * - * @param data type for {@code output} output */ @OpMetadata( opType = NextAfter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java index b2fb442489b..f391fef2335 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Polygamma.java @@ -39,8 +39,6 @@ *

    \(\psi^{(a)}(x) = \frac{d^a}{dx^a} \psi(x)\) *

    where \(\psi(x)\) is the digamma function. * The polygamma function is defined only for non-negative integer orders \a\. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Polygamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java index f50532e8d62..3a8f8acbb7a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Pow.java @@ -42,8 +42,6 @@ * # tensor 'y' is [[8, 16], [2, 3]] * tf.pow(x, y) ==> [[256, 65536], [9, 27]] * - * - * @param data type for {@code z} output */ @OpMetadata( opType = Pow.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java index ad59711dca9..cf02c4ad713 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedAdd.java @@ -37,8 +37,6 @@ /** * Returns x + y element-wise, working on quantized buffers. - * - * @param data type for {@code z} output */ @OpMetadata( opType = QuantizedAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java index 6b5c3d05579..b9f1e5b062c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/QuantizedMul.java @@ -37,8 +37,6 @@ /** * Returns x * y element-wise, working on quantized buffers. - * - * @param data type for {@code z} output */ @OpMetadata( opType = QuantizedMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java index 6217269b474..c85e0d73861 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Real.java @@ -47,8 +47,6 @@ * # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] * tf.real(input) ==> [-2.25, 3.25] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Real.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java index c1aceba76d3..fb2e7e77d33 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RealDiv.java @@ -38,8 +38,6 @@ * If {@code x} and {@code y} are reals, this will return the floating-point division. *

    NOTE: {@code Div} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = RealDiv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java index 97ae15f6015..c0e6b9c573a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Reciprocal.java @@ -36,8 +36,6 @@ /** * Computes the reciprocal of x element-wise. * I.e., \(y = 1 / x\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Reciprocal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java index 13b7b7592ab..9d1c672629f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/ReciprocalGrad.java @@ -37,8 +37,6 @@ * Computes the gradient for the inverse of {@code x} wrt its input. * Specifically, {@code grad = -dy * y*y}, where {@code y = 1/x}, and {@code dy} * is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = ReciprocalGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java index c2a71d1d594..f6dcf220ade 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RequantizePerChannel.java @@ -37,8 +37,6 @@ /** * Requantizes input with min and max values known per channel. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RequantizePerChannel.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java index 716bc8be07b..62a48d4ecd0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rint.java @@ -43,8 +43,6 @@ * rint(0.5000001) ==> 1.0 * rint([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0]) ==> [-2., -2., -0., 0., 2., 2., 2.] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Rint.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java index d8a5aff3d2d..0e7441efeb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Round.java @@ -37,8 +37,6 @@ * Rounds the values of a tensor to the nearest integer, element-wise. * Rounds half to even. Also known as bankers rounding. If you want to round * according to the current system rounding mode use std::cint. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Round.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java index 12ce75ef035..3d438f10f12 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Rsqrt.java @@ -36,8 +36,6 @@ /** * Computes reciprocal of square root of x element-wise. * I.e., \(y = 1 / \sqrt{x}\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Rsqrt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java index f92da40a82b..90fc4892083 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/RsqrtGrad.java @@ -37,8 +37,6 @@ * Computes the gradient for the rsqrt of {@code x} wrt its input. * Specifically, {@code grad = dy * -0.5 * y^3}, where {@code y = rsqrt(x)}, and {@code dy} * is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = RsqrtGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java index 1939c7a4d3a..44ec468eaf4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMax.java @@ -73,8 +73,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SegmentMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java index 7d0e2af1606..2e69b2bb8b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMean.java @@ -64,8 +64,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SegmentMean.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java index cb5a312d3ff..9dce52fceed 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentMin.java @@ -73,8 +73,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SegmentMin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java index 87738a1ac3a..77fd53d92a0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentProd.java @@ -66,8 +66,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SegmentProd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java index 578d159e289..c47c3acd24f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SegmentSum.java @@ -44,9 +44,6 @@ * that {@code segment_ids[j] == i}. *

    If the sum is empty for a given segment ID {@code i}, {@code output[i] = 0}. *

    Note that this op is currently only supported with jit_compile=True. - * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SegmentSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java index bd93a0303eb..8e71006a2c0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sigmoid.java @@ -36,8 +36,6 @@ /** * Computes sigmoid of {@code x} element-wise. * Specifically, {@code y = 1 / (1 + exp(-x))}. - * - * @param data type for {@code y} output */ @OpMetadata( opType = Sigmoid.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java index 8f4b7cfe45c..a85b754cc61 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SigmoidGrad.java @@ -37,8 +37,6 @@ * Computes the gradient of the sigmoid of {@code x} wrt its input. * Specifically, {@code grad = dy * y * (1 - y)}, where {@code y = sigmoid(x)}, and * {@code dy} is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = SigmoidGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java index 15f5e07b597..ee9d2d65154 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sign.java @@ -46,8 +46,6 @@ * * * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Sign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java index 06269cb6278..1a13ada1838 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sin.java @@ -42,8 +42,6 @@ * x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10, float("inf")]) * tf.math.sin(x) ==> [nan -0.4121185 -0.47942555 0.84147096 0.9320391 -0.87329733 -0.54402107 nan] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Sin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java index 9e1a692df76..b4af201ab99 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sinh.java @@ -42,8 +42,6 @@ * x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 2, 10, float("inf")]) * tf.math.sinh(x) ==> [-inf -4.0515420e+03 -5.2109528e-01 1.1752012e+00 1.5094614e+00 3.6268604e+00 1.1013232e+04 inf] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Sinh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java index 95f33401f0b..5989ca78f57 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SobolSample.java @@ -40,8 +40,6 @@ * Generates points from the Sobol sequence. * Creates a Sobol sequence with {@code num_results} samples. Each sample has dimension * {@code dim}. Skips the first {@code skip} samples. - * - * @param data type for {@code samples} output */ @OpMetadata( opType = SobolSample.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java index aa80f8d0840..cdb0aea4f9f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Softplus.java @@ -35,8 +35,6 @@ /** * The Softplus operation - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Softplus.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java index 5a8445dad45..3f2901810ce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SoftplusGrad.java @@ -35,8 +35,6 @@ /** * Computes softplus gradients for a softplus operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = SoftplusGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java index ac6cd68b529..8c6edfc6e89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sqrt.java @@ -36,8 +36,6 @@ /** * Computes square root of x element-wise. * I.e., \(y = \sqrt{x} = x^{1/2}\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Sqrt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java index 451143c16e4..eed0209152b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SqrtGrad.java @@ -37,8 +37,6 @@ * Computes the gradient for the sqrt of {@code x} wrt its input. * Specifically, {@code grad = dy * 0.5 / y}, where {@code y = sqrt(x)}, and {@code dy} * is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = SqrtGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java index d5811d17c2a..2952af307d2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Square.java @@ -36,8 +36,6 @@ /** * Computes square of x element-wise. * I.e., \(y = x * x = x^2\). - * - * @param data type for {@code y} output */ @OpMetadata( opType = Square.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java index 2af6fe083e3..4d880a79baa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/SquaredDifference.java @@ -37,8 +37,6 @@ * Returns conj(x - y)(x - y) element-wise. * NOTE: {@code math.SquaredDifference} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = SquaredDifference.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java index 6313555f9f1..b48b311d80e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Sub.java @@ -37,8 +37,6 @@ * Returns x - y element-wise. * NOTE: {@code math.Sub} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = Sub.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java index 566b7d2b03f..c1073f8a5bb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tan.java @@ -43,8 +43,6 @@ * x = tf.constant([-float("inf"), -9, -0.5, 1, 1.2, 200, 10000, float("inf")]) * tf.math.tan(x) ==> [nan 0.45231566 -0.5463025 1.5574077 2.572152 -1.7925274 0.32097113 nan] * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Tan.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java index ee24b4085df..706a8d90cd0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Tanh.java @@ -49,8 +49,6 @@ * * * - * - * @param data type for {@code y} output */ @OpMetadata( opType = Tanh.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java index c638f78b3fe..273adcf20a6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TanhGrad.java @@ -37,8 +37,6 @@ * Computes the gradient for the tanh of {@code x} wrt its input. * Specifically, {@code grad = dy * (1 - y*y)}, where {@code y = tanh(x)}, and {@code dy} * is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = TanhGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java index 377eb5848d8..7857bd6221b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateDiv.java @@ -41,8 +41,6 @@ * Python Semantics. *

    NOTE: {@code math.TruncateDiv} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = TruncateDiv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java index e80c75e5709..bd7a41fafd2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/TruncateMod.java @@ -38,8 +38,6 @@ * the result here is consistent with a truncating divide. E.g. {@code truncate(x / y) * y + truncate_mod(x, y) = x}. *

    NOTE: {@code math.TruncateMod} supports broadcasting. More about broadcasting * here - * - * @param data type for {@code z} output */ @OpMetadata( opType = TruncateMod.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UniformQuantizedAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UniformQuantizedAdd.java index 535d432dcca..312c712b44e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UniformQuantizedAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UniformQuantizedAdd.java @@ -52,8 +52,6 @@ * i.e. For both operands {@code lhs} and {@code rhs}, * if {@code operand.quantization_axis} >= 0 and {@code output.quantization_axis} >= 0, * {@code operand.dims} - {@code operand.quantization_axis} must be equal to {@code output.dims} - {@code output.quantization_axis}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java index 50d32494e80..27888d7f1f5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMax.java @@ -67,8 +67,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = UnsortedSegmentMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java index db83daaead7..af919665a56 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentMin.java @@ -64,8 +64,6 @@ * result in safe but unspecified behavior, which may include ignoring * out-of-bound indices or outputting a tensor with a 0 stored in the first * dimension of its shape if {@code num_segments} is 0. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UnsortedSegmentMin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java index a36c653ef2a..fd3f76bc1e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentProd.java @@ -64,8 +64,6 @@ * result in safe but unspecified behavior, which may include ignoring * out-of-bound indices or outputting a tensor with a 0 stored in the first * dimension of its shape if {@code num_segments} is 0. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UnsortedSegmentProd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java index 14c0bef2293..af4dd57e39f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/UnsortedSegmentSum.java @@ -67,8 +67,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = UnsortedSegmentSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java index 8be3546a9f0..0ba35ba8a83 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xdivy.java @@ -35,8 +35,6 @@ /** * Returns 0 if x == 0, and x / y otherwise, elementwise. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Xdivy.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java index b798c8ef598..c6e6184bed0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlog1py.java @@ -35,8 +35,6 @@ /** * Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Xlog1py.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java index b4ad543093f..e27ef9a210c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Xlogy.java @@ -35,8 +35,6 @@ /** * Returns 0 if x == 0, and x * log(y) otherwise, elementwise. - * - * @param data type for {@code z} output */ @OpMetadata( opType = Xlogy.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java index 887fb1af711..593507c4340 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/Zeta.java @@ -37,8 +37,6 @@ * Compute the Hurwitz zeta function \(\zeta(x, q)\). * The Hurwitz zeta function is defined as: *

    \(\zeta(x, q) = \sum_{n=0}^{\infty} (q + n)^{-x}\) - * - * @param data type for {@code z} output */ @OpMetadata( opType = Zeta.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java index a4b68423646..a208c49973f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/erfinv.java @@ -35,8 +35,6 @@ /** * The Erfinv operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = erfinv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java index 6ef1d289c7d..839ca6179b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ0.java @@ -35,8 +35,6 @@ /** * The BesselJ0 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselJ0.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java index 5e7718f4144..6e125a29821 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselJ1.java @@ -35,8 +35,6 @@ /** * The BesselJ1 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselJ1.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java index 338b5759a10..8ec9f528212 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0.java @@ -35,8 +35,6 @@ /** * The BesselK0 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselK0.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java index f2a01b68ba8..69d5995c59d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK0e.java @@ -35,8 +35,6 @@ /** * The BesselK0e operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselK0e.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java index 8143c8107d5..f26b95a8c53 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1.java @@ -35,8 +35,6 @@ /** * The BesselK1 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselK1.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java index 08ea2073dab..995eaccd9dd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselK1e.java @@ -35,8 +35,6 @@ /** * The BesselK1e operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselK1e.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java index c82e15022db..1beae63d61f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY0.java @@ -35,8 +35,6 @@ /** * The BesselY0 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselY0.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java index 5b86f1987e3..3985dee42d0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/BesselY1.java @@ -35,8 +35,6 @@ /** * The BesselY1 operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = BesselY1.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java index 045ffc0d94c..e34e0376249 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Dawsn.java @@ -35,8 +35,6 @@ /** * The Dawsn operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = Dawsn.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java index bcdff92cb07..9b61e0fcb90 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Expint.java @@ -35,8 +35,6 @@ /** * The Expint operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = Expint.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java index 790daad9115..dffb6bda0f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelCos.java @@ -35,8 +35,6 @@ /** * The FresnelCos operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = FresnelCos.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java index a148cb42bff..23e7e1d4bbd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/FresnelSin.java @@ -35,8 +35,6 @@ /** * The FresnelSin operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = FresnelSin.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java index 7835a2fca79..0a012a3be6c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/math/special/Spence.java @@ -35,8 +35,6 @@ /** * The Spence operation - * - * @param data type for {@code y} output */ @OpMetadata( opType = Spence.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java index aa583ae8174..3d6355679c8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool.java @@ -38,8 +38,6 @@ * Performs average pooling on the input. * Each entry in {@code output} is the mean of the corresponding size {@code ksize} * window in {@code value}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AvgPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java index b7b61a50351..5f5410d91d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3d.java @@ -38,8 +38,6 @@ * Performs 3D average pooling on the input. * Each entry in {@code output} is the mean of the corresponding size {@code ksize} window in * {@code value}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AvgPool3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java index 6acc17b69ae..4b41a0338b3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPool3dGrad.java @@ -37,8 +37,6 @@ /** * Computes gradients of average pooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AvgPool3dGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPoolGrad.java index 74acc456c92..9a2c1511bba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/AvgPoolGrad.java @@ -37,8 +37,6 @@ /** * Computes gradients of the average pooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = AvgPoolGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalization.java index deaec7bdd3d..ef7ead8115e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalization.java @@ -36,8 +36,6 @@ /** * Batch normalization. * This op is deprecated. Prefer {@code tf.nn.batch_normalization}. - * - * @param data type for {@code result} output */ @OpMetadata( opType = BatchNormWithGlobalNormalization.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java index f75aebb0e4c..03e84d778c4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BatchNormWithGlobalNormalizationGrad.java @@ -36,8 +36,6 @@ /** * Gradients for batch normalization. * This op is deprecated. See {@code tf.nn.batch_normalization}. - * - * @param data type for {@code dx} output */ @OpMetadata( opType = BatchNormWithGlobalNormalizationGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java index c228699e9cb..5f826546b07 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAdd.java @@ -37,8 +37,6 @@ * Adds {@code bias} to {@code value}. * This is a special case of {@code tf.add} where {@code bias} is restricted to be 1-D. * Broadcasting is supported, so {@code value} may have any number of dimensions. - * - * @param data type for {@code output} output */ @OpMetadata( opType = BiasAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java index 01c90a2fd49..33c2829c271 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BiasAddGrad.java @@ -38,8 +38,6 @@ * It accumulates all the values from out_backprop into the feature dimension. * For NHWC data format, the feature dimension is the last. For NCHW data format, * the feature dimension is the third-to-last. - * - * @param data type for {@code output} output */ @OpMetadata( opType = BiasAddGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java index 3363a371d20..ef303c35efc 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTM.java @@ -56,8 +56,6 @@ * this op uses IFCO. So in order for the following snippet to be equivalent * all gate-related outputs should be reordered. * - * - * @param data type for {@code i} output */ @OpMetadata( opType = BlockLSTM.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTMGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTMGrad.java index 2684ae60017..85bc08f38b6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTMGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/BlockLSTMGrad.java @@ -37,8 +37,6 @@ /** * Computes the LSTM cell backward propagation for the entire time sequence. * This implementation is to be used in conjunction of BlockLSTMV2. - * - * @param data type for {@code x_grad} output */ @OpMetadata( opType = BlockLSTMGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv.java index 7e352a1ff76..096c8a3719f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv.java @@ -38,8 +38,6 @@ * Computes a N-D convolution given (N+1+batch_dims)-D {@code input} and (N+2)-D {@code filter} tensors. * General function for computing a N-D convolution. It is required that * {@code 1 <= N <= 3}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java index 9fef633fefd..6d7eb6e004e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2d.java @@ -56,8 +56,6 @@ * *

    Must have {@code strides[0] = strides[3] = 1}. For the most common case of the same * horizontal and vertices strides, {@code strides = [1, stride, stride, 1]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java index 9d09ebaa1df..2d5af50d5e6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilter.java @@ -37,8 +37,6 @@ /** * Computes the gradients of convolution with respect to the filter. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv2dBackpropFilter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilterV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilterV2.java index 901d2a50f72..1b8a95c8728 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilterV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropFilterV2.java @@ -35,8 +35,6 @@ /** * Computes the gradients of convolution with respect to the filter. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv2dBackpropFilterV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java index 9e44c7170cb..fc0f5f296e1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInput.java @@ -37,8 +37,6 @@ /** * Computes the gradients of convolution with respect to the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv2dBackpropInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInputV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInputV2.java index 1fa123e14b2..04941640016 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInputV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv2dBackpropInputV2.java @@ -35,8 +35,6 @@ /** * Computes the gradients of convolution with respect to the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv2dBackpropInputV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java index 5d3d0925894..7de4f93716d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3d.java @@ -40,8 +40,6 @@ * two waveforms as a function of a time-lag applied to one of them. This * is also known as a sliding dot product or sliding inner-product. *

    Our Conv3D implements a form of cross-correlation. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java index 2cc01b0dfe0..79970ac4d15 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropFilter.java @@ -37,8 +37,6 @@ /** * Computes the gradients of 3-D convolution with respect to the filter. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv3dBackpropFilter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java index 651f027ac42..d60306ab96d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Conv3dBackpropInput.java @@ -36,8 +36,6 @@ /** * Computes the gradients of 3-D convolution with respect to the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Conv3dBackpropInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java index 59cde61eb54..f270607bb50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcBeamSearchDecoder.java @@ -43,8 +43,6 @@ * the first of these is emitted. That is, when the top path is "A B B B B", * "A B" is returned if merge_repeated = True but "A B B B B" is * returned if merge_repeated = False. - * - * @param data type for {@code log_probability} output */ @OpMetadata( opType = CtcBeamSearchDecoder.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java index de01c874c33..688f60ab28e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcGreedyDecoder.java @@ -45,8 +45,6 @@ *

    Regardless of the value of merge_repeated, if the maximum index of a given * time and batch corresponds to the blank, index {@code (num_classes - 1)}, no new * element is emitted. - * - * @param data type for {@code log_probability} output */ @OpMetadata( opType = CtcGreedyDecoder.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java index d2dd09549fa..8369dae6c75 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CtcLoss.java @@ -39,8 +39,6 @@ * Calculates the CTC Loss (log probability) for each batch entry. Also calculates * the gradient. This class performs the softmax operation for you, so inputs * should be e.g. linear projections of outputs by an LSTM. - * - * @param data type for {@code loss} output */ @OpMetadata( opType = CtcLoss.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java index 0525df86f45..8845090aa6e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNN.java @@ -73,8 +73,6 @@ * major. * reserve_space: An opaque tensor that can be used in backprop calculation. It * is only produced if is_training is true. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CudnnRNN.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java index d76dd629918..a1e09f597ac 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNBackprop.java @@ -83,8 +83,6 @@ * shape as input_c. * params_backprop: The backprop to the params buffer in the forward pass. Has the * same shape as params. - * - * @param data type for {@code input_backprop} output */ @OpMetadata( opType = CudnnRNNBackprop.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java index a513cf67d66..0c38a68a23e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNCanonicalToParams.java @@ -65,8 +65,6 @@ * seed2: the 2nd part of a seed to initialize dropout. * num_proj: The output dimensionality for the projection matrices. If None or 0, * no projection is performed. - * - * @param data type for {@code params} output */ @OpMetadata( opType = CudnnRNNCanonicalToParams.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java index 6a1e55f34e2..b85a3568412 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRNNParamsToCanonical.java @@ -65,8 +65,6 @@ * seed2: the 2nd part of a seed to initialize dropout. * num_proj: The output dimensionality for the projection matrices. If None or 0, * no projection is performed. - * - * @param data type for {@code weights} output */ @OpMetadata( opType = CudnnRNNParamsToCanonical.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java index 051c792e878..1dbc4d48ad8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/CudnnRnnParamsSize.java @@ -57,8 +57,6 @@ * compatible across GPUs. Please use CudnnRNNParamsWeights and * CudnnRNNParamsBiases to save and restore them in a way that is compatible * across different runs. - * - * @param data type for {@code params_size} output */ @OpMetadata( opType = CudnnRnnParamsSize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java index 3376ad9ed6e..6e83cd0c867 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatDimMap.java @@ -36,8 +36,6 @@ /** * Returns the dimension index in the destination data format given the one in * the source data format. - * - * @param data type for {@code y} output */ @OpMetadata( opType = DataFormatDimMap.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java index e02890a40ce..f719f7cc7ce 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DataFormatVecPermute.java @@ -64,8 +64,6 @@ *

      * [1, 2]
      * 
    - * - * @param data type for {@code y} output */ @OpMetadata( opType = DataFormatVecPermute.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java index cceb78d27d1..2f1880cda02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthToSpace.java @@ -109,8 +109,6 @@ * [ [11], [12], [15], [16]]]] * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = DepthToSpace.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java index e3f7f02ac33..93a0b744513 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNative.java @@ -52,8 +52,6 @@ * *

    Must have {@code strides[0] = strides[3] = 1}. For the most common case of the same * horizontal and vertices strides, {@code strides = [1, stride, stride, 1]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DepthwiseConv2dNative.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java index 6c55468131b..66eb190debf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropFilter.java @@ -37,8 +37,6 @@ /** * Computes the gradients of depthwise convolution with respect to the filter. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DepthwiseConv2dNativeBackpropFilter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java index 0f1a70bb566..287b29abba1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/DepthwiseConv2dNativeBackpropInput.java @@ -37,8 +37,6 @@ /** * Computes the gradients of depthwise convolution with respect to the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = DepthwiseConv2dNativeBackpropInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java index f213e685ab6..019c786873c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2d.java @@ -57,8 +57,6 @@ * kernel size and contains all zeros. *

    Note on duality: The dilation of {@code input} by the {@code filter} is equal to the * negation of the erosion of {@code -input} by the reflected {@code filter}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Dilation2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java index 93381ee22cf..cae841aee0d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropFilter.java @@ -36,8 +36,6 @@ /** * Computes the gradient of morphological 2-D dilation with respect to the filter. - * - * @param data type for {@code filter_backprop} output */ @OpMetadata( opType = Dilation2dBackpropFilter.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java index 7747bc57c64..8204785ae02 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Dilation2dBackpropInput.java @@ -36,8 +36,6 @@ /** * Computes the gradient of morphological 2-D dilation with respect to the input. - * - * @param data type for {@code in_backprop} output */ @OpMetadata( opType = Dilation2dBackpropInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java index 6119dd0dec2..253baee2601 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Elu.java @@ -55,8 +55,6 @@ * *

    See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) * - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Elu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java index 2df99ce5c8f..4d32b6d365f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/EluGrad.java @@ -35,8 +35,6 @@ /** * Computes gradients for the exponential linear (Elu) operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = EluGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java index 04cfd0e3cd9..bb525aac295 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPool.java @@ -41,8 +41,6 @@ * region generation step. The only difference is that after pooling regions are * generated, a mean operation is performed instead of a max operation in each * pooling region. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FractionalAvgPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java index 71b1e624c55..eee42886ab1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalAvgPoolGrad.java @@ -41,8 +41,6 @@ * out_backprop to those indices that form the same pooling cell. Therefore, we * just need to know the shape of original input tensor, instead of the whole * tensor. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FractionalAvgPoolGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java index d4c2cb5cf15..08bcbd1a63d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPool.java @@ -63,8 +63,6 @@ * *

    For more details on fractional max pooling, see this paper: * Benjamin Graham, Fractional Max-Pooling - * - * @param data type for {@code output} output */ @OpMetadata( opType = FractionalMaxPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java index 432d6bbfdb7..d44e062ccf7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FractionalMaxPoolGrad.java @@ -36,8 +36,6 @@ /** * Computes gradient of the FractionalMaxPool function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FractionalMaxPoolGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java index 41e62263399..f5cede8855e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNorm.java @@ -37,10 +37,6 @@ * Batch normalization. * Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". * The size of 1D Tensors matches the dimension C of the 4D Tensors. - * - * @param data type for {@code y} output - * - * @param data type for {@code batch_mean} output */ @OpMetadata( opType = FusedBatchNorm.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java index efc751554d2..985249a19fe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedBatchNormGrad.java @@ -38,10 +38,6 @@ * Gradient for batch normalization. * Note that the size of 4D Tensors are defined by either "NHWC" or "NCHW". * The size of 1D Tensors matches the dimension C of the 4D Tensors. - * - * @param data type for {@code x_backprop} output - * - * @param data type for {@code scale_backprop} output */ @OpMetadata( opType = FusedBatchNormGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java index 1a11cf9c722..336419f92ad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedPadConv2d.java @@ -48,8 +48,6 @@ * Internally this op uses a single per-graph scratch buffer, which means that it * will block if multiple versions are being run in parallel. This is because this * operator is primarily an optimization to minimize memory usage. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FusedPadConv2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java index 69b33a7ffee..8491feba1d7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/FusedResizeAndPadConv2d.java @@ -47,8 +47,6 @@ * Internally this op uses a single per-graph scratch buffer, which means that it * will block if multiple versions are being run in parallel. This is because this * operator is primarily an optimization to minimize memory usage. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FusedResizeAndPadConv2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java index 413c9db45cf..0db7843bced 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCell.java @@ -73,8 +73,6 @@ * * h = (1-u) \circ c + u \circ h_prev * - * - * @param data type for {@code r} output */ @OpMetadata( opType = GRUBlockCell.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java index 108aa910427..7379a2790ba 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/GRUBlockCellGrad.java @@ -108,8 +108,6 @@ * * d_b_c = sum of d_c_bar along axis = 0 * - * - * @param data type for {@code d_x} output */ @OpMetadata( opType = GRUBlockCellGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java index 37f66b92878..5f178f53e50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/InvGrad.java @@ -37,8 +37,6 @@ * Computes the gradient for the inverse of {@code x} wrt its input. * Specifically, {@code grad = -dy * y*y}, where {@code y = 1/x}, and {@code dy} * is the corresponding input gradient. - * - * @param data type for {@code z} output */ @OpMetadata( opType = InvGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/IsotonicRegression.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/IsotonicRegression.java index 8936770d8b7..ecd511253e8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/IsotonicRegression.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/IsotonicRegression.java @@ -38,8 +38,6 @@ /** * Solves a batch of isotonic regression problems. - * - * @param data type for {@code output} output */ @OpMetadata( opType = IsotonicRegression.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java index e3b179e440c..9cc952c05cb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/L2Loss.java @@ -39,8 +39,6 @@ *

      * output = sum(t ** 2) / 2
      * 
    - * - * @param data type for {@code output} output */ @OpMetadata( opType = L2Loss.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java index 12d4402e70f..5b1e38d3fbe 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCell.java @@ -57,8 +57,6 @@ * co = tanh(cs) * h = co .* o * - * - * @param data type for {@code i} output */ @OpMetadata( opType = LSTMBlockCell.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCellGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCellGrad.java index e22e2241718..931e4bf2381 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCellGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LSTMBlockCellGrad.java @@ -36,8 +36,6 @@ /** * Computes the LSTM cell backward propagation for 1 timestep. * This implementation is to be used in conjunction of LSTMBlockCell. - * - * @param data type for {@code cs_prev_grad} output */ @OpMetadata( opType = LSTMBlockCellGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java index 022b81f82da..a0f088f9a03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LeakyRelu.java @@ -35,8 +35,6 @@ /** * Computes rectified linear: {@code max(features, features * alpha)}. - * - * @param data type for {@code activations} output */ @OpMetadata( opType = LeakyRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java index f0bb2b5017b..17c1e5c0d04 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalization.java @@ -46,8 +46,6 @@ * *

    For details, see Krizhevsky et al., ImageNet classification with deep * convolutional neural networks (NIPS 2012) . - * - * @param data type for {@code output} output */ @OpMetadata( opType = LocalResponseNormalization.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java index 041837b7871..c0b795094aa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LocalResponseNormalizationGrad.java @@ -35,8 +35,6 @@ /** * Gradients for Local Response Normalization. - * - * @param data type for {@code output} output */ @OpMetadata( opType = LocalResponseNormalizationGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java index 1f9ee440140..1e19b56c19f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/LogSoftmax.java @@ -39,8 +39,6 @@ *

      * logsoftmax[i, j] = logits[i, j] - log(sum(exp(logits[i])))
      * 
    - * - * @param data type for {@code logsoftmax} output */ @OpMetadata( opType = LogSoftmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java index 427b3c92bb2..75b432b8ba3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool.java @@ -36,8 +36,6 @@ /** * Performs max pooling on the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java index d9cace3d967..d701189d5e1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3d.java @@ -36,8 +36,6 @@ /** * Performs 3D max pooling on the input. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPool3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java index 6ac95b8a978..932399be80b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGrad.java @@ -36,8 +36,6 @@ /** * Computes gradients of 3D max pooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPool3dGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java index 5efa05dec89..74dbc598b35 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPool3dGradGrad.java @@ -36,8 +36,6 @@ /** * Computes second-order gradients of the maxpooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPool3dGradGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java index 214b0b0d31c..a329757270c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGrad.java @@ -36,8 +36,6 @@ /** * Computes gradients of the maxpooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPoolGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java index a33ba6642b8..0b0f0f616b7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGrad.java @@ -36,8 +36,6 @@ /** * Computes second-order gradients of the maxpooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPoolGradGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java index 35f1ffeb6dd..9dedc6014b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradGradWithArgmax.java @@ -36,8 +36,6 @@ /** * Computes second-order gradients of the maxpooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPoolGradGradWithArgmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradWithArgmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradWithArgmax.java index 0edd2ca5adc..60d7e7de94c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradWithArgmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolGradWithArgmax.java @@ -36,8 +36,6 @@ /** * Computes gradients of the maxpooling function. - * - * @param data type for {@code output} output */ @OpMetadata( opType = MaxPoolGradWithArgmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java index bcfba861e1e..bd19af1b703 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/MaxPoolWithArgmax.java @@ -46,10 +46,6 @@ * even if padding is involved and the mathematically correct answer is outside * (either negative or too large). This is a bug, but fixing it is difficult to do * in a safe backwards compatible way, especially due to flattening. - * - * @param data type for {@code output} output - * - * @param data type for {@code argmax} output */ @OpMetadata( opType = MaxPoolWithArgmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java index 383dbfc3b22..57754316380 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/NthElement.java @@ -43,8 +43,6 @@ *
      * values.shape = input.shape[:-1]
      * 
    - * - * @param data type for {@code values} output */ @OpMetadata( opType = NthElement.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java index 2e27d649947..8987fcd7d55 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedAvgPool.java @@ -37,8 +37,6 @@ /** * Produces the average pool of the input tensor for quantized types. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedAvgPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java index 0b9e3b27b55..7f22995509c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBatchNormWithGlobalNormalization.java @@ -39,8 +39,6 @@ * Quantized Batch normalization. * This op is deprecated and will be removed in the future. Prefer * {@code tf.nn.batch_normalization}. - * - * @param data type for {@code result} output */ @OpMetadata( opType = QuantizedBatchNormWithGlobalNormalization.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java index c95300fa493..744eb1397eb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedBiasAdd.java @@ -38,8 +38,6 @@ /** * Adds Tensor 'bias' to Tensor 'input' for Quantized types. * Broadcasts the values of bias on dimensions 0..N-2 of 'input'. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedBiasAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java index 4594e0401cc..9226b7b697e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRelu.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DAndRelu operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DAndRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java index 0104cbf9908..f02eba09012 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndReluAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DAndReluAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java index 5fe5999adab..66344508160 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java index 134449aba91..bfd108c34d3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DPerChannel.java @@ -38,8 +38,6 @@ /** * Computes QuantizedConv2D per channel. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DPerChannel.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java index 27f5343c6ff..fe5566ac7e9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBias.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBias operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBias.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java index 61c9bb31b45..ff7d157a846 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRelu.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasAndRelu operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasAndRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java index 081b8ac3863..b68080cc72c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndReluAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasAndReluAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRequantize.java index 21f4eef7826..5301017e666 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.java index afdd8b87219..687e41485d4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasSignedSumAndReluAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasSignedSumAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndRelu.java index d92782f88bb..34ceb6e7898 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndRelu.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasSumAndRelu operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasSumAndRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java index 0d9c4fab0f6..021873d6885 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2DWithBiasSumAndReluAndRequantize.java @@ -38,8 +38,6 @@ /** * The QuantizedConv2DWithBiasSumAndReluAndRequantize operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2DWithBiasSumAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2d.java index 88482fc869f..77d21ba9794 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedConv2d.java @@ -42,8 +42,6 @@ * number of the associated minimum, and the highest represents the maximum. * This means that you can only interpret the quantized output in the same way, by * taking the returned minimum and maximum values into account. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConv2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java index 19c05799f1f..3281b31698b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2D.java @@ -38,8 +38,6 @@ /** * Computes quantized depthwise Conv2D. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedDepthwiseConv2D.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java index 9414fd9e015..70314ace0b0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBias.java @@ -38,8 +38,6 @@ /** * Computes quantized depthwise Conv2D with Bias. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedDepthwiseConv2DWithBias.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java index c8d6a30445b..76b0917f709 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndRelu.java @@ -38,8 +38,6 @@ /** * Computes quantized depthwise Conv2D with Bias and Relu. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedDepthwiseConv2DWithBiasAndRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java index b23311716d2..55dfdecdb39 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.java @@ -38,8 +38,6 @@ /** * Computes quantized depthwise Conv2D with Bias, Relu and Requantize. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedDepthwiseConv2DWithBiasAndReluAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedInstanceNorm.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedInstanceNorm.java index 54bd27c1705..48aedde6806 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedInstanceNorm.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedInstanceNorm.java @@ -36,8 +36,6 @@ /** * Quantized Instance normalization. - * - * @param data type for {@code y} output */ @OpMetadata( opType = QuantizedInstanceNorm.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java index b1323bb3b42..e57d4e945b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedMaxPool.java @@ -37,8 +37,6 @@ /** * Produces the max pool of the input tensor for quantized types. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedMaxPool.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java index b80e07346d9..ad55085ab6f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu.java @@ -37,8 +37,6 @@ /** * Computes Quantized Rectified Linear: {@code max(features, 0)} - * - * @param data type for {@code activations} output */ @OpMetadata( opType = QuantizedRelu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java index d820e51188a..2b2f21a6b45 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedRelu6.java @@ -37,8 +37,6 @@ /** * Computes Quantized Rectified Linear 6: {@code min(max(features, 0), 6)} - * - * @param data type for {@code activations} output */ @OpMetadata( opType = QuantizedRelu6.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java index 577df61b8dd..41daae389b6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/QuantizedReluX.java @@ -37,8 +37,6 @@ /** * Computes Quantized Rectified Linear X: {@code min(max(features, 0), max_value)} - * - * @param data type for {@code activations} output */ @OpMetadata( opType = QuantizedReluX.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java index 218fee4f3d2..126eb0c4c56 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu.java @@ -45,8 +45,6 @@ * * * - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Relu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java index 19de03d7f8e..5500229b21c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6.java @@ -35,8 +35,6 @@ /** * Computes rectified linear 6: {@code min(max(features, 0), 6)}. - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Relu6.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java index 48ec9cb7037..9af8b816d87 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Relu6Grad.java @@ -35,8 +35,6 @@ /** * Computes rectified linear 6 gradients for a Relu6 operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = Relu6Grad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java index 5e7103853f3..b15132dd583 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/ReluGrad.java @@ -35,8 +35,6 @@ /** * Computes rectified linear gradients for a Relu operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = ReluGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java index d382a2f5a75..33d504105ec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Selu.java @@ -40,8 +40,6 @@ * {@code initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN')}. * For correct dropout, use {@code tf.contrib.nn.alpha_dropout}. *

    See Self-Normalizing Neural Networks - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Selu.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java index 7a2e0656275..bd2d2203f69 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SeluGrad.java @@ -35,8 +35,6 @@ /** * Computes gradients for the scaled exponential linear (Selu) operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = SeluGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java index 36ef20f21fd..dd6b9ecb2b5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softmax.java @@ -39,8 +39,6 @@ *

      * $$softmax[i, j] = exp(logits[i, j]) / sum_j(exp(logits[i, j]))$$
      * 
    - * - * @param data type for {@code softmax} output */ @OpMetadata( opType = Softmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java index 9a17188c048..a7836f24051 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftmaxCrossEntropyWithLogits.java @@ -36,8 +36,6 @@ /** * Computes softmax cross entropy cost and gradients to backpropagate. * Inputs are the logits, not probabilities. - * - * @param data type for {@code loss} output */ @OpMetadata( opType = SoftmaxCrossEntropyWithLogits.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java index 1345a1ffd11..1144c4c21be 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/Softsign.java @@ -35,8 +35,6 @@ /** * Computes softsign: {@code features / (abs(features) + 1)}. - * - * @param data type for {@code activations} output */ @OpMetadata( opType = Softsign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java index b16c933ffe0..3ebe407b08e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SoftsignGrad.java @@ -35,8 +35,6 @@ /** * Computes softsign gradients for a softsign operation. - * - * @param data type for {@code backprops} output */ @OpMetadata( opType = SoftsignGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java index 050a12e7f98..e35f65ee574 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToBatch.java @@ -100,8 +100,6 @@ * *

    Among others, this operation is useful for reducing atrous convolution into * regular convolution. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SpaceToBatch.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java index 18449c4627c..aaaddf55663 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SpaceToDepth.java @@ -103,8 +103,6 @@ * [[9, 10, 11, 12], * [13, 14, 15, 16]]]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SpaceToDepth.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java index 043587de9b5..1b7c99a694e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/SparseSoftmaxCrossEntropyWithLogits.java @@ -40,8 +40,6 @@ * of features. This label is considered to have probability 1.0 for the * given row. *

    Inputs are the logits, not probabilities. - * - * @param data type for {@code loss} output */ @OpMetadata( opType = SparseSoftmaxCrossEntropyWithLogits.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java index b752c40666b..5185b5fd785 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/TopK.java @@ -46,10 +46,6 @@ * values.shape = indices.shape = input.shape[:-1] + [k] * *

    If two elements are equal, the lower-index element appears first. - * - * @param data type for {@code values} output - * - * @param data type for {@code indices} output */ @OpMetadata( opType = TopK.OP_NAME, @@ -122,7 +118,7 @@ public static TopK create(Scope sco describeByClass = true ) public static TopK create(Scope scope, Operand input, - Operand k, Options[] options) { + Operand k, Options... options) { return create(scope, input, k, TInt32.class, options); } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolution.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolution.java index 9b4715c3a21..124c2b062f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolution.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolution.java @@ -55,8 +55,6 @@ * *

    {@code output} is also quantized, using the same formula. * If {@code rhs} is per-tensor quantized, {@code output} must be also per-tensor quantized. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedConvolution.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolutionHybrid.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolutionHybrid.java index 02b51c0dfe4..8510272759e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolutionHybrid.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/nn/UniformQuantizedConvolutionHybrid.java @@ -55,8 +55,6 @@ * *

    {@code rhs} must be quantized Tensor, where its data value is quantized using the formula: * quantized_data = clip(original_data / scale + zero_point, quantization_min_val, quantization_max_val). - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedConvolutionHybrid.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java index 743b6c81d93..a062ee1db29 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Dequantize.java @@ -80,8 +80,6 @@ * : std::max(min_range / min_expected_T, * max_range / max_expected_T); * - * - * @param data type for {@code output} output */ @OpMetadata( opType = Dequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java index 4f3b11ce977..87007c73d6b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxArgsGradient.java @@ -136,6 +136,38 @@ public static Options narrowRange(Boolean narrowRange) { * Gets backprops. * Backpropagated gradients below the FakeQuantWithMinMaxArgs operation: * {@code gradients * (inputs >= min && inputs <= max)}. + *

    +   * import tensorflow as tf
    +   *
    +   * # Define some sample data
    +   * gradients = tf.random.uniform((2, 3), minval=-5.0, maxval=5.0, dtype=tf.float32)
    +   * inputs = tf.random.uniform((2, 3), minval=-10.0, maxval=10.0, dtype=tf.float32)
    +   *
    +   * # Define quantization parameters (adjust as needed)
    +   * min_val = -2.0
    +   * max_val = 8.0
    +   * num_bits = 4  # Number of bits for quantization
    +   *
    +   * # Calculate gradients for fake quantization with specified parameters
    +   * output_gradients = tf.quantization.fake_quant_with_min_max_args_gradient(
    +   *     gradients=gradients, inputs=inputs, min=min_val, max=max_val, num_bits=num_bits, narrow_range = False, name=None
    +   * )
    +   *
    +   * # Print the original gradients and the gradients after the fake-quant operation
    +   * print("Original Gradients:")
    +   * print(gradients)
    +   * print("\nGradients after Fake-Quantization:")
    +   * print(output_gradients)
    +   *
    +   * 
    + *

    #Original Gradients: + * #tf.Tensor( + * #[[ 1.242547 3.217492 3.568469 ] + * #[-0.55371046 0.23130894 2.608243 ]], shape=(2, 3), dtype=float32) + *

    #Gradients after Fake-Quantization: + * #tf.Tensor( + * #[[ 0. 3.217492 3.568469 ] + * [-0.55371046 0.23130894 2.608243 ]], shape=(2, 3), dtype=float32)
    * @return backprops. */ public Output backprops() { diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVars.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVars.java index faa38bb0585..e78b22ca6d5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVars.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/FakeQuantWithMinMaxVars.java @@ -57,6 +57,28 @@ * *

    This operation has a gradient and thus allows for training {@code min} and {@code max} * values. + *

    + *
    + *
    + *

    constant_input = tf.constant([[1.2, -0.3, 0.7], [2.1, 0.5, -1.0]], dtype=tf.float32) + *

    min_val = -0.5 + * max_val = 0.8 + * num_bits = 8 + * narrow_range = False #False:for the quantization range [0; 2^num_bits - 1] + *

    quantized_data = tf.quantization.fake_quant_with_min_max_vars( + * ... inputs=constant_input, min=min_val, max=max_val, num_bits=num_bits, narrow_range=narrow_range + * ... ) + *

    print("Input:\n", constant_input.numpy()) + * Input: + * [[ 1.2 -0.3 0.7] + * [ 2.1 0.5 -1. ]] + * print("Output:\n", quantized_data.numpy()) + * Output: + * [[ 0.8003921 -0.3007843 0.6984313] + * [ 0.8003921 0.4996078 -0.4996078]] + *

    + *
    + *
    */ @OpMetadata( opType = FakeQuantWithMinMaxVars.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Quantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Quantize.java index a6a5df07a8a..ed34d301ec7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Quantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Quantize.java @@ -128,8 +128,6 @@ *

    Ensures the minimum quantization range is at least this value. * The legacy default value for this is 0.01, but it is strongly suggested to * set it to 0 for new uses. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Quantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java index b6552257828..eeb9f05536c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantize.java @@ -38,8 +38,6 @@ * Quantizes then dequantizes a tensor. * This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a * tensor, so its value can change during training. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizeAndDequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV3.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV3.java index a715ecdb8e5..e1de6cd2ab7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV3.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV3.java @@ -38,8 +38,6 @@ * Quantizes then dequantizes a tensor. * This is almost identical to QuantizeAndDequantizeV2, except that num_bits is a * tensor, so its value can change during training. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizeAndDequantizeV3.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4.java index 75b47a7f0f9..7de2e59c64b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4.java @@ -37,8 +37,6 @@ * Quantizes then dequantizes a tensor. * This is almost identical to QuantizeAndDequantizeV2, except that it returns a * gradient of 1 for inputs that are within the quantization range, or 0 otherwise. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizeAndDequantizeV4.OP_NAME, @@ -114,7 +112,7 @@ public static QuantizeAndDequantizeV4 create(Scope scope, * Sets the signedInput option. * * @param signedInput Whether the quantization is signed or unsigned. (actually this parameter should - * have been called {@code signed_output}</b>) + * have been called {@code signed_output}) * @return this Options instance. */ public static Options signedInput(Boolean signedInput) { @@ -218,7 +216,7 @@ private Options() { * Sets the signedInput option. * * @param signedInput Whether the quantization is signed or unsigned. (actually this parameter should - * have been called {@code signed_output}</b>) + * have been called {@code signed_output}) * @return this Options instance. */ public Options signedInput(Boolean signedInput) { @@ -317,7 +315,7 @@ public static class Inputs extends RawOpInputs{@code signed_output}</b>) + * have been called {@code signed_output}) */ public final boolean signedInput; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4Grad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4Grad.java index d2d9d9e6035..65cf77c43ca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4Grad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeAndDequantizeV4Grad.java @@ -37,8 +37,6 @@ * Returns the gradient of {@code QuantizeAndDequantizeV4}. * Returns a gradient of 1 for inputs that are within the quantization range, * or 0 otherwise. - * - * @param data type for {@code input_backprop} output */ @OpMetadata( opType = QuantizeAndDequantizeV4Grad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java index d8aee82efb2..77aaa257758 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizeDownAndShrinkRange.java @@ -56,8 +56,6 @@ * input values that only uses a small fraction of the possible range. By feeding * that output into this operator, we can reduce it from 32 bits down to 8 with * minimal loss of accuracy. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizeDownAndShrinkRange.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java index cae65990d35..a52e49b8080 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedConcat.java @@ -38,8 +38,6 @@ /** * Concatenates quantized tensors along one dimension. - * - * @param data type for {@code output} output */ @OpMetadata( opType = QuantizedConcat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java index 69827ccd019..c03a82caf5c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndDequantize.java @@ -37,8 +37,6 @@ /** * The QuantizedMatMulWithBiasAndDequantize operation - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMulWithBiasAndDequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndRequantize.java index cd48b07ac48..b848d068a15 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/QuantizedMatMulWithBiasAndRequantize.java @@ -37,8 +37,6 @@ /** * The QuantizedMatMulWithBiasAndRequantize operation - * - * @param data type for {@code out} output */ @OpMetadata( opType = QuantizedMatMulWithBiasAndRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java index 48bfa78ab74..0ebd2ce0e3a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/Requantize.java @@ -43,8 +43,6 @@ * interpretation of the {@code input} data. For example, if {@code input_min} is -1.0f and * {@code input_max} is 1.0f, and we are dealing with {@code quint16} quantized data, then a 0 * value in the 16-bit data should be interpreted as -1.0f, and a 65535 means 1.0f. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Requantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformDequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformDequantize.java index 97dad1321da..8f5d44bf663 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformDequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformDequantize.java @@ -40,8 +40,6 @@ * Perform dequantization on the quantized Tensor {@code input}. * Given quantized {@code input} which was quantized using {@code scales} and {@code zero_points}, performs dequantization using the formula: * dequantized_data = (quantized_data - zero_point) * scale. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformDequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantize.java index 43fed90b7cc..390ceb83d8a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantize.java @@ -40,8 +40,6 @@ * Perform quantization on Tensor {@code input}. * Given {@code input}, {@code scales} and {@code zero_points}, performs quantization using the formula: * quantized_data = floor(input_data * (1.0f / scale) + 0.5f) + zero_point - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDot.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDot.java index 16768a99b22..eff33c22ce7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDot.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDot.java @@ -44,8 +44,6 @@ * quantized_data = clip(original_data / scale + zero_point, quantization_min_val, quantization_max_val). * {@code output} is also quantized, using the same formula. * If {@code rhs} is per-tensor quantized, {@code output} must be also per-tensor quantized. - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedDot.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDotHybrid.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDotHybrid.java index ed8c67f9a53..1f30f7a1a4c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDotHybrid.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformQuantizedDotHybrid.java @@ -43,8 +43,6 @@ * {@code lhs} and {@code rhs} must be 2D Tensors and the lhs.dim_size(1) must match rhs.dim_size(0). * {@code rhs} must be quantized Tensor, where its data value is quantized using the formula: * quantized_data = clip(original_data / scale + zero_point, quantization_min_val, quantization_max_val). - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformQuantizedDotHybrid.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformRequantize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformRequantize.java index 85f81e8f202..eb4c511b567 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformRequantize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/quantization/UniformRequantize.java @@ -52,8 +52,6 @@ *

  • per-axis -> per-axis where input_quantization_axis equals output_quantization_axis. * i.e. At least one among input_quantization_axis and output_quantization_axis must be -1, or two must be equal.
  • * - * - * @param data type for {@code output} output */ @OpMetadata( opType = UniformRequantize.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java index 2607b8e0fcf..0aadded3990 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedBincount.java @@ -42,8 +42,6 @@ * the value in {@code weights} at each index where the corresponding value in {@code arr} is * {@code i}. *

    Values in {@code arr} outside of the range [0, size) are ignored. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RaggedBincount.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java index 1e654d1665b..720919e6873 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCountSparseOutput.java @@ -37,8 +37,6 @@ /** * Performs sparse-output bin counting for a ragged tensor input. * Counts the number of times each value occurs in the input. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = RaggedCountSparseOutput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java index 1d5cc361a5f..3b356804b4f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedCross.java @@ -39,10 +39,6 @@ /** * Generates a feature cross from a list of tensors, and returns it as a * RaggedTensor. See {@code tf.ragged.cross} for more details. - * - * @param data type for {@code output_values} output - * - * @param data type for {@code output_row_splits} output */ @OpMetadata( opType = RaggedCross.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRows.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRows.java index 5f1b9cf66ec..d8414fd1ae3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRows.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRows.java @@ -37,8 +37,6 @@ /** * The RaggedFillEmptyRows operation - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = RaggedFillEmptyRows.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRowsGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRowsGrad.java index 9ea15d1320a..314e4a689af 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRowsGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedFillEmptyRowsGrad.java @@ -36,8 +36,6 @@ /** * The RaggedFillEmptyRowsGrad operation - * - * @param data type for {@code d_values} output */ @OpMetadata( opType = RaggedFillEmptyRowsGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java index 059c102f6ed..3c71b9987c4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedGather.java @@ -56,10 +56,6 @@ * *

    (Note: This c++ op is used to implement the higher-level python * {@code tf.ragged.gather} op, which also supports ragged indices.) - * - * @param data type for {@code output_nested_splits} output - * - * @param data type for {@code output_dense_values} output */ @OpMetadata( opType = RaggedGather.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java index 52d8d2d66b9..39a6487398e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedRange.java @@ -50,10 +50,6 @@ *

    The input tensors {@code starts}, {@code limits}, and {@code deltas} may be scalars or vectors. * The vector inputs must all have the same size. Scalar inputs are broadcast * to match the size of the vector inputs. - * - * @param data type for {@code rt_nested_splits} output - * - * @param data type for {@code rt_dense_values} output */ @OpMetadata( opType = RaggedRange.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java index 9223acdcd39..5e9e6cae9a7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorFromVariant.java @@ -50,10 +50,6 @@ * values of the decoded {@code RaggedTensor}. If {@code input_ragged_rank} is -1, then it is * inferred as {@code output_ragged_rank} - {@code rank(encoded_ragged)}. See * {@code RaggedTensorToVariant} for the corresponding encoding logic. - * - * @param data type for {@code output_nested_splits} output - * - * @param data type for {@code output_dense_values} output */ @OpMetadata( opType = RaggedTensorFromVariant.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java index 510cab39924..e765d995332 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToSparse.java @@ -41,8 +41,6 @@ * input=ragged.from_nested_row_splits(rt_dense_values, rt_nested_splits) * output=SparseTensor(indices=sparse_indices, values=sparse_values, * dense_shape=sparse_dense_shape) - * - * @param data type for {@code sparse_values} output */ @OpMetadata( opType = RaggedTensorToSparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java index 127c85e9f72..1bbb93a9327 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToTensor.java @@ -54,8 +54,6 @@ *

  • "FIRST_DIM_SIZE": if value_rowids is used for the first dimension, then it * is preceded by "FIRST_DIM_SIZE".
  • * - * - * @param data type for {@code result} output */ @OpMetadata( opType = RaggedTensorToTensor.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariantGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariantGradient.java index d8e57336a0e..ca254cd1cf5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariantGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/ragged/RaggedTensorToVariantGradient.java @@ -42,8 +42,6 @@ * op, given the variant-encoded ragged gradients of the outputs, along with * the outer row-splits and the shape of the dense-values that were provided as * inputs to the RaggedTensorToVariant op. - * - * @param data type for {@code dense_values_grad} output */ @OpMetadata( opType = RaggedTensorToVariantGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java index 6412651e6ac..a213609fca6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/Multinomial.java @@ -38,8 +38,6 @@ /** * Draws samples from a multinomial distribution. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Multinomial.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java index 6008cd03718..83f81ee6c51 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/NonDeterministicInts.java @@ -38,8 +38,6 @@ /** * Non-deterministically generates some integers. * This op may use some OS-provided source of non-determinism (e.g. an RNG), so each execution will give different results. - * - * @param data type for {@code output} output */ @OpMetadata( opType = NonDeterministicInts.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java index e2a12f2a3c9..4bc87b4da51 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/ParameterizedTruncatedNormal.java @@ -37,8 +37,6 @@ * Outputs random values from a normal distribution. The parameters may each be a * scalar which applies to the entire output, or a vector of length shape[0] which * stores the parameters for each batch. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ParameterizedTruncatedNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java index 5558b534e66..cc1a0ab9ba6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGamma.java @@ -38,8 +38,6 @@ * This op uses the algorithm by Marsaglia et al. to acquire samples via * transformation-rejection from pairs of uniform and normal random variables. * See http://dl.acm.org/citation.cfm?id=358414 - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomGamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java index 7baaab08ee4..4ab62242717 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomGammaGrad.java @@ -35,8 +35,6 @@ /** * Computes the derivative of a Gamma random sample w.r.t. {@code alpha}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomGammaGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java index d26081bd288..3e5fc40fc2f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomPoisson.java @@ -45,8 +45,6 @@ * random variables. * See Donald E. Knuth (1969). Seminumerical Algorithms. The Art of Computer * Programming, Volume 2. Addison Wesley - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomPoisson.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java index 8c52e218fc8..517900e7df1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomShuffle.java @@ -43,8 +43,6 @@ * [3, 4], ==> [1, 2], * [5, 6]] [3, 4]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomShuffle.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java index 3addc74b9bb..322fe10883c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomStandardNormal.java @@ -37,8 +37,6 @@ /** * Outputs random values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomStandardNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java index 74487b121aa..5940994392c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniform.java @@ -38,8 +38,6 @@ * Outputs random values from a uniform distribution. * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomUniform.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java index 243fd44c671..6eba6a6c8b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/RandomUniformInt.java @@ -41,8 +41,6 @@ *

    The random integers are slightly biased unless {@code maxval - minval} is an exact * power of two. The bias is small for values of {@code maxval - minval} significantly * smaller than the range of the output (either {@code 2^32} or {@code 2^64}). - * - * @param data type for {@code output} output */ @OpMetadata( opType = RandomUniformInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java index fc03e7feddb..67bc6bf1167 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulRandomBinomial.java @@ -38,8 +38,6 @@ /** * The StatefulRandomBinomial operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulRandomBinomial.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java index 8330a9f4b49..ff905308114 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulStandardNormal.java @@ -39,8 +39,6 @@ /** * Outputs random values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulStandardNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java index e623baabf5c..409dff36de6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulTruncatedNormal.java @@ -41,8 +41,6 @@ * The generated values follow a normal distribution with mean 0 and standard * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulTruncatedNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java index a0e85b0458f..65f86463b06 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniform.java @@ -40,8 +40,6 @@ * Outputs random values from a uniform distribution. * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulUniform.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java index a43b26418ea..80f425ff575 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformFullInt.java @@ -38,8 +38,6 @@ /** * Outputs random integers from a uniform distribution. * The generated values are uniform integers covering the whole range of {@code dtype}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulUniformFullInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java index 154f3bd2841..d2854aea992 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatefulUniformInt.java @@ -42,8 +42,6 @@ *

    The random integers are slightly biased unless {@code maxval - minval} is an exact * power of two. The bias is small for values of {@code maxval - minval} significantly * smaller than the range of the output (either {@code 2^32} or {@code 2^64}). - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatefulUniformInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java index 1c306047fd5..45a902b2da8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessMultinomial.java @@ -38,8 +38,6 @@ /** * Draws samples from a multinomial distribution. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessMultinomial.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java index b10e961aab2..64f85682701 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessParameterizedTruncatedNormal.java @@ -35,8 +35,6 @@ /** * The StatelessParameterizedTruncatedNormal operation - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessParameterizedTruncatedNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java index 71a3cb24cf9..ebd295592eb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomBinomial.java @@ -39,8 +39,6 @@ * Outputs deterministic pseudorandom random numbers from a binomial distribution. * Outputs random values from a binomial distribution. *

    The outputs are a deterministic function of {@code shape}, {@code seed}, {@code counts}, and {@code probs}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomBinomial.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java index e57dfcf90f6..69bd0d03ddd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomGamma.java @@ -39,8 +39,6 @@ * Outputs deterministic pseudorandom random numbers from a gamma distribution. * Outputs random values from a gamma distribution. *

    The outputs are a deterministic function of the inputs. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomGamma.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java index 7081e980beb..bf0fa718d0e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormal.java @@ -39,8 +39,6 @@ * Outputs deterministic pseudorandom values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. *

    The outputs are a deterministic function of {@code shape} and {@code seed}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormalV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormalV2.java index b1e9dcb4439..ef4f9aafee6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormalV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomNormalV2.java @@ -41,8 +41,6 @@ * Outputs deterministic pseudorandom values from a normal distribution. * The generated values will have mean 0 and standard deviation 1. *

    The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomNormalV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java index 3a55731c32d..c617e49f652 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomPoisson.java @@ -38,8 +38,6 @@ * Outputs deterministic pseudorandom random numbers from a Poisson distribution. * Outputs random values from a Poisson distribution. *

    The outputs are a deterministic function of {@code shape}, {@code seed}, and {@code lam}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomPoisson.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java index 6e18ceffb6f..86c24f1e171 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniform.java @@ -40,8 +40,6 @@ * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. *

    The outputs are a deterministic function of {@code shape} and {@code seed}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniform.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java index ef2bf5e7884..41e703d9ddf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullInt.java @@ -38,8 +38,6 @@ * Outputs deterministic pseudorandom random integers from a uniform distribution. * The generated values are uniform integers covering the whole range of {@code dtype}. *

    The outputs are a deterministic function of {@code shape} and {@code seed}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniformFullInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullIntV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullIntV2.java index 50fb67d6fe1..7a910d86feb 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullIntV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformFullIntV2.java @@ -40,8 +40,6 @@ * Outputs deterministic pseudorandom random integers from a uniform distribution. * The generated values are uniform integers covering the whole range of {@code dtype}. *

    The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniformFullIntV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java index 8bce8bc129e..5c792f75e51 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformInt.java @@ -37,8 +37,6 @@ * Outputs deterministic pseudorandom random integers from a uniform distribution. * The generated values follow a uniform distribution in the range {@code [minval, maxval)}. *

    The outputs are a deterministic function of {@code shape}, {@code seed}, {@code minval}, and {@code maxval}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniformInt.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformIntV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformIntV2.java index aa3e3d0de83..ae538d14050 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformIntV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformIntV2.java @@ -39,8 +39,6 @@ * Outputs deterministic pseudorandom random integers from a uniform distribution. * The generated values follow a uniform distribution in the range {@code [minval, maxval)}. *

    The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter}, {@code alg}, {@code minval} and {@code maxval}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniformIntV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformV2.java index 8b0e106cb95..86bb5202639 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessRandomUniformV2.java @@ -42,8 +42,6 @@ * The generated values follow a uniform distribution in the range {@code [0, 1)}. The * lower bound 0 is included in the range, while the upper bound 1 is excluded. *

    The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessRandomUniformV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java index 2ddedee0436..83c4ebdab9c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormal.java @@ -41,8 +41,6 @@ * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. *

    The outputs are a deterministic function of {@code shape} and {@code seed}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessTruncatedNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormalV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormalV2.java index 6505cd06561..ae8b00ae1df 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormalV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/StatelessTruncatedNormalV2.java @@ -43,8 +43,6 @@ * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. *

    The outputs are a deterministic function of {@code shape}, {@code key}, {@code counter} and {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessTruncatedNormalV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java index ee3e12c25e3..36fbe8a2a05 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/TruncatedNormal.java @@ -39,8 +39,6 @@ * The generated values follow a normal distribution with mean 0 and standard * deviation 1, except that values whose magnitude is more than 2 standard * deviations from the mean are dropped and re-picked. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TruncatedNormal.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/StatelessShuffle.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/StatelessShuffle.java index 5100d0ef8c6..dc17294084b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/StatelessShuffle.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/random/experimental/StatelessShuffle.java @@ -45,8 +45,6 @@ * [5, 6]] [3, 4]] * *

    The outputs are a deterministic function of {@code value}, {@code key}, {@code counter} and {@code alg}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = StatelessShuffle.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java index 42ef1e6bdf9..220c72d1723 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft.java @@ -37,8 +37,6 @@ * Fast Fourier transform. * Computes the 1-dimensional discrete Fourier transform over the inner-most * dimension of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Fft.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java index 118d2db63e0..4f78086027b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft2d.java @@ -37,8 +37,6 @@ * 2D fast Fourier transform. * Computes the 2-dimensional discrete Fourier transform over the inner-most * 2 dimensions of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Fft2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java index 6195de0eae8..7f5478e228a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Fft3d.java @@ -37,8 +37,6 @@ * 3D fast Fourier transform. * Computes the 3-dimensional discrete Fourier transform over the inner-most 3 * dimensions of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Fft3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/FftNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/FftNd.java index b7f4268150c..8f530229379 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/FftNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/FftNd.java @@ -44,8 +44,6 @@ * is not given, the default shape(input) is used. *

    Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. - * - * @param data type for {@code output} output */ @OpMetadata( opType = FftNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java index 3a313a6f23e..6b1f6fa6d8c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft.java @@ -37,8 +37,6 @@ * Inverse fast Fourier transform. * Computes the inverse 1-dimensional discrete Fourier transform over the * inner-most dimension of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Ifft.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java index ad0902bf3a1..2c4c19b2ead 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft2d.java @@ -37,8 +37,6 @@ * Inverse 2D fast Fourier transform. * Computes the inverse 2-dimensional discrete Fourier transform over the * inner-most 2 dimensions of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Ifft2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java index 82251ed232c..efcb06fafcd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Ifft3d.java @@ -37,8 +37,6 @@ * Inverse 3D fast Fourier transform. * Computes the inverse 3-dimensional discrete Fourier transform over the * inner-most 3 dimensions of {@code input}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Ifft3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IfftNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IfftNd.java index 82855d2bab4..181e3756015 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IfftNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IfftNd.java @@ -44,8 +44,6 @@ * is not given, the default shape(input) is used. *

    Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. - * - * @param data type for {@code output} output */ @OpMetadata( opType = IfftNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java index ecf2703b6e8..50f6daef0a0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft.java @@ -50,8 +50,6 @@ *

    Along the axis {@code signal.Irfft} is computed on, if {@code fft_length / 2 + 1} is smaller * than the corresponding dimension of {@code input}, the dimension is cropped. If it is * larger, the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Irfft.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java index 8a448fd2a52..01214bfec41 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft2d.java @@ -51,8 +51,6 @@ * {@code fft_length / 2 + 1} for the inner-most dimension) is smaller than the * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Irfft2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java index a336791cb83..c83389668b4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Irfft3d.java @@ -51,8 +51,6 @@ * {@code fft_length / 2 + 1} for the inner-most dimension) is smaller than the * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Irfft3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IrfftNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IrfftNd.java index 93006aea156..5e83c9f4dc3 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IrfftNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/IrfftNd.java @@ -48,8 +48,6 @@ * is not given, the default shape(input) is used. *

    Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. - * - * @param data type for {@code output} output */ @OpMetadata( opType = IrfftNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java index f5c14f6eec7..c4d7b74e39a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft.java @@ -46,8 +46,6 @@ *

    Along the axis {@code signal.Rfft} is computed on, if {@code fft_length} is smaller than the * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Rfft.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java index 6587b7378c1..314d16f4eec 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft2d.java @@ -47,8 +47,6 @@ *

    Along each axis {@code signal.Rfft2d} is computed on, if {@code fft_length} is smaller than the * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Rfft2d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java index 35746c0f93b..282c4b7386e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/Rfft3d.java @@ -47,8 +47,6 @@ *

    Along each axis {@code signal.Rfft3d} is computed on, if {@code fft_length} is smaller than the * corresponding dimension of {@code input}, the dimension is cropped. If it is larger, * the dimension is padded with zeros. - * - * @param data type for {@code output} output */ @OpMetadata( opType = Rfft3d.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/RfftNd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/RfftNd.java index 85e48957ee4..17bf1368600 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/RfftNd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/signal/RfftNd.java @@ -47,8 +47,6 @@ * is not given, the default shape(input) is used. *

    Axes mean the dimensions to perform the transform on. Default is to perform on * all axes. - * - * @param data type for {@code output} output */ @OpMetadata( opType = RfftNd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToListOfSparseCoreCooTensors.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToListOfSparseCoreCooTensors.java new file mode 100644 index 00000000000..7ed71c4c316 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToListOfSparseCoreCooTensors.java @@ -0,0 +1,209 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.sparse; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The ConvertToListOfSparseCoreCooTensors operation + */ +@OpMetadata( + opType = ConvertToListOfSparseCoreCooTensors.OP_NAME, + inputsClass = ConvertToListOfSparseCoreCooTensors.Inputs.class +) +@Operator( + group = "sparse" +) +public final class ConvertToListOfSparseCoreCooTensors extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "ConvertToListOfSparseCoreCooTensors"; + + private List> rowIdsList; + + private List> colIdsList; + + private List> gainsList; + + @SuppressWarnings("unchecked") + public ConvertToListOfSparseCoreCooTensors(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + int rowIdsListLength = operation.outputListLength("row_ids_list"); + rowIdsList = Arrays.asList((Output[]) operation.outputList(outputIdx, rowIdsListLength)); + outputIdx += rowIdsListLength; + int colIdsListLength = operation.outputListLength("col_ids_list"); + colIdsList = Arrays.asList((Output[]) operation.outputList(outputIdx, colIdsListLength)); + outputIdx += colIdsListLength; + int gainsListLength = operation.outputListLength("gains_list"); + gainsList = Arrays.asList((Output[]) operation.outputList(outputIdx, gainsListLength)); + outputIdx += gainsListLength; + } + + /** + * Factory method to create a class wrapping a new ConvertToListOfSparseCoreCooTensors operation. + * + * @param scope current scope + * @param indicesOrRowSplits The indicesOrRowSplits value + * @param values The values value + * @param weights The weights value + * @param sampleCount The value of the sampleCount attribute + * @param numScPerChip The value of the numScPerChip attribute + * @param rowOffset The value of the rowOffset attribute + * @param colOffset The value of the colOffset attribute + * @param colShift The value of the colShift attribute + * @param numScShards The value of the numScShards attribute + * @param stackedTableSampleCount The value of the stackedTableSampleCount attribute + * @param combiner The value of the combiner attribute + * @return a new instance of ConvertToListOfSparseCoreCooTensors + */ + @Endpoint( + describeByClass = true + ) + public static ConvertToListOfSparseCoreCooTensors create(Scope scope, + Operand indicesOrRowSplits, Operand values, Operand weights, + Long sampleCount, Long numScPerChip, Long rowOffset, Long colOffset, Long colShift, + Long numScShards, Long stackedTableSampleCount, String combiner) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ConvertToListOfSparseCoreCooTensors"); + opBuilder.addInput(indicesOrRowSplits.asOutput()); + opBuilder.addInput(values.asOutput()); + opBuilder.addInput(weights.asOutput()); + opBuilder.setAttr("sample_count", sampleCount); + opBuilder.setAttr("num_sc_per_chip", numScPerChip); + opBuilder.setAttr("row_offset", rowOffset); + opBuilder.setAttr("col_offset", colOffset); + opBuilder.setAttr("col_shift", colShift); + opBuilder.setAttr("num_sc_shards", numScShards); + opBuilder.setAttr("stacked_table_sample_count", stackedTableSampleCount); + opBuilder.setAttr("combiner", combiner); + return new ConvertToListOfSparseCoreCooTensors(opBuilder.build()); + } + + /** + * Gets rowIdsList. + * + * @return rowIdsList. + */ + public List> rowIdsList() { + return rowIdsList; + } + + /** + * Gets colIdsList. + * + * @return colIdsList. + */ + public List> colIdsList() { + return colIdsList; + } + + /** + * Gets gainsList. + * + * @return gainsList. + */ + public List> gainsList() { + return gainsList; + } + + @OpInputsMetadata( + outputsClass = ConvertToListOfSparseCoreCooTensors.class + ) + public static class Inputs extends RawOpInputs { + /** + * The indicesOrRowSplits input + */ + public final Operand indicesOrRowSplits; + + /** + * The values input + */ + public final Operand values; + + /** + * The weights input + */ + public final Operand weights; + + /** + * The sampleCount attribute + */ + public final long sampleCount; + + /** + * The rowOffset attribute + */ + public final long rowOffset; + + /** + * The colOffset attribute + */ + public final long colOffset; + + /** + * The colShift attribute + */ + public final long colShift; + + /** + * The numScShards attribute + */ + public final long numScShards; + + /** + * The stackedTableSampleCount attribute + */ + public final long stackedTableSampleCount; + + /** + * The combiner attribute + */ + public final String combiner; + + public Inputs(GraphOperation op) { + super(new ConvertToListOfSparseCoreCooTensors(op), op, Arrays.asList("sample_count", "row_offset", "col_offset", "col_shift", "num_sc_shards", "stacked_table_sample_count", "combiner")); + int inputIndex = 0; + indicesOrRowSplits = (Operand) op.input(inputIndex++); + values = (Operand) op.input(inputIndex++); + weights = (Operand) op.input(inputIndex++); + sampleCount = op.attributes().getAttrInt("sample_count"); + rowOffset = op.attributes().getAttrInt("row_offset"); + colOffset = op.attributes().getAttrInt("col_offset"); + colShift = op.attributes().getAttrInt("col_shift"); + numScShards = op.attributes().getAttrInt("num_sc_shards"); + stackedTableSampleCount = op.attributes().getAttrInt("stacked_table_sample_count"); + combiner = op.attributes().getAttrString("combiner"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToSparseCoreCsrWrappedCooTensor.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToSparseCoreCsrWrappedCooTensor.java new file mode 100644 index 00000000000..6590a927699 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/ConvertToSparseCoreCsrWrappedCooTensor.java @@ -0,0 +1,283 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.sparse; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; +import org.tensorflow.types.TInt64; + +/** + * The ConvertToSparseCoreCsrWrappedCooTensor operation + */ +@OpMetadata( + opType = ConvertToSparseCoreCsrWrappedCooTensor.OP_NAME, + inputsClass = ConvertToSparseCoreCsrWrappedCooTensor.Inputs.class +) +@Operator( + group = "sparse" +) +public final class ConvertToSparseCoreCsrWrappedCooTensor extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "ConvertToSparseCoreCsrWrappedCooTensor"; + + private Output rowPointers; + + private Output sortedSampleIds; + + private Output sortedTokenIds; + + private Output sortedGains; + + private Output rowPointersUnpaddedSize; + + private Output idsUnpaddedSize; + + private Output numMinibatchesPerSc; + + public ConvertToSparseCoreCsrWrappedCooTensor(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + rowPointers = operation.output(outputIdx++); + sortedSampleIds = operation.output(outputIdx++); + sortedTokenIds = operation.output(outputIdx++); + sortedGains = operation.output(outputIdx++); + rowPointersUnpaddedSize = operation.output(outputIdx++); + idsUnpaddedSize = operation.output(outputIdx++); + numMinibatchesPerSc = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new ConvertToSparseCoreCsrWrappedCooTensor operation. + * + * @param scope current scope + * @param sortedRowIdsList The sortedRowIdsList value + * @param sortedColIdsList The sortedColIdsList value + * @param sortedGainsList The sortedGainsList value + * @param idCountsList The idCountsList value + * @param splits The splits value + * @param sampleCountPerSc The value of the sampleCountPerSc attribute + * @param numReplica The value of the numReplica attribute + * @param maxMinibatchesPerSc The value of the maxMinibatchesPerSc attribute + * @param maxIdsPerChipPerSample The value of the maxIdsPerChipPerSample attribute + * @param tableVocabSize The value of the tableVocabSize attribute + * @param featureWidth The value of the featureWidth attribute + * @param tableName The value of the tableName attribute + * @param allowIdDropping The value of the allowIdDropping attribute + * @return a new instance of ConvertToSparseCoreCsrWrappedCooTensor + */ + @Endpoint( + describeByClass = true + ) + public static ConvertToSparseCoreCsrWrappedCooTensor create(Scope scope, + Iterable> sortedRowIdsList, Iterable> sortedColIdsList, + Iterable> sortedGainsList, Iterable> idCountsList, + Operand splits, Long sampleCountPerSc, Long numReplica, Long maxMinibatchesPerSc, + Long maxIdsPerChipPerSample, Long tableVocabSize, Long featureWidth, String tableName, + Boolean allowIdDropping) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ConvertToSparseCoreCsrWrappedCooTensor"); + opBuilder.addInputList(Operands.asOutputs(sortedRowIdsList)); + opBuilder.addInputList(Operands.asOutputs(sortedColIdsList)); + opBuilder.addInputList(Operands.asOutputs(sortedGainsList)); + opBuilder.addInputList(Operands.asOutputs(idCountsList)); + opBuilder.addInput(splits.asOutput()); + opBuilder.setAttr("sample_count_per_sc", sampleCountPerSc); + opBuilder.setAttr("num_replica", numReplica); + opBuilder.setAttr("max_minibatches_per_sc", maxMinibatchesPerSc); + opBuilder.setAttr("max_ids_per_chip_per_sample", maxIdsPerChipPerSample); + opBuilder.setAttr("table_vocab_size", tableVocabSize); + opBuilder.setAttr("feature_width", featureWidth); + opBuilder.setAttr("table_name", tableName); + opBuilder.setAttr("allow_id_dropping", allowIdDropping); + return new ConvertToSparseCoreCsrWrappedCooTensor(opBuilder.build()); + } + + /** + * Gets rowPointers. + * + * @return rowPointers. + */ + public Output rowPointers() { + return rowPointers; + } + + /** + * Gets sortedSampleIds. + * + * @return sortedSampleIds. + */ + public Output sortedSampleIds() { + return sortedSampleIds; + } + + /** + * Gets sortedTokenIds. + * + * @return sortedTokenIds. + */ + public Output sortedTokenIds() { + return sortedTokenIds; + } + + /** + * Gets sortedGains. + * + * @return sortedGains. + */ + public Output sortedGains() { + return sortedGains; + } + + /** + * Gets rowPointersUnpaddedSize. + * + * @return rowPointersUnpaddedSize. + */ + public Output rowPointersUnpaddedSize() { + return rowPointersUnpaddedSize; + } + + /** + * Gets idsUnpaddedSize. + * + * @return idsUnpaddedSize. + */ + public Output idsUnpaddedSize() { + return idsUnpaddedSize; + } + + /** + * Gets numMinibatchesPerSc. + * + * @return numMinibatchesPerSc. + */ + public Output numMinibatchesPerSc() { + return numMinibatchesPerSc; + } + + @OpInputsMetadata( + outputsClass = ConvertToSparseCoreCsrWrappedCooTensor.class + ) + public static class Inputs extends RawOpInputs { + /** + * The sortedRowIdsList input + */ + public final Iterable> sortedRowIdsList; + + /** + * The sortedColIdsList input + */ + public final Iterable> sortedColIdsList; + + /** + * The sortedGainsList input + */ + public final Iterable> sortedGainsList; + + /** + * The idCountsList input + */ + public final Iterable> idCountsList; + + /** + * The splits input + */ + public final Operand splits; + + /** + * The sampleCountPerSc attribute + */ + public final long sampleCountPerSc; + + /** + * The numReplica attribute + */ + public final long numReplica; + + /** + * The maxMinibatchesPerSc attribute + */ + public final long maxMinibatchesPerSc; + + /** + * The maxIdsPerChipPerSample attribute + */ + public final long maxIdsPerChipPerSample; + + /** + * The tableVocabSize attribute + */ + public final long tableVocabSize; + + /** + * The featureWidth attribute + */ + public final long featureWidth; + + /** + * The tableName attribute + */ + public final String tableName; + + /** + * The allowIdDropping attribute + */ + public final boolean allowIdDropping; + + public Inputs(GraphOperation op) { + super(new ConvertToSparseCoreCsrWrappedCooTensor(op), op, Arrays.asList("sample_count_per_sc", "num_replica", "max_minibatches_per_sc", "max_ids_per_chip_per_sample", "table_vocab_size", "feature_width", "table_name", "allow_id_dropping")); + int inputIndex = 0; + int sortedRowIdsListLength = op.inputListLength("sorted_row_ids_list"); + sortedRowIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, sortedRowIdsListLength)); + inputIndex += sortedRowIdsListLength; + int sortedColIdsListLength = op.inputListLength("sorted_col_ids_list"); + sortedColIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, sortedColIdsListLength)); + inputIndex += sortedColIdsListLength; + int sortedGainsListLength = op.inputListLength("sorted_gains_list"); + sortedGainsList = Arrays.asList((Operand[]) op.inputList(inputIndex, sortedGainsListLength)); + inputIndex += sortedGainsListLength; + int idCountsListLength = op.inputListLength("id_counts_list"); + idCountsList = Arrays.asList((Operand[]) op.inputList(inputIndex, idCountsListLength)); + inputIndex += idCountsListLength; + splits = (Operand) op.input(inputIndex++); + sampleCountPerSc = op.attributes().getAttrInt("sample_count_per_sc"); + numReplica = op.attributes().getAttrInt("num_replica"); + maxMinibatchesPerSc = op.attributes().getAttrInt("max_minibatches_per_sc"); + maxIdsPerChipPerSample = op.attributes().getAttrInt("max_ids_per_chip_per_sample"); + tableVocabSize = op.attributes().getAttrInt("table_vocab_size"); + featureWidth = op.attributes().getAttrInt("feature_width"); + tableName = op.attributes().getAttrString("table_name"); + allowIdDropping = op.attributes().getAttrBool("allow_id_dropping"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java index 49d78c0517c..5cf78a2a0a6 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseCountSparseOutput.java @@ -37,8 +37,6 @@ /** * Performs sparse-output bin counting for a tf.tensor input. * Counts the number of times each value occurs in the input. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = DenseCountSparseOutput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java index 2ea6aa671d1..546adba1a9d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToDenseSetOperation.java @@ -42,8 +42,6 @@ * has rank {@code n} and the same 1st {@code n-1} dimensions as {@code set1} and {@code set2}. The {@code nth} * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. - * - * @param data type for {@code result_values} output */ @OpMetadata( opType = DenseToDenseSetOperation.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java index bb75893bfd4..1b8cbcaee50 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DenseToSparseSetOperation.java @@ -48,8 +48,6 @@ * has rank {@code n} and the same 1st {@code n-1} dimensions as {@code set1} and {@code set2}. The {@code nth} * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. - * - * @param data type for {@code result_values} output */ @OpMetadata( opType = DenseToSparseSetOperation.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java index 697249eca81..ba0c51f9a1e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/DeserializeSparse.java @@ -76,8 +76,6 @@ * values = [1, 2, 3, 4, 5] * shape = [2 50] * - * - * @param data type for {@code sparse_values} output */ @OpMetadata( opType = DeserializeSparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/GetStatsFromListOfSparseCoreCooTensors.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/GetStatsFromListOfSparseCoreCooTensors.java new file mode 100644 index 00000000000..51f5c33d66b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/GetStatsFromListOfSparseCoreCooTensors.java @@ -0,0 +1,204 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.sparse; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The GetStatsFromListOfSparseCoreCooTensors operation + */ +@OpMetadata( + opType = GetStatsFromListOfSparseCoreCooTensors.OP_NAME, + inputsClass = GetStatsFromListOfSparseCoreCooTensors.Inputs.class +) +@Operator( + group = "sparse" +) +public final class GetStatsFromListOfSparseCoreCooTensors extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "GetStatsFromListOfSparseCoreCooTensors"; + + private Output maxIdsPerSparseCore; + + private Output maxUniqueIdsPerSparseCore; + + public GetStatsFromListOfSparseCoreCooTensors(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + maxIdsPerSparseCore = operation.output(outputIdx++); + maxUniqueIdsPerSparseCore = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new GetStatsFromListOfSparseCoreCooTensors operation. + * + * @param scope current scope + * @param rowIdsList The rowIdsList value + * @param colIdsList The colIdsList value + * @param gainsList The gainsList value + * @param sampleCountList The value of the sampleCountList attribute + * @param colOffsetList The value of the colOffsetList attribute + * @param numReplica The value of the numReplica attribute + * @param tableVocabSize The value of the tableVocabSize attribute + * @param featureWidth The value of the featureWidth attribute + * @param numScPerChip The value of the numScPerChip attribute + * @param tableName The value of the tableName attribute + * @return a new instance of GetStatsFromListOfSparseCoreCooTensors + */ + @Endpoint( + describeByClass = true + ) + public static GetStatsFromListOfSparseCoreCooTensors create(Scope scope, + Iterable> rowIdsList, Iterable> colIdsList, + Iterable> gainsList, List sampleCountList, List colOffsetList, + Long numReplica, Long tableVocabSize, Long featureWidth, Long numScPerChip, + String tableName) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "GetStatsFromListOfSparseCoreCooTensors"); + opBuilder.addInputList(Operands.asOutputs(rowIdsList)); + opBuilder.addInputList(Operands.asOutputs(colIdsList)); + opBuilder.addInputList(Operands.asOutputs(gainsList)); + long[] sampleCountListArray = new long[sampleCountList.size()]; + for (int i = 0 ; i < sampleCountListArray.length ; i++) { + sampleCountListArray[i] = sampleCountList.get(i); + } + opBuilder.setAttr("sample_count_list", sampleCountListArray); + long[] colOffsetListArray = new long[colOffsetList.size()]; + for (int i = 0 ; i < colOffsetListArray.length ; i++) { + colOffsetListArray[i] = colOffsetList.get(i); + } + opBuilder.setAttr("col_offset_list", colOffsetListArray); + opBuilder.setAttr("num_replica", numReplica); + opBuilder.setAttr("table_vocab_size", tableVocabSize); + opBuilder.setAttr("feature_width", featureWidth); + opBuilder.setAttr("num_sc_per_chip", numScPerChip); + opBuilder.setAttr("table_name", tableName); + return new GetStatsFromListOfSparseCoreCooTensors(opBuilder.build()); + } + + /** + * Gets maxIdsPerSparseCore. + * + * @return maxIdsPerSparseCore. + */ + public Output maxIdsPerSparseCore() { + return maxIdsPerSparseCore; + } + + /** + * Gets maxUniqueIdsPerSparseCore. + * + * @return maxUniqueIdsPerSparseCore. + */ + public Output maxUniqueIdsPerSparseCore() { + return maxUniqueIdsPerSparseCore; + } + + @OpInputsMetadata( + outputsClass = GetStatsFromListOfSparseCoreCooTensors.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowIdsList input + */ + public final Iterable> rowIdsList; + + /** + * The colIdsList input + */ + public final Iterable> colIdsList; + + /** + * The gainsList input + */ + public final Iterable> gainsList; + + /** + * The sampleCountList attribute + */ + public final long[] sampleCountList; + + /** + * The colOffsetList attribute + */ + public final long[] colOffsetList; + + /** + * The numReplica attribute + */ + public final long numReplica; + + /** + * The tableVocabSize attribute + */ + public final long tableVocabSize; + + /** + * The featureWidth attribute + */ + public final long featureWidth; + + /** + * The numScPerChip attribute + */ + public final long numScPerChip; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new GetStatsFromListOfSparseCoreCooTensors(op), op, Arrays.asList("sample_count_list", "col_offset_list", "num_replica", "table_vocab_size", "feature_width", "num_sc_per_chip", "table_name")); + int inputIndex = 0; + int rowIdsListLength = op.inputListLength("row_ids_list"); + rowIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, rowIdsListLength)); + inputIndex += rowIdsListLength; + int colIdsListLength = op.inputListLength("col_ids_list"); + colIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, colIdsListLength)); + inputIndex += colIdsListLength; + int gainsListLength = op.inputListLength("gains_list"); + gainsList = Arrays.asList((Operand[]) op.inputList(inputIndex, gainsListLength)); + inputIndex += gainsListLength; + sampleCountList = op.attributes().getAttrIntList("sample_count_list"); + colOffsetList = op.attributes().getAttrIntList("col_offset_list"); + numReplica = op.attributes().getAttrInt("num_replica"); + tableVocabSize = op.attributes().getAttrInt("table_vocab_size"); + featureWidth = op.attributes().getAttrInt("feature_width"); + numScPerChip = op.attributes().getAttrInt("num_sc_per_chip"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SortListOfSparseCoreCooTensors.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SortListOfSparseCoreCooTensors.java new file mode 100644 index 00000000000..fb26033cfd2 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SortListOfSparseCoreCooTensors.java @@ -0,0 +1,240 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.sparse; + +import java.util.Arrays; +import java.util.List; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The SortListOfSparseCoreCooTensors operation + */ +@OpMetadata( + opType = SortListOfSparseCoreCooTensors.OP_NAME, + inputsClass = SortListOfSparseCoreCooTensors.Inputs.class +) +public final class SortListOfSparseCoreCooTensors extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "SortListOfSparseCoreCooTensors"; + + private Output sortedRowIds; + + private Output sortedColIds; + + private Output sortedGains; + + private Output idCounts; + + public SortListOfSparseCoreCooTensors(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + sortedRowIds = operation.output(outputIdx++); + sortedColIds = operation.output(outputIdx++); + sortedGains = operation.output(outputIdx++); + idCounts = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new SortListOfSparseCoreCooTensors operation. + * + * @param scope current scope + * @param rowIdsList The rowIdsList value + * @param colIdsList The colIdsList value + * @param gainsList The gainsList value + * @param sampleCountList The value of the sampleCountList attribute + * @param colOffsetList The value of the colOffsetList attribute + * @param numReplica The value of the numReplica attribute + * @param tableVocabSize The value of the tableVocabSize attribute + * @param featureWidth The value of the featureWidth attribute + * @param numScPerChip The value of the numScPerChip attribute + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @return a new instance of SortListOfSparseCoreCooTensors + */ + @Endpoint( + describeByClass = true + ) + public static SortListOfSparseCoreCooTensors create(Scope scope, + Iterable> rowIdsList, Iterable> colIdsList, + Iterable> gainsList, List sampleCountList, List colOffsetList, + Long numReplica, Long tableVocabSize, Long featureWidth, Long numScPerChip, + Long maxIdsPerSparseCore, Long maxUniqueIdsPerSparseCore, String tableName) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "SortListOfSparseCoreCooTensors"); + opBuilder.addInputList(Operands.asOutputs(rowIdsList)); + opBuilder.addInputList(Operands.asOutputs(colIdsList)); + opBuilder.addInputList(Operands.asOutputs(gainsList)); + long[] sampleCountListArray = new long[sampleCountList.size()]; + for (int i = 0 ; i < sampleCountListArray.length ; i++) { + sampleCountListArray[i] = sampleCountList.get(i); + } + opBuilder.setAttr("sample_count_list", sampleCountListArray); + long[] colOffsetListArray = new long[colOffsetList.size()]; + for (int i = 0 ; i < colOffsetListArray.length ; i++) { + colOffsetListArray[i] = colOffsetList.get(i); + } + opBuilder.setAttr("col_offset_list", colOffsetListArray); + opBuilder.setAttr("num_replica", numReplica); + opBuilder.setAttr("table_vocab_size", tableVocabSize); + opBuilder.setAttr("feature_width", featureWidth); + opBuilder.setAttr("num_sc_per_chip", numScPerChip); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + return new SortListOfSparseCoreCooTensors(opBuilder.build()); + } + + /** + * Gets sortedRowIds. + * + * @return sortedRowIds. + */ + public Output sortedRowIds() { + return sortedRowIds; + } + + /** + * Gets sortedColIds. + * + * @return sortedColIds. + */ + public Output sortedColIds() { + return sortedColIds; + } + + /** + * Gets sortedGains. + * + * @return sortedGains. + */ + public Output sortedGains() { + return sortedGains; + } + + /** + * Gets idCounts. + * + * @return idCounts. + */ + public Output idCounts() { + return idCounts; + } + + @OpInputsMetadata( + outputsClass = SortListOfSparseCoreCooTensors.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowIdsList input + */ + public final Iterable> rowIdsList; + + /** + * The colIdsList input + */ + public final Iterable> colIdsList; + + /** + * The gainsList input + */ + public final Iterable> gainsList; + + /** + * The sampleCountList attribute + */ + public final long[] sampleCountList; + + /** + * The colOffsetList attribute + */ + public final long[] colOffsetList; + + /** + * The numReplica attribute + */ + public final long numReplica; + + /** + * The tableVocabSize attribute + */ + public final long tableVocabSize; + + /** + * The featureWidth attribute + */ + public final long featureWidth; + + /** + * The numScPerChip attribute + */ + public final long numScPerChip; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new SortListOfSparseCoreCooTensors(op), op, Arrays.asList("sample_count_list", "col_offset_list", "num_replica", "table_vocab_size", "feature_width", "num_sc_per_chip", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + int rowIdsListLength = op.inputListLength("row_ids_list"); + rowIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, rowIdsListLength)); + inputIndex += rowIdsListLength; + int colIdsListLength = op.inputListLength("col_ids_list"); + colIdsList = Arrays.asList((Operand[]) op.inputList(inputIndex, colIdsListLength)); + inputIndex += colIdsListLength; + int gainsListLength = op.inputListLength("gains_list"); + gainsList = Arrays.asList((Operand[]) op.inputList(inputIndex, gainsListLength)); + inputIndex += gainsListLength; + sampleCountList = op.attributes().getAttrIntList("sample_count_list"); + colOffsetList = op.attributes().getAttrIntList("col_offset_list"); + numReplica = op.attributes().getAttrInt("num_replica"); + tableVocabSize = op.attributes().getAttrInt("table_vocab_size"); + featureWidth = op.attributes().getAttrInt("feature_width"); + numScPerChip = op.attributes().getAttrInt("num_sc_per_chip"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java index aeb639d2d6e..fb8a868349d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAccumulatorTakeGradient.java @@ -45,8 +45,6 @@ * average of the accumulated gradients. Also automatically increments * the recorded global_step in the accumulator by 1, and resets the * aggregate to 0. - * - * @param data type for {@code values} output */ @OpMetadata( opType = SparseAccumulatorTakeGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java index 1591773a20c..88ef61b78a1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAdd.java @@ -48,8 +48,6 @@ * {@code thresh == 0} (default) means everything is kept and actual thresholding happens * only for a positive value. *

    In the following shapes, {@code nnz} is the count after taking {@code thresh} into account. - * - * @param data type for {@code sum_values} output */ @OpMetadata( opType = SparseAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java index 7d6c0923f4f..8a844c96eff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseAddGrad.java @@ -40,8 +40,6 @@ * as {@code SparseTensor} objects. This op takes in the upstream gradient w.r.t. * non-empty values of the sum, and outputs the gradients w.r.t. the non-empty * values of A and B. - * - * @param data type for {@code a_val_grad} output */ @OpMetadata( opType = SparseAddGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java index b7414e4ab54..9eca1295d45 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseBincount.java @@ -42,8 +42,6 @@ * the value in {@code weights} at each index where the corresponding value in {@code arr} is * {@code i}. *

    Values in {@code arr} outside of the range [0, size) are ignored. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseBincount.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java index 6d53b3a723b..016f010647b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseConcat.java @@ -74,8 +74,6 @@ * [ a] concat [ d e ] = [ a d e ] * [b c ] [ ] [b c ] * - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseConcat.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java index c3983444bd3..4c59b4e2774 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseCountSparseOutput.java @@ -37,8 +37,6 @@ /** * Performs sparse-output bin counting for a sparse tensor input. * Counts the number of times each value occurs in the input. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseCountSparseOutput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java index 261d292d3b0..10ac8721d98 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseAdd.java @@ -43,8 +43,6 @@ *

    By these rules, the result is a logical SparseTensor with exactly the same * indices and shape, but possibly with different non-zero values. The output of * this Op is the resultant non-zero values. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseDenseCwiseAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java index e0b56d6827c..724997892b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseDiv.java @@ -38,8 +38,6 @@ * Component-wise divides a SparseTensor by a dense Tensor. * Limitation: this Op only broadcasts the dense side to the sparse side, but not * the other direction. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseDenseCwiseDiv.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java index 3fb7a03c683..fe8386f0838 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseDenseCwiseMul.java @@ -41,8 +41,6 @@ * contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN). *

    Limitation: this Op only broadcasts the dense side to the sparse side, but not * the other direction. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseDenseCwiseMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java index 989fda03492..ef0d2f85afa 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRows.java @@ -71,8 +71,6 @@ *

      * reverse_index_map[j] = out_j s.t. indices[j, :] == output_indices[out_j, :]
      * 
    - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseFillEmptyRows.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java index 21d4e2f099f..3b1c80bb5b1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseFillEmptyRowsGrad.java @@ -43,8 +43,6 @@ *

    d_values[j] = grad_values[reverse_index_map[j]] * d_default_value = sum_{k : 0 .. N_full - 1} ( * grad_values[k] * 1{k not in reverse_index_map}) - * - * @param data type for {@code d_values} output */ @OpMetadata( opType = SparseFillEmptyRowsGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java index 1e48a53ea82..256695f0acd 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMax.java @@ -47,8 +47,6 @@ *

    If {@code reduction_axes} has no entries, all dimensions are reduced, and a tensor * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseReduceMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java index 8f337f0c19e..b0a65daea67 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceMaxSparse.java @@ -47,8 +47,6 @@ *

    If {@code reduction_axes} has no entries, all dimensions are reduced, and a tensor * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseReduceMaxSparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java index 26e0ecbfc45..3589487bece 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSum.java @@ -47,8 +47,6 @@ *

    If {@code reduction_axes} has no entries, all dimensions are reduced, and a tensor * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseReduceSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSumSparse.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSumSparse.java index bb434694ccf..ef58eac0af1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSumSparse.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReduceSumSparse.java @@ -47,8 +47,6 @@ *

    If {@code reduction_axes} has no entries, all dimensions are reduced, and a tensor * with a single element is returned. Additionally, the axes can be negative, * which are interpreted according to the indexing rules in Python. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseReduceSumSparse.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java index 9e963285d77..4e2883435f9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseReorder.java @@ -42,8 +42,6 @@ *

    Reordering does not affect the shape of the SparseTensor. *

    If the tensor has rank {@code R} and {@code N} non-empty values, {@code input_indices} has * shape {@code [N, R]}, input_values has length {@code N}, and input_shape has length {@code R}. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseReorder.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java index c1899b2fbf6..4703ba10fca 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMean.java @@ -38,8 +38,6 @@ * See {@code tf.sparse.segment_sum} for usage examples. *

    Like {@code SegmentMean}, but {@code segment_ids} can have rank less than {@code data}'s first * dimension, selecting a subset of dimension 0, specified by {@code indices}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentMean.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java index 50f29512a23..9da8038eee9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanGrad.java @@ -39,10 +39,6 @@ * Returns tensor "output" with same shape as grad, except for dimension 0 whose * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". - * - * @param data type for {@code output} output - * - * @param data type for {@code sorted_unique_indices} output */ @OpMetadata( opType = SparseSegmentMeanGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java index d1c0e07c099..99cf33231a5 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentMeanWithNumSegments.java @@ -40,8 +40,6 @@ *

    Read * the section on segmentation * for an explanation of segments. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentMeanWithNumSegments.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java index ee0dc4238fc..5e299d7d124 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtN.java @@ -37,8 +37,6 @@ * Computes the sum along sparse segments of a tensor divided by the sqrt of N. * N is the size of the segment being reduced. *

    See {@code tf.sparse.segment_sum} for usage examples. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentSqrtN.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java index 075cbacbcfb..b458c7daff9 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNGrad.java @@ -39,10 +39,6 @@ * Returns tensor "output" with same shape as grad, except for dimension 0 whose * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". - * - * @param data type for {@code output} output - * - * @param data type for {@code sorted_unique_indices} output */ @OpMetadata( opType = SparseSegmentSqrtNGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java index 84ccc501312..146dd696d6e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSqrtNWithNumSegments.java @@ -41,8 +41,6 @@ *

    Read * the section on segmentation * for an explanation of segments. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentSqrtNWithNumSegments.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java index cf2ce2c9851..2f28386d05c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSum.java @@ -61,8 +61,6 @@ * # Which is equivalent to: * tf.segment_sum(c, tf.constant([0, 0, 1])) * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumGrad.java index 71b8f92448e..1372d6f7089 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumGrad.java @@ -39,10 +39,6 @@ * Returns tensor "output" with same shape as grad, except for dimension 0 whose * value is the number of unique indexes in "indices". Also returns vector * "sorted_unique_indices" containing the corresponding indexes from "indices". - * - * @param data type for {@code output} output - * - * @param data type for {@code sorted_unique_indices} output */ @OpMetadata( opType = SparseSegmentSumGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java index 4c44377244d..88b577afec1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSegmentSumWithNumSegments.java @@ -59,8 +59,6 @@ * # [-1 -2 -3 -4] * # [ 0 0 0 0]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSegmentSumWithNumSegments.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java index 58c794dfb2f..a3718f1a7e0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSlice.java @@ -52,8 +52,6 @@ * [ d e ] * [ ] * - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseSlice.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java index 4cfa41a7e45..969ef935dc7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSliceGrad.java @@ -39,8 +39,6 @@ * This op takes in the upstream gradient w.r.t. non-empty values of * the sliced {@code SparseTensor}, and outputs the gradients w.r.t. * the non-empty values of input {@code SparseTensor}. - * - * @param data type for {@code val_grad} output */ @OpMetadata( opType = SparseSliceGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java index be61533da26..43cd85b5a9f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSoftmax.java @@ -48,8 +48,6 @@ * (3) Renormalizes the remaining elements. *

    Hence, the {@code SparseTensor} result has exactly the same non-zero indices and * shape. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseSoftmax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java index 22a1d407274..80b44623ca8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMaximum.java @@ -37,8 +37,6 @@ /** * Returns the element-wise max of two SparseTensors. * Assumes the two SparseTensors have the same shape, i.e., no broadcasting. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseSparseMaximum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java index 8dd8978c627..ecbc022d09d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSparseMinimum.java @@ -37,8 +37,6 @@ /** * Returns the element-wise min of two SparseTensors. * Assumes the two SparseTensors have the same shape, i.e., no broadcasting. - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseSparseMinimum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java index a09e9ff9d38..da66d34d134 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseSplit.java @@ -55,8 +55,6 @@ * [ d e ] * [ ] * - * - * @param data type for {@code output_values} output */ @OpMetadata( opType = SparseSplit.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java index c153cf68776..7f73769030b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseAdd.java @@ -37,8 +37,6 @@ /** * Adds up a {@code SparseTensor} and a dense {@code Tensor}, producing a dense {@code Tensor}. * This Op does not require {@code a_indices} be sorted in standard lexicographic order. - * - * @param data type for {@code output} output */ @OpMetadata( opType = SparseTensorDenseAdd.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java index 346c9297596..0425354268c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseTensorDenseMatMul.java @@ -45,8 +45,6 @@ * if adjoint_a == true: * A should be sorted in order of increasing dimension 1 (i.e., "column major" * order instead of "row major" order). - * - * @param data type for {@code product} output */ @OpMetadata( opType = SparseTensorDenseMatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java index 95c8f189d48..448a7c4ec83 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToDense.java @@ -52,8 +52,6 @@ *

    Indices should be sorted in lexicographic order, and indices must not * contain any repeats. If {@code validate_indices} is true, these properties * are checked during execution. - * - * @param data type for {@code dense} output */ @OpMetadata( opType = SparseToDense.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java index 8a71016a669..e658f88abb7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/SparseToSparseSetOperation.java @@ -54,8 +54,6 @@ * has rank {@code n} and the same 1st {@code n-1} dimensions as {@code set1} and {@code set2}. The {@code nth} * dimension contains the result of {@code set_operation} applied to the corresponding * {@code [0...n-1]} dimension of {@code set}. - * - * @param data type for {@code result_values} output */ @OpMetadata( opType = SparseToSparseSetOperation.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java index e72ec904466..2c6293f402d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/sparse/TakeManySparseFromTensorsMap.java @@ -77,8 +77,6 @@ * values = [1, 2, 3, 4, 5] * shape = [2 50] * - * - * @param data type for {@code sparse_values} output */ @OpMetadata( opType = TakeManySparseFromTensorsMap.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java index 6f5739989d0..c04fa6cd987 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/StringNGrams.java @@ -40,8 +40,6 @@ * This op accepts a ragged tensor with 1 ragged dimension containing only * strings and outputs a ragged tensor with 1 ragged dimension containing ngrams * of that string, joined along the innermost axis. - * - * @param data type for {@code ngrams_splits} output */ @OpMetadata( opType = StringNGrams.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java index e4564334bf1..74e4816ed43 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/ToNumber.java @@ -50,8 +50,6 @@ * * * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ToNumber.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java index bffb35e17e0..40624c66adf 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecode.java @@ -52,8 +52,6 @@ *

  • {@code row_splits[i+1] - row_splits[i]} is the number of characters in the {@code i}th * string (in row-major order).
  • * - * - * @param data type for {@code row_splits} output */ @OpMetadata( opType = UnicodeDecode.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java index 690789b6843..5989e8e7106 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/strings/UnicodeDecodeWithOffsets.java @@ -56,8 +56,6 @@ *
  • {@code row_splits[i+1] - row_splits[i]} is the number of characters in the {@code i}th * string (in row-major order).
  • * - * - * @param data type for {@code row_splits} output */ @OpMetadata( opType = UnicodeDecodeWithOffsets.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java index dfe6664886c..3bd1592cbc7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/AllToAll.java @@ -49,8 +49,6 @@ * split_count=2 *

    replica 0's output: {@code [[A], [C]]} * replica 1's output: {@code [[B], [D]]} - * - * @param data type for {@code output} output */ @OpMetadata( opType = AllToAll.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataSize.java index 4305affd43e..6ff27567e92 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataSize.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataSize.java @@ -29,7 +29,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.OpInputsMetadata; import org.tensorflow.op.annotation.OpMetadata; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; /** @@ -42,14 +41,11 @@ opType = ComputeDedupDataSize.OP_NAME, inputsClass = ComputeDedupDataSize.Inputs.class ) -@Operator( - group = "tpu" -) public final class ComputeDedupDataSize extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "ComputeDedupDataSize"; + public static final String OP_NAME = "ComputeDedupDataSizeV2"; private Output numElements; @@ -60,18 +56,25 @@ public ComputeDedupDataSize(Operation operation) { } /** - * Factory method to create a class wrapping a new ComputeDedupDataSize operation. + * Factory method to create a class wrapping a new ComputeDedupDataSizeV2 operation. * * @param scope current scope * @param config Serialized TPUEmbeddingConfiguration proto. + * @param embeddingPartitions Serialized EmbeddingPartitionsProto proto. + * @param hbmBuffersConfig Serialized HbmBuffersConfig proto. + * @param tpuTopology Serialized TpuTopologyArgsProto proto. * @return a new instance of ComputeDedupDataSize */ @Endpoint( describeByClass = true ) - public static ComputeDedupDataSize create(Scope scope, String config) { + public static ComputeDedupDataSize create(Scope scope, String config, String embeddingPartitions, + String hbmBuffersConfig, String tpuTopology) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ComputeDedupDataSize"); opBuilder.setAttr("config", config); + opBuilder.setAttr("embedding_partitions", embeddingPartitions); + opBuilder.setAttr("hbm_buffers_config", hbmBuffersConfig); + opBuilder.setAttr("tpu_topology", tpuTopology); return new ComputeDedupDataSize(opBuilder.build()); } @@ -98,10 +101,28 @@ public static class Inputs extends RawOpInputs { */ public final String config; + /** + * Serialized EmbeddingPartitionsProto proto. + */ + public final String embeddingPartitions; + + /** + * Serialized HbmBuffersConfig proto. + */ + public final String hbmBuffersConfig; + + /** + * Serialized TpuTopologyArgsProto proto. + */ + public final String tpuTopology; + public Inputs(GraphOperation op) { - super(new ComputeDedupDataSize(op), op, Arrays.asList("config")); + super(new ComputeDedupDataSize(op), op, Arrays.asList("config", "embedding_partitions", "hbm_buffers_config", "tpu_topology")); int inputIndex = 0; config = op.attributes().getAttrString("config"); + embeddingPartitions = op.attributes().getAttrString("embedding_partitions"); + hbmBuffersConfig = op.attributes().getAttrString("hbm_buffers_config"); + tpuTopology = op.attributes().getAttrString("tpu_topology"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataTupleMask.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataTupleMask.java index 95078aebabc..1160a8536a2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataTupleMask.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ComputeDedupDataTupleMask.java @@ -29,7 +29,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.OpInputsMetadata; import org.tensorflow.op.annotation.OpMetadata; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TInt32; /** @@ -42,14 +41,11 @@ opType = ComputeDedupDataTupleMask.OP_NAME, inputsClass = ComputeDedupDataTupleMask.Inputs.class ) -@Operator( - group = "tpu" -) public final class ComputeDedupDataTupleMask extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "ComputeDedupDataTupleMask"; + public static final String OP_NAME = "ComputeDedupDataTupleMaskV2"; private Output outputShape; @@ -60,18 +56,25 @@ public ComputeDedupDataTupleMask(Operation operation) { } /** - * Factory method to create a class wrapping a new ComputeDedupDataTupleMask operation. + * Factory method to create a class wrapping a new ComputeDedupDataTupleMaskV2 operation. * * @param scope current scope * @param config Serialized TPUEmbeddingConfiguration proto. + * @param embeddingPartitions Serialized EmbeddingPartitionsProto proto. + * @param hbmBuffersConfig Serialized HbmBuffersConfig proto. + * @param tpuTopology Serialized TpuTopologyArgsProto proto. * @return a new instance of ComputeDedupDataTupleMask */ @Endpoint( describeByClass = true ) - public static ComputeDedupDataTupleMask create(Scope scope, String config) { + public static ComputeDedupDataTupleMask create(Scope scope, String config, + String embeddingPartitions, String hbmBuffersConfig, String tpuTopology) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "ComputeDedupDataTupleMask"); opBuilder.setAttr("config", config); + opBuilder.setAttr("embedding_partitions", embeddingPartitions); + opBuilder.setAttr("hbm_buffers_config", hbmBuffersConfig); + opBuilder.setAttr("tpu_topology", tpuTopology); return new ComputeDedupDataTupleMask(opBuilder.build()); } @@ -103,10 +106,28 @@ public static class Inputs extends RawOpInputs { */ public final String config; + /** + * Serialized EmbeddingPartitionsProto proto. + */ + public final String embeddingPartitions; + + /** + * Serialized HbmBuffersConfig proto. + */ + public final String hbmBuffersConfig; + + /** + * Serialized TpuTopologyArgsProto proto. + */ + public final String tpuTopology; + public Inputs(GraphOperation op) { - super(new ComputeDedupDataTupleMask(op), op, Arrays.asList("config")); + super(new ComputeDedupDataTupleMask(op), op, Arrays.asList("config", "embedding_partitions", "hbm_buffers_config", "tpu_topology")); int inputIndex = 0; config = op.attributes().getAttrString("config"); + embeddingPartitions = op.attributes().getAttrString("embedding_partitions"); + hbmBuffersConfig = op.attributes().getAttrString("hbm_buffers_config"); + tpuTopology = op.attributes().getAttrString("tpu_topology"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java index c56e985eafb..15e942cac31 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/CrossReplicaSum.java @@ -41,8 +41,6 @@ * Passing group_assignment={@code [[0,2,4,6],[1,3,5,7]]} sets {@code A, C, E, G} as group 0, * and {@code B, D, F, H} as group 1. Thus we get the outputs: * {@code [A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H, A+C+E+G, B+D+F+H]}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = CrossReplicaSum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/FinalizeTPUEmbedding.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/FinalizeTPUEmbedding.java index 6ce405ea522..db44a52d05b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/FinalizeTPUEmbedding.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/FinalizeTPUEmbedding.java @@ -22,6 +22,7 @@ import org.tensorflow.Operand; import org.tensorflow.Operation; import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; import org.tensorflow.op.RawOp; import org.tensorflow.op.RawOpInputs; import org.tensorflow.op.Scope; @@ -45,14 +46,21 @@ public final class FinalizeTPUEmbedding extends RawOp { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "FinalizeTPUEmbedding"; + public static final String OP_NAME = "FinalizeTPUEmbeddingV2"; + + private Output embeddingPartitions; + + private Output hbmBuffersConfig; public FinalizeTPUEmbedding(Operation operation) { super(operation, OP_NAME); + int outputIdx = 0; + embeddingPartitions = operation.output(outputIdx++); + hbmBuffersConfig = operation.output(outputIdx++); } /** - * Factory method to create a class wrapping a new FinalizeTPUEmbedding operation. + * Factory method to create a class wrapping a new FinalizeTPUEmbeddingV2 operation. * * @param scope current scope * @param commonConfig A string-encoded common configuration proto containing metadata @@ -73,6 +81,26 @@ public static FinalizeTPUEmbedding create(Scope scope, Operand commonCo return new FinalizeTPUEmbedding(opBuilder.build()); } + /** + * Gets embeddingPartitions. + * A string-encoded embedding partitions proto describing how embedding tables are + * partitioned along their feature and ID. + * @return embeddingPartitions. + */ + public Output embeddingPartitions() { + return embeddingPartitions; + } + + /** + * Gets hbmBuffersConfig. + * A string-encoded HBM buffers config proto specifies where HBM buffers are + * located. + * @return hbmBuffersConfig. + */ + public Output hbmBuffersConfig() { + return hbmBuffersConfig; + } + @OpInputsMetadata( outputsClass = FinalizeTPUEmbedding.class ) diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/GetTpuTaskId.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/GetTpuTaskId.java new file mode 100644 index 00000000000..c4eb00be8dd --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/GetTpuTaskId.java @@ -0,0 +1,97 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.tpu; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.op.annotation.Operator; +import org.tensorflow.types.TInt32; + +/** + * An op returns the TPU task ID from TPU topology. + * This op is to return the TPU task ID from TPU topology. + */ +@OpMetadata( + opType = GetTpuTaskId.OP_NAME, + inputsClass = GetTpuTaskId.Inputs.class +) +@Operator( + group = "tpu" +) +public final class GetTpuTaskId extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "GetTpuTaskId"; + + private Output tpuTaskId; + + public GetTpuTaskId(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + tpuTaskId = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new GetTpuTaskId operation. + * + * @param scope current scope + * @return a new instance of GetTpuTaskId + */ + @Endpoint( + describeByClass = true + ) + public static GetTpuTaskId create(Scope scope) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "GetTpuTaskId"); + return new GetTpuTaskId(opBuilder.build()); + } + + /** + * Gets tpuTaskId. + * The TPU task ID from TPU topology. + * @return tpuTaskId. + */ + public Output tpuTaskId() { + return tpuTaskId; + } + + @Override + public Output asOutput() { + return tpuTaskId; + } + + @OpInputsMetadata( + outputsClass = GetTpuTaskId.class + ) + public static class Inputs extends RawOpInputs { + public Inputs(GraphOperation op) { + super(new GetTpuTaskId(op), op, Arrays.asList()); + int inputIndex = 0; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java index 20e200e26af..2f2d689a23a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/InfeedDequeue.java @@ -37,8 +37,6 @@ /** * A placeholder op for a value that will be fed into the computation. - * - * @param data type for {@code output} output */ @OpMetadata( opType = InfeedDequeue.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java index 27a9edc8214..f2043c5047c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeue.java @@ -38,8 +38,6 @@ /** * Retrieves a single tensor from the computation outfeed. * This operation will block indefinitely until data is available. - * - * @param data type for {@code output} output */ @OpMetadata( opType = OutfeedDequeue.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueV2.java index 481f916e86a..dc0d6a3649a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/OutfeedDequeueV2.java @@ -40,8 +40,6 @@ * Retrieves a single tensor from the computation outfeed. Device ordinal is a * tensor allowing dynamic outfeed. * This operation will block indefinitely until data is available. - * - * @param data type for {@code output} output */ @OpMetadata( opType = OutfeedDequeueV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedInput.java index be69029e573..89d11541c1b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedInput.java @@ -37,8 +37,6 @@ /** * An op that groups a list of partitioned inputs together. Supports ND sharding. - * - * @param data type for {@code output} output */ @OpMetadata( opType = PartitionedInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedOutput.java index a49b96f066d..b69bdea9a7b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/PartitionedOutput.java @@ -38,8 +38,6 @@ /** * An op that demultiplexes a tensor to be sharded by XLA to a list of partitioned * outputs outside the XLA computation. Supports ND sharding. - * - * @param data type for {@code output} output */ @OpMetadata( opType = PartitionedOutput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedInput.java index 37c057fc375..5f5ae14be0e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedInput.java @@ -46,8 +46,6 @@ * %computation = "tf.Computation"(%replicated_input) * *

    The above computation has a replicated input of two replicas. - * - * @param data type for {@code output} output */ @OpMetadata( opType = ReplicatedInput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedOutput.java index fcc447fb932..6daab9ae1a2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/ReplicatedOutput.java @@ -45,8 +45,6 @@ * %replicated_output:2 = "tf.TPUReplicatedOutput"(%computation) * *

    The above computation has a replicated output of two replicas. - * - * @param data type for {@code outputs} output */ @OpMetadata( opType = ReplicatedOutput.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SplitDedupData.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SplitDedupData.java index ad72b480077..8e8d4537dff 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SplitDedupData.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/SplitDedupData.java @@ -41,10 +41,6 @@ * Deduplication data is an XLA tuple, which consists of integer and floating point * values. This op is to split these values into two groups for two types, and * construct each group as one tensor to return. - * - * @param data type for {@code integer_tensor} output - * - * @param data type for {@code float_tensor} output */ @OpMetadata( opType = SplitDedupData.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java index 1816bb842df..80ac7e3ea03 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedInput.java @@ -47,8 +47,6 @@ * *

    The above computation has a replicated input of two replicas. * - * @param data type for {@code output} output - * * @deprecated use {@link org.tensorflow.op.tpu.ReplicatedInput} instead */ @OpMetadata( diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java index ea53c36f109..dcc1b12b2b8 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/TPUReplicatedOutput.java @@ -46,8 +46,6 @@ * *

    The above computation has a replicated output of two replicas. * - * @param data type for {@code outputs} output - * * @deprecated use {@link org.tensorflow.op.tpu.ReplicatedOutput} instead */ @OpMetadata( diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/UpdateTaskIdAndGlobalCoreArray.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/UpdateTaskIdAndGlobalCoreArray.java new file mode 100644 index 00000000000..1a0fb866178 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/tpu/UpdateTaskIdAndGlobalCoreArray.java @@ -0,0 +1,86 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.tpu; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TInt32; + +/** + * An op to update the task ID and global core array. + * This op is to update the task ID and global core array. + */ +@OpMetadata( + opType = UpdateTaskIdAndGlobalCoreArray.OP_NAME, + inputsClass = UpdateTaskIdAndGlobalCoreArray.Inputs.class +) +public final class UpdateTaskIdAndGlobalCoreArray extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "UpdateTaskIdAndGlobalCoreArray"; + + public UpdateTaskIdAndGlobalCoreArray(Operation operation) { + super(operation, OP_NAME); + } + + /** + * Factory method to create a class wrapping a new UpdateTaskIdAndGlobalCoreArray operation. + * + * @param scope current scope + * @param tpuTaskIdToShardId An array of int32 that maps TPU task ID to shard ID. + * @return a new instance of UpdateTaskIdAndGlobalCoreArray + */ + @Endpoint( + describeByClass = true + ) + public static UpdateTaskIdAndGlobalCoreArray create(Scope scope, + Iterable> tpuTaskIdToShardId) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "UpdateTaskIdAndGlobalCoreArray"); + opBuilder.addInputList(Operands.asOutputs(tpuTaskIdToShardId)); + return new UpdateTaskIdAndGlobalCoreArray(opBuilder.build()); + } + + @OpInputsMetadata( + outputsClass = UpdateTaskIdAndGlobalCoreArray.class + ) + public static class Inputs extends RawOpInputs { + /** + * An array of int32 that maps TPU task ID to shard ID. + */ + public final Iterable> tpuTaskIdToShardId; + + public Inputs(GraphOperation op) { + super(new UpdateTaskIdAndGlobalCoreArray(op), op, Arrays.asList()); + int inputIndex = 0; + int tpuTaskIdToShardIdLength = op.inputListLength("tpu_task_id_to_shard_id"); + tpuTaskIdToShardId = Arrays.asList((Operand[]) op.inputList(inputIndex, tpuTaskIdToShardIdLength)); + inputIndex += tpuTaskIdToShardIdLength; + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java index a2d152ab93e..e7c94866732 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/AccumulatorTakeGradient.java @@ -43,8 +43,6 @@ * aggregated more than num_required gradients, it returns the average of * the accumulated gradients. Also automatically increments the recorded * global_step in the accumulator by 1, and resets the aggregate to 0. - * - * @param data type for {@code average} output */ @OpMetadata( opType = AccumulatorTakeGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java index 5a6b4fa2871..0bdb47444ad 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdaMax.java @@ -38,8 +38,6 @@ * m_t <- beta1 * m_{t-1} + (1 - beta1) * g * v_t <- max(beta2 * v_{t-1}, abs(g)) * variable <- variable - learning_rate / (1 - beta1^t) * m_t / (v_t + epsilon) - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdaMax.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java index be5bdc297ea..7d53245fe2a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdadelta.java @@ -39,8 +39,6 @@ * update = (update_accum + epsilon).sqrt() * (accum + epsilon()).rsqrt() * grad; * update_accum = rho() * update_accum + (1 - rho()) * update.square(); * var -= update; - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdadelta.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java index 9a717cb0daf..0d243bfce4b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagrad.java @@ -37,8 +37,6 @@ * Update '*var' according to the adagrad scheme. * accum += grad * grad * var -= lr * grad * (1 / sqrt(accum)) - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdagrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java index b1577260bf8..a2769eae2e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradDa.java @@ -36,8 +36,6 @@ /** * Update '*var' according to the proximal adagrad scheme. - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdagradDa.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java index 6766d80538e..22d0edd340e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdagradV2.java @@ -37,8 +37,6 @@ * Update '*var' according to the adagrad scheme. * accum += grad * grad * var -= lr * grad * (1 / sqrt(accum)) - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdagradV2.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java index 91dbb1d72f6..8dbd525dc98 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAdam.java @@ -39,8 +39,6 @@ * $$m_t := \beta_1 \cdot m{t-1} + (1 - \beta_1) \cdot g$$ * $$v_t := \beta_2 \cdot v_{t-1} + (1 - \beta_2) \cdot g^2$$ * $$\text{var} := \begin{cases} \text{var} - (m_t \beta_1 + g \cdot (1 - \beta_1))\cdot\text{lr}_t/(\sqrt{v_t} + \epsilon), &\text{if use_nesterov}\\ \text{var} - m_t \cdot \text{lr}_t /(\sqrt{v_t} + \epsilon), &\text{otherwise} \end{cases}$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAdam.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java index 434802b1590..69127231eb1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyAddSign.java @@ -38,8 +38,6 @@ * m_t <- beta1 * m_{t-1} + (1 - beta1) * g * update <- (alpha + sign_decay * sign(g) *sign(m)) * g * variable <- variable - lr_t * update - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyAddSign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java index 46f9975e74a..f7801bf277e 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyCenteredRmsProp.java @@ -49,8 +49,6 @@ * ms <- rho * ms_{t-1} + (1-rho) * grad * grad * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms - mg * mg + epsilon) * var <- var - mom - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyCenteredRmsProp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java index c14505600ef..cd010677d47 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyFtrl.java @@ -42,8 +42,6 @@ * quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 * var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 * accum = accum_new - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyFtrl.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java index f7c93955d6b..5ebb7b31330 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyGradientDescent.java @@ -35,8 +35,6 @@ /** * Update '*var' by subtracting 'alpha' * 'delta' from it. - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyGradientDescent.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java index fc82fa94853..1aa402b6783 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyMomentum.java @@ -38,8 +38,6 @@ * Set use_nesterov = True if you want to use Nesterov momentum. *

    accum = accum * momentum + grad * var -= lr * accum - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyMomentum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java index dad41ae5e50..f298f853be2 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyPowerSign.java @@ -38,8 +38,6 @@ * m_t <- beta1 * m_{t-1} + (1 - beta1) * g * update <- exp(logbase * sign_decay * sign(g) * sign(m_t)) * g * variable <- variable - lr_t * update - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyPowerSign.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java index 8f2c0b1d0b2..a095146963b 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalAdagrad.java @@ -38,8 +38,6 @@ * accum += grad * grad * prox_v = var - lr * grad * (1 / sqrt(accum)) * var = sign(prox_v)/(1+lrl2) * max{|prox_v|-lrl1,0} - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyProximalAdagrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java index 488faf4d559..ffd6ee70e68 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyProximalGradientDescent.java @@ -37,8 +37,6 @@ * Update '*var' as FOBOS algorithm with fixed learning rate. * prox_v = var - alpha * delta * var = sign(prox_v)/(1+alphal2) * max{|prox_v|-alphal1,0} - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyProximalGradientDescent.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java index 539fa33e176..fcfeb5b895a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ApplyRmsProp.java @@ -43,8 +43,6 @@ *

    ms <- rho * ms_{t-1} + (1-rho) * grad * grad * mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon) * var <- var - mom - * - * @param data type for {@code out} output */ @OpMetadata( opType = ApplyRmsProp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java index 14fdcd8d781..17560573705 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/BatchMatMul.java @@ -56,8 +56,6 @@ *

    NOTE: {@code train.BatchMatMul} supports broadcasting in the batch dimensions. More * about broadcasting * here . - * - * @param data type for {@code output} output */ @OpMetadata( opType = BatchMatMul.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/PreventGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/PreventGradient.java index a7181e6cb0b..c98b11d0050 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/PreventGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/PreventGradient.java @@ -41,8 +41,6 @@ * because no gradient must ever be registered for this function. This * op exists to prevent subtle bugs from silently returning unimplemented * gradients in some corner cases. - * - * @param data type for {@code output} output */ @OpMetadata( opType = PreventGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java index 4b7a918f597..843ecae89f1 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/ResourceAccumulatorTakeGradient.java @@ -42,8 +42,6 @@ * aggregated more than num_required gradients, it returns the average of * the accumulated gradients. Also automatically increments the recorded * global_step in the accumulator by 1, and resets the aggregate to 0. - * - * @param data type for {@code average} output */ @OpMetadata( opType = ResourceAccumulatorTakeGradient.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java index b0faba2454c..a33a34b3179 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/RestoreSlice.java @@ -42,8 +42,6 @@ * larger tensor and the slice that the restored tensor covers. *

    The {@code shape_and_slice} input has the same format as the * elements of the {@code shapes_and_slices} input of the {@code SaveSlices} op. - * - * @param data type for {@code tensor} output */ @OpMetadata( opType = RestoreSlice.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java index c68618fecc1..8b12e83f51f 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdadelta.java @@ -36,8 +36,6 @@ /** * var: Should be from a Variable(). - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyAdadelta.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java index a75507dde54..fbda4c582a0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagrad.java @@ -39,8 +39,6 @@ * That is for rows we have grad for, we update var and accum as follows: * $$accum += grad * grad$$ * $$var -= lr * grad * (1 / sqrt(accum))$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyAdagrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java index cdd24328bb6..33cdae176f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyAdagradDa.java @@ -37,8 +37,6 @@ /** * Update entries in '*var' and '*accum' according to the proximal adagrad scheme. - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyAdagradDa.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java index 731ecdd88a7..cfbf01b8044 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyCenteredRmsProp.java @@ -49,8 +49,6 @@ *

    $$ms <- rho * ms_{t-1} + (1-rho) * grad * grad$$ * $$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$ * $$var <- var - mom$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyCenteredRmsProp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java index 8c609b198bd..72cce364480 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyFtrl.java @@ -44,8 +44,6 @@ * quadratic = 1.0 / (accum_new^(lr_power) * lr) + 2 * l2 * var = (sign(linear) * l1 - linear) / quadratic if |linear| > l1 else 0.0 * accum = accum_new - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyFtrl.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java index 2e22789fd23..d2ae83d8c17 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyMomentum.java @@ -40,8 +40,6 @@ *

    That is for rows we have grad for, we update var and accum as follows: *

    $$accum = accum * momentum + grad$$ * $$var -= lr * accum$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyMomentum.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java index 68ca59089e1..70b28897f24 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalAdagrad.java @@ -41,8 +41,6 @@ * $$prox_v = var$$ * $$prox_v -= lr * grad * (1 / sqrt(accum))$$ * $$var = sign(prox_v)/(1+lrl2) * max{|prox_v|-lrl1,0}$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyProximalAdagrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java index 08b098f80ca..3da972089e7 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyProximalGradientDescent.java @@ -39,8 +39,6 @@ * That is for rows we have grad for, we update var as follows: * $$prox_v = var - alpha * grad$$ * $$var = sign(prox_v)/(1+alphal2) * max{|prox_v|-alphal1,0}$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyProximalGradientDescent.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java index a648dc04b08..3c642ebcf81 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/SparseApplyRmsProp.java @@ -44,8 +44,6 @@ *

    $$ms <- rho * ms_{t-1} + (1-rho) * grad * grad$$ * $$mom <- momentum * mom_{t-1} + lr * grad / sqrt(ms + epsilon)$$ * $$var <- var - mom$$ - * - * @param data type for {@code out} output */ @OpMetadata( opType = SparseApplyRmsProp.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java index bdc5c23fc46..9e1b7e0fbb4 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/train/TileGrad.java @@ -39,8 +39,6 @@ * Since {@code Tile} takes an input and repeats the input {@code multiples} times * along each dimension, {@code train.TileGrad} takes in {@code multiples} and aggregates * each repeated tile of {@code input} into {@code output}. - * - * @param data type for {@code output} output */ @OpMetadata( opType = TileGrad.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/AssignVariableConcatND.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/AssignVariableConcatND.java index 51f000b2687..c58943ff50d 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/AssignVariableConcatND.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/AssignVariableConcatND.java @@ -88,18 +88,8 @@ public AssignVariableConcatND(Operation operation) { * * @param scope current scope * @param resource Resource variable for concatenated input tensors across all dimensions. - * } - * in_arg { - * name: "inputs" - * description: <<END - * Input tensor slices in row-major order to merge across all dimensions. All + * @param inputs Input tensor slices in row-major order to merge across all dimensions. All * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. - * @param inputs The inputs value * @param numConcats Number of ways to merge per dimension. * @param options carries optional attribute values * @return a new instance of AssignVariableConcatND @@ -197,22 +187,12 @@ public Options paddings(Long... paddings) { public static class Inputs extends RawOpInputs { /** * Resource variable for concatenated input tensors across all dimensions. - * } - * in_arg { - * name: "inputs" - * description: <<END - * Input tensor slices in row-major order to merge across all dimensions. All - * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. */ public final Operand resource; /** - * The inputs input + * Input tensor slices in row-major order to merge across all dimensions. All + * inputs must have the same shape. */ public final Iterable> inputs; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ConcatND.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ConcatND.java index 7e55c95e679..5749305af89 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ConcatND.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ConcatND.java @@ -66,8 +66,6 @@ * [4, 5, 6], * [8, 9, 10]] * - * - * @param data type for {@code output} output */ @OpMetadata( opType = ConcatND.OP_NAME, @@ -96,11 +94,6 @@ public ConcatND(Operation operation) { * @param scope current scope * @param inputs Input tensor slices in row-major order to merge across all dimensions. All * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. * @param numConcats Number of ways to merge per dimension. * @param options carries optional attribute values * @param data type for {@code XlaConcatND} output and operands @@ -158,7 +151,7 @@ public static Options paddings(Long... paddings) { /** * Gets output. - * + * Output tensor formed from merging input slices based on num_concats defined. * @return output. */ public Output output() { @@ -213,11 +206,6 @@ public static class Inputs extends RawOpInputs> { /** * Input tensor slices in row-major order to merge across all dimensions. All * inputs must have the same shape. - * } - * out_arg { - * name: "output" - * description: <<END - * Output tensor formed from merging input slices based on num_concats defined. */ public final Iterable> inputs; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReadVariableSplitND.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReadVariableSplitND.java index 666103dd273..9788f2927f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReadVariableSplitND.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/ReadVariableSplitND.java @@ -67,8 +67,6 @@ * [[8, 0], * [0, 0]] * - * - * @param data type for {@code outputs} output */ @OpMetadata( opType = ReadVariableSplitND.OP_NAME, @@ -99,11 +97,6 @@ public ReadVariableSplitND(Operation operation) { * * @param scope current scope * @param resource Resource variable of input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. * @param T The value of the T attribute * @param N The value of the N attribute * @param numSplits Number of ways to split per dimension. Shape dimensions must be evenly @@ -165,7 +158,7 @@ public static Options paddings(Long... paddings) { /** * Gets outputs. - * + * Output slices based on input and num_splits defined, in row-major order. * @return outputs. */ public List> outputs() { @@ -218,11 +211,6 @@ public Options paddings(Long... paddings) { public static class Inputs extends RawOpInputs> { /** * Resource variable of input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. */ public final Operand resource; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SplitND.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SplitND.java index 6bf5656f68c..299b2f95437 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SplitND.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/SplitND.java @@ -66,8 +66,6 @@ * [[8, 0], * [0, 0]] * - * - * @param data type for {@code outputs} output */ @OpMetadata( opType = SplitND.OP_NAME, @@ -98,11 +96,6 @@ public SplitND(Operation operation) { * * @param scope current scope * @param input Input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. * @param N The value of the N attribute * @param numSplits Number of ways to split per dimension. Shape dimensions must be evenly * divisible. @@ -161,7 +154,7 @@ public static Options paddings(Long... paddings) { /** * Gets outputs. - * + * Output slices based on input and num_splits defined, in row-major order. * @return outputs. */ public List> outputs() { @@ -214,11 +207,6 @@ public Options paddings(Long... paddings) { public static class Inputs extends RawOpInputs> { /** * Input tensor to split across all dimensions. - * } - * out_arg { - * name: "outputs" - * description: <<END - * Output slices based on input and num_splits defined, in row-major order. */ public final Operand input; diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvFromHost.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvFromHost.java index c8d5507a673..b05f7199f7a 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvFromHost.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvFromHost.java @@ -41,8 +41,6 @@ * Toutput: element type for output. * shape: shape for output. * key: A unique identifier for this region used to match up host transfers. - * - * @param data type for {@code output} output */ @OpMetadata( opType = XlaRecvFromHost.OP_NAME, diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingActivations.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingActivations.java index 1af06a9de56..b3499a237f0 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingActivations.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingActivations.java @@ -31,7 +31,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.OpInputsMetadata; import org.tensorflow.op.annotation.OpMetadata; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.TFloat32; import org.tensorflow.types.family.TType; @@ -46,14 +45,11 @@ opType = XlaRecvTPUEmbeddingActivations.OP_NAME, inputsClass = XlaRecvTPUEmbeddingActivations.Inputs.class ) -@Operator( - group = "xla" -) public final class XlaRecvTPUEmbeddingActivations extends RawOp implements Iterable> { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "XlaRecvTPUEmbeddingActivations"; + public static final String OP_NAME = "XlaRecvTPUEmbeddingActivationsV2"; private List> outputs; @@ -67,7 +63,7 @@ public XlaRecvTPUEmbeddingActivations(Operation operation) { } /** - * Factory method to create a class wrapping a new XlaRecvTPUEmbeddingActivations operation. + * Factory method to create a class wrapping a new XlaRecvTPUEmbeddingActivationsV2 operation. * * @param scope current scope * @param deduplicationData A Tensor with type=DT_VARIANT containing the deduplication @@ -80,17 +76,24 @@ public XlaRecvTPUEmbeddingActivations(Operation operation) { * present in the tpu embedding config, it is equal to the number of features * otherwise equal to number of embedding tables in the model. * @param config Serialized TPUEmbeddingConfiguration proto. + * @param embeddingPartitions Serialized EmbeddingPartitionsProto proto. + * @param hbmBuffersConfig Serialized HbmBuffersConfig proto. + * @param tpuTopology Serialized TpuTopologyArgsProto proto. * @return a new instance of XlaRecvTPUEmbeddingActivations */ @Endpoint( describeByClass = true ) public static XlaRecvTPUEmbeddingActivations create(Scope scope, - Operand deduplicationData, Long numTables, String config) { + Operand deduplicationData, Long numTables, String config, + String embeddingPartitions, String hbmBuffersConfig, String tpuTopology) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaRecvTPUEmbeddingActivations"); opBuilder.addInput(deduplicationData.asOutput()); opBuilder.setAttr("num_tables", numTables); opBuilder.setAttr("config", config); + opBuilder.setAttr("embedding_partitions", embeddingPartitions); + opBuilder.setAttr("hbm_buffers_config", hbmBuffersConfig); + opBuilder.setAttr("tpu_topology", tpuTopology); return new XlaRecvTPUEmbeddingActivations(opBuilder.build()); } @@ -129,11 +132,29 @@ public static class Inputs extends RawOpInputs { */ public final String config; + /** + * Serialized EmbeddingPartitionsProto proto. + */ + public final String embeddingPartitions; + + /** + * Serialized HbmBuffersConfig proto. + */ + public final String hbmBuffersConfig; + + /** + * Serialized TpuTopologyArgsProto proto. + */ + public final String tpuTopology; + public Inputs(GraphOperation op) { - super(new XlaRecvTPUEmbeddingActivations(op), op, Arrays.asList("config")); + super(new XlaRecvTPUEmbeddingActivations(op), op, Arrays.asList("config", "embedding_partitions", "hbm_buffers_config", "tpu_topology")); int inputIndex = 0; deduplicationData = (Operand) op.input(inputIndex++); config = op.attributes().getAttrString("config"); + embeddingPartitions = op.attributes().getAttrString("embedding_partitions"); + hbmBuffersConfig = op.attributes().getAttrString("hbm_buffers_config"); + tpuTopology = op.attributes().getAttrString("tpu_topology"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingDeduplicationData.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingDeduplicationData.java index abf76b9a0ad..a0c18fb338c 100644 --- a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingDeduplicationData.java +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaRecvTPUEmbeddingDeduplicationData.java @@ -29,7 +29,6 @@ import org.tensorflow.op.annotation.Endpoint; import org.tensorflow.op.annotation.OpInputsMetadata; import org.tensorflow.op.annotation.OpMetadata; -import org.tensorflow.op.annotation.Operator; import org.tensorflow.types.family.TType; /** @@ -45,14 +44,11 @@ opType = XlaRecvTPUEmbeddingDeduplicationData.OP_NAME, inputsClass = XlaRecvTPUEmbeddingDeduplicationData.Inputs.class ) -@Operator( - group = "xla" -) public final class XlaRecvTPUEmbeddingDeduplicationData extends RawOp implements Operand { /** * The name of this op, as known by TensorFlow core engine */ - public static final String OP_NAME = "XlaRecvTPUEmbeddingDeduplicationData"; + public static final String OP_NAME = "XlaRecvTPUEmbeddingDeduplicationDataV2"; private Output output; @@ -64,18 +60,25 @@ public XlaRecvTPUEmbeddingDeduplicationData(Operation operation) { } /** - * Factory method to create a class wrapping a new XlaRecvTPUEmbeddingDeduplicationData operation. + * Factory method to create a class wrapping a new XlaRecvTPUEmbeddingDeduplicationDataV2 operation. * * @param scope current scope * @param config Serialized TPUEmbeddingConfiguration proto. + * @param embeddingPartitions Serialized EmbeddingPartitionsProto proto. + * @param hbmBuffersConfig Serialized HbmBuffersConfig proto. + * @param tpuTopology Serialized TpuTopologyArgsProto proto. * @return a new instance of XlaRecvTPUEmbeddingDeduplicationData */ @Endpoint( describeByClass = true ) - public static XlaRecvTPUEmbeddingDeduplicationData create(Scope scope, String config) { + public static XlaRecvTPUEmbeddingDeduplicationData create(Scope scope, String config, + String embeddingPartitions, String hbmBuffersConfig, String tpuTopology) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaRecvTPUEmbeddingDeduplicationData"); opBuilder.setAttr("config", config); + opBuilder.setAttr("embedding_partitions", embeddingPartitions); + opBuilder.setAttr("hbm_buffers_config", hbmBuffersConfig); + opBuilder.setAttr("tpu_topology", tpuTopology); return new XlaRecvTPUEmbeddingDeduplicationData(opBuilder.build()); } @@ -103,10 +106,28 @@ public static class Inputs extends RawOpInputs> gradients, Iterable> learningRates, - Operand deduplicationData, String config, Options... options) { + Operand deduplicationData, String config, String embeddingPartitions, + String hbmBuffersConfig, String tpuTopology, Options... options) { OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSendTPUEmbeddingGradients"); opBuilder.addInputList(Operands.asOutputs(gradients)); opBuilder.addInputList(Operands.asOutputs(learningRates)); opBuilder.addInput(deduplicationData.asOutput()); opBuilder.setAttr("config", config); + opBuilder.setAttr("embedding_partitions", embeddingPartitions); + opBuilder.setAttr("hbm_buffers_config", hbmBuffersConfig); + opBuilder.setAttr("tpu_topology", tpuTopology); if (options != null) { for (Options opts : options) { if (opts.NumLearningRateTags != null) { @@ -161,8 +164,23 @@ public static class Inputs extends RawOpInputs { */ public final String config; + /** + * Serialized EmbeddingPartitionsProto proto. + */ + public final String embeddingPartitions; + + /** + * Serialized HbmBuffersConfig proto. + */ + public final String hbmBuffersConfig; + + /** + * Serialized TpuTopologyArgsProto proto. + */ + public final String tpuTopology; + public Inputs(GraphOperation op) { - super(new XlaSendTPUEmbeddingGradients(op), op, Arrays.asList("config")); + super(new XlaSendTPUEmbeddingGradients(op), op, Arrays.asList("config", "embedding_partitions", "hbm_buffers_config", "tpu_topology")); int inputIndex = 0; int gradientsLength = op.inputListLength("gradients"); gradients = Arrays.asList((Operand[]) op.inputList(inputIndex, gradientsLength)); @@ -172,6 +190,9 @@ public Inputs(GraphOperation op) { inputIndex += learningRatesLength; deduplicationData = (Operand) op.input(inputIndex++); config = op.attributes().getAttrString("config"); + embeddingPartitions = op.attributes().getAttrString("embedding_partitions"); + hbmBuffersConfig = op.attributes().getAttrString("hbm_buffers_config"); + tpuTopology = op.attributes().getAttrString("tpu_topology"); } } } diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.java new file mode 100644 index 00000000000..f8ab65a6ee1 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.java @@ -0,0 +1,279 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize"; + + private Output updatedEmbeddingTable; + + private Output updatedAccumulator; + + public XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + updatedEmbeddingTable = operation.output(outputIdx++); + updatedAccumulator = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param learningRate The learningRate value + * @param embeddingTable The embeddingTable value + * @param accumulator The accumulator value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @param options carries optional attribute values + * @return a new instance of XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Operand learningRate, Operand embeddingTable, + Operand accumulator, Operand numMinibatchesPerPhysicalSparseCore, + Long maxIdsPerSparseCore, Long maxUniqueIdsPerSparseCore, String tableName, + Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInput(learningRate.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(accumulator.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + if (options != null) { + for (Options opts : options) { + if (opts.clipWeightMin != null) { + opBuilder.setAttr("clip_weight_min", opts.clipWeightMin); + } + if (opts.clipWeightMax != null) { + opBuilder.setAttr("clip_weight_max", opts.clipWeightMax); + } + } + } + return new XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize(opBuilder.build()); + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public static Options clipWeightMin(Float clipWeightMin) { + return new Options().clipWeightMin(clipWeightMin); + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public static Options clipWeightMax(Float clipWeightMax) { + return new Options().clipWeightMax(clipWeightMax); + } + + /** + * Gets updatedEmbeddingTable. + * + * @return updatedEmbeddingTable. + */ + public Output updatedEmbeddingTable() { + return updatedEmbeddingTable; + } + + /** + * Gets updatedAccumulator. + * + * @return updatedAccumulator. + */ + public Output updatedAccumulator() { + return updatedAccumulator; + } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize} + */ + public static class Options { + private Float clipWeightMin; + + private Float clipWeightMax; + + private Options() { + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public Options clipWeightMin(Float clipWeightMin) { + this.clipWeightMin = clipWeightMin; + return this; + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public Options clipWeightMax(Float clipWeightMax) { + this.clipWeightMax = clipWeightMax; + return this; + } + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The learningRate input + */ + public final Operand learningRate; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The accumulator input + */ + public final Operand accumulator; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The clipWeightMin attribute + */ + public final float clipWeightMin; + + /** + * The clipWeightMax attribute + */ + public final float clipWeightMax; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithAdagradAndStaticBufferSize(op), op, Arrays.asList("clip_weight_min", "clip_weight_max", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + learningRate = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + accumulator = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + clipWeightMin = op.attributes().getAttrFloat("clip_weight_min"); + clipWeightMax = op.attributes().getAttrFloat("clip_weight_max"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.java new file mode 100644 index 00000000000..e007641d72a --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.java @@ -0,0 +1,340 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize"; + + private Output updatedEmbeddingTable; + + private Output updatedAccumulator; + + private Output updatedMomenta; + + public XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + updatedEmbeddingTable = operation.output(outputIdx++); + updatedAccumulator = operation.output(outputIdx++); + updatedMomenta = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param learningRate The learningRate value + * @param embeddingTable The embeddingTable value + * @param accumulator The accumulator value + * @param momenta The momenta value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param useNesterov The value of the useNesterov attribute + * @param exponent The value of the exponent attribute + * @param beta1 The value of the beta1 attribute + * @param beta2 The value of the beta2 attribute + * @param epsilon The value of the epsilon attribute + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @param options carries optional attribute values + * @return a new instance of XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Operand learningRate, Operand embeddingTable, + Operand accumulator, Operand momenta, + Operand numMinibatchesPerPhysicalSparseCore, Boolean useNesterov, Float exponent, + Float beta1, Float beta2, Float epsilon, Long maxIdsPerSparseCore, + Long maxUniqueIdsPerSparseCore, String tableName, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInput(learningRate.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(accumulator.asOutput()); + opBuilder.addInput(momenta.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("use_nesterov", useNesterov); + opBuilder.setAttr("exponent", exponent); + opBuilder.setAttr("beta1", beta1); + opBuilder.setAttr("beta2", beta2); + opBuilder.setAttr("epsilon", epsilon); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + if (options != null) { + for (Options opts : options) { + if (opts.clipWeightMin != null) { + opBuilder.setAttr("clip_weight_min", opts.clipWeightMin); + } + if (opts.clipWeightMax != null) { + opBuilder.setAttr("clip_weight_max", opts.clipWeightMax); + } + } + } + return new XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize(opBuilder.build()); + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public static Options clipWeightMin(Float clipWeightMin) { + return new Options().clipWeightMin(clipWeightMin); + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public static Options clipWeightMax(Float clipWeightMax) { + return new Options().clipWeightMax(clipWeightMax); + } + + /** + * Gets updatedEmbeddingTable. + * + * @return updatedEmbeddingTable. + */ + public Output updatedEmbeddingTable() { + return updatedEmbeddingTable; + } + + /** + * Gets updatedAccumulator. + * + * @return updatedAccumulator. + */ + public Output updatedAccumulator() { + return updatedAccumulator; + } + + /** + * Gets updatedMomenta. + * + * @return updatedMomenta. + */ + public Output updatedMomenta() { + return updatedMomenta; + } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize} + */ + public static class Options { + private Float clipWeightMin; + + private Float clipWeightMax; + + private Options() { + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public Options clipWeightMin(Float clipWeightMin) { + this.clipWeightMin = clipWeightMin; + return this; + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public Options clipWeightMax(Float clipWeightMax) { + this.clipWeightMax = clipWeightMax; + return this; + } + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The learningRate input + */ + public final Operand learningRate; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The accumulator input + */ + public final Operand accumulator; + + /** + * The momenta input + */ + public final Operand momenta; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The useNesterov attribute + */ + public final boolean useNesterov; + + /** + * The exponent attribute + */ + public final float exponent; + + /** + * The beta1 attribute + */ + public final float beta1; + + /** + * The beta2 attribute + */ + public final float beta2; + + /** + * The epsilon attribute + */ + public final float epsilon; + + /** + * The clipWeightMin attribute + */ + public final float clipWeightMin; + + /** + * The clipWeightMax attribute + */ + public final float clipWeightMax; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithAdagradMomentumAndStaticBufferSize(op), op, Arrays.asList("use_nesterov", "exponent", "beta1", "beta2", "epsilon", "clip_weight_min", "clip_weight_max", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + learningRate = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + accumulator = (Operand) op.input(inputIndex++); + momenta = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + useNesterov = op.attributes().getAttrBool("use_nesterov"); + exponent = op.attributes().getAttrFloat("exponent"); + beta1 = op.attributes().getAttrFloat("beta1"); + beta2 = op.attributes().getAttrFloat("beta2"); + epsilon = op.attributes().getAttrFloat("epsilon"); + clipWeightMin = op.attributes().getAttrFloat("clip_weight_min"); + clipWeightMax = op.attributes().getAttrFloat("clip_weight_max"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.java new file mode 100644 index 00000000000..fe875c67f69 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.java @@ -0,0 +1,331 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize"; + + private Output updatedEmbeddingTable; + + private Output updatedMomenta; + + private Output updatedVelocity; + + public XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + updatedEmbeddingTable = operation.output(outputIdx++); + updatedMomenta = operation.output(outputIdx++); + updatedVelocity = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param learningRate The learningRate value + * @param embeddingTable The embeddingTable value + * @param momenta The momenta value + * @param velocity The velocity value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param useSumInsideSqrt The value of the useSumInsideSqrt attribute + * @param beta1 The value of the beta1 attribute + * @param beta2 The value of the beta2 attribute + * @param epsilon The value of the epsilon attribute + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @param options carries optional attribute values + * @return a new instance of XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Operand learningRate, Operand embeddingTable, Operand momenta, + Operand velocity, Operand numMinibatchesPerPhysicalSparseCore, + Boolean useSumInsideSqrt, Float beta1, Float beta2, Float epsilon, Long maxIdsPerSparseCore, + Long maxUniqueIdsPerSparseCore, String tableName, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInput(learningRate.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(momenta.asOutput()); + opBuilder.addInput(velocity.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("use_sum_inside_sqrt", useSumInsideSqrt); + opBuilder.setAttr("beta1", beta1); + opBuilder.setAttr("beta2", beta2); + opBuilder.setAttr("epsilon", epsilon); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + if (options != null) { + for (Options opts : options) { + if (opts.clipWeightMin != null) { + opBuilder.setAttr("clip_weight_min", opts.clipWeightMin); + } + if (opts.clipWeightMax != null) { + opBuilder.setAttr("clip_weight_max", opts.clipWeightMax); + } + } + } + return new XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize(opBuilder.build()); + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public static Options clipWeightMin(Float clipWeightMin) { + return new Options().clipWeightMin(clipWeightMin); + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public static Options clipWeightMax(Float clipWeightMax) { + return new Options().clipWeightMax(clipWeightMax); + } + + /** + * Gets updatedEmbeddingTable. + * + * @return updatedEmbeddingTable. + */ + public Output updatedEmbeddingTable() { + return updatedEmbeddingTable; + } + + /** + * Gets updatedMomenta. + * + * @return updatedMomenta. + */ + public Output updatedMomenta() { + return updatedMomenta; + } + + /** + * Gets updatedVelocity. + * + * @return updatedVelocity. + */ + public Output updatedVelocity() { + return updatedVelocity; + } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize} + */ + public static class Options { + private Float clipWeightMin; + + private Float clipWeightMax; + + private Options() { + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public Options clipWeightMin(Float clipWeightMin) { + this.clipWeightMin = clipWeightMin; + return this; + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public Options clipWeightMax(Float clipWeightMax) { + this.clipWeightMax = clipWeightMax; + return this; + } + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The learningRate input + */ + public final Operand learningRate; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The momenta input + */ + public final Operand momenta; + + /** + * The velocity input + */ + public final Operand velocity; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The useSumInsideSqrt attribute + */ + public final boolean useSumInsideSqrt; + + /** + * The beta1 attribute + */ + public final float beta1; + + /** + * The beta2 attribute + */ + public final float beta2; + + /** + * The epsilon attribute + */ + public final float epsilon; + + /** + * The clipWeightMin attribute + */ + public final float clipWeightMin; + + /** + * The clipWeightMax attribute + */ + public final float clipWeightMax; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithAdamAndStaticBufferSize(op), op, Arrays.asList("use_sum_inside_sqrt", "beta1", "beta2", "epsilon", "clip_weight_min", "clip_weight_max", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + learningRate = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + momenta = (Operand) op.input(inputIndex++); + velocity = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + useSumInsideSqrt = op.attributes().getAttrBool("use_sum_inside_sqrt"); + beta1 = op.attributes().getAttrFloat("beta1"); + beta2 = op.attributes().getAttrFloat("beta2"); + epsilon = op.attributes().getAttrFloat("epsilon"); + clipWeightMin = op.attributes().getAttrFloat("clip_weight_min"); + clipWeightMax = op.attributes().getAttrFloat("clip_weight_max"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithCsrInput.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithCsrInput.java new file mode 100644 index 00000000000..7ac92263e93 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithCsrInput.java @@ -0,0 +1,184 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import java.util.Iterator; +import java.util.List; +import org.tensorflow.ConcreteFunction; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.Operands; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithCsrInput operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithCsrInput.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithCsrInput.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithCsrInput extends RawOp implements Iterable> { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithCsrInput"; + + private List> updatedTables; + + @SuppressWarnings("unchecked") + public XlaSparseDenseMatmulGradWithCsrInput(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + int updatedTablesLength = operation.outputListLength("updated_tables"); + updatedTables = Arrays.asList((Output[]) operation.outputList(outputIdx, updatedTablesLength)); + outputIdx += updatedTablesLength; + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithCsrInput operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param tables The tables value + * @param hyperparameters The hyperparameters value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param customComputation The value of the customComputation attribute + * @param tableName The value of the tableName attribute + * @return a new instance of XlaSparseDenseMatmulGradWithCsrInput + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithCsrInput create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Iterable> tables, Iterable> hyperparameters, + Operand numMinibatchesPerPhysicalSparseCore, ConcreteFunction customComputation, + String tableName) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithCsrInput"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInputList(Operands.asOutputs(tables)); + opBuilder.addInputList(Operands.asOutputs(hyperparameters)); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("custom_computation", customComputation); + opBuilder.setAttr("table_name", tableName); + return new XlaSparseDenseMatmulGradWithCsrInput(opBuilder.build()); + } + + /** + * Gets updatedTables. + * + * @return updatedTables. + */ + public List> updatedTables() { + return updatedTables; + } + + @Override + @SuppressWarnings({"rawtypes", "unchecked"}) + public Iterator> iterator() { + return (Iterator) updatedTables.iterator(); + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithCsrInput.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The tables input + */ + public final Iterable> tables; + + /** + * The hyperparameters input + */ + public final Iterable> hyperparameters; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithCsrInput(op), op, Arrays.asList("table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + int tablesLength = op.inputListLength("tables"); + tables = Arrays.asList((Operand[]) op.inputList(inputIndex, tablesLength)); + inputIndex += tablesLength; + int hyperparametersLength = op.inputListLength("hyperparameters"); + hyperparameters = Arrays.asList((Operand[]) op.inputList(inputIndex, hyperparametersLength)); + inputIndex += hyperparametersLength; + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.java new file mode 100644 index 00000000000..7bfa0c2cc45 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.java @@ -0,0 +1,341 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize extends RawOp { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize"; + + private Output updatedEmbeddingTable; + + private Output updatedAccumulator; + + private Output updatedLinear; + + public XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + updatedEmbeddingTable = operation.output(outputIdx++); + updatedAccumulator = operation.output(outputIdx++); + updatedLinear = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param learningRate The learningRate value + * @param embeddingTable The embeddingTable value + * @param accumulator The accumulator value + * @param linear The linear value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param multiplyLinearByLearningRate The value of the multiplyLinearByLearningRate attribute + * @param beta The value of the beta attribute + * @param learningRatePower The value of the learningRatePower attribute + * @param l1RegularizationStrength The value of the l1RegularizationStrength attribute + * @param l2RegularizationStrength The value of the l2RegularizationStrength attribute + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @param options carries optional attribute values + * @return a new instance of XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Operand learningRate, Operand embeddingTable, + Operand accumulator, Operand linear, + Operand numMinibatchesPerPhysicalSparseCore, Boolean multiplyLinearByLearningRate, + Float beta, Float learningRatePower, Float l1RegularizationStrength, + Float l2RegularizationStrength, Long maxIdsPerSparseCore, Long maxUniqueIdsPerSparseCore, + String tableName, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInput(learningRate.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(accumulator.asOutput()); + opBuilder.addInput(linear.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("multiply_linear_by_learning_rate", multiplyLinearByLearningRate); + opBuilder.setAttr("beta", beta); + opBuilder.setAttr("learning_rate_power", learningRatePower); + opBuilder.setAttr("l1_regularization_strength", l1RegularizationStrength); + opBuilder.setAttr("l2_regularization_strength", l2RegularizationStrength); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + if (options != null) { + for (Options opts : options) { + if (opts.clipWeightMin != null) { + opBuilder.setAttr("clip_weight_min", opts.clipWeightMin); + } + if (opts.clipWeightMax != null) { + opBuilder.setAttr("clip_weight_max", opts.clipWeightMax); + } + } + } + return new XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize(opBuilder.build()); + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public static Options clipWeightMin(Float clipWeightMin) { + return new Options().clipWeightMin(clipWeightMin); + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public static Options clipWeightMax(Float clipWeightMax) { + return new Options().clipWeightMax(clipWeightMax); + } + + /** + * Gets updatedEmbeddingTable. + * + * @return updatedEmbeddingTable. + */ + public Output updatedEmbeddingTable() { + return updatedEmbeddingTable; + } + + /** + * Gets updatedAccumulator. + * + * @return updatedAccumulator. + */ + public Output updatedAccumulator() { + return updatedAccumulator; + } + + /** + * Gets updatedLinear. + * + * @return updatedLinear. + */ + public Output updatedLinear() { + return updatedLinear; + } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize} + */ + public static class Options { + private Float clipWeightMin; + + private Float clipWeightMax; + + private Options() { + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public Options clipWeightMin(Float clipWeightMin) { + this.clipWeightMin = clipWeightMin; + return this; + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public Options clipWeightMax(Float clipWeightMax) { + this.clipWeightMax = clipWeightMax; + return this; + } + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The learningRate input + */ + public final Operand learningRate; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The accumulator input + */ + public final Operand accumulator; + + /** + * The linear input + */ + public final Operand linear; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The multiplyLinearByLearningRate attribute + */ + public final boolean multiplyLinearByLearningRate; + + /** + * The beta attribute + */ + public final float beta; + + /** + * The learningRatePower attribute + */ + public final float learningRatePower; + + /** + * The l1RegularizationStrength attribute + */ + public final float l1RegularizationStrength; + + /** + * The l2RegularizationStrength attribute + */ + public final float l2RegularizationStrength; + + /** + * The clipWeightMin attribute + */ + public final float clipWeightMin; + + /** + * The clipWeightMax attribute + */ + public final float clipWeightMax; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithFtrlAndStaticBufferSize(op), op, Arrays.asList("multiply_linear_by_learning_rate", "beta", "learning_rate_power", "l1_regularization_strength", "l2_regularization_strength", "clip_weight_min", "clip_weight_max", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + learningRate = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + accumulator = (Operand) op.input(inputIndex++); + linear = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + multiplyLinearByLearningRate = op.attributes().getAttrBool("multiply_linear_by_learning_rate"); + beta = op.attributes().getAttrFloat("beta"); + learningRatePower = op.attributes().getAttrFloat("learning_rate_power"); + l1RegularizationStrength = op.attributes().getAttrFloat("l1_regularization_strength"); + l2RegularizationStrength = op.attributes().getAttrFloat("l2_regularization_strength"); + clipWeightMin = op.attributes().getAttrFloat("clip_weight_min"); + clipWeightMax = op.attributes().getAttrFloat("clip_weight_max"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.java new file mode 100644 index 00000000000..65c059d2821 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.java @@ -0,0 +1,263 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize"; + + private Output updatedEmbeddingTable; + + public XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + updatedEmbeddingTable = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param activationGradients The activationGradients value + * @param learningRate The learningRate value + * @param embeddingTable The embeddingTable value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @param options carries optional attribute values + * @return a new instance of XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand activationGradients, + Operand learningRate, Operand embeddingTable, + Operand numMinibatchesPerPhysicalSparseCore, Long maxIdsPerSparseCore, + Long maxUniqueIdsPerSparseCore, String tableName, Options... options) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(activationGradients.asOutput()); + opBuilder.addInput(learningRate.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + if (options != null) { + for (Options opts : options) { + if (opts.clipWeightMin != null) { + opBuilder.setAttr("clip_weight_min", opts.clipWeightMin); + } + if (opts.clipWeightMax != null) { + opBuilder.setAttr("clip_weight_max", opts.clipWeightMax); + } + } + } + return new XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize(opBuilder.build()); + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public static Options clipWeightMin(Float clipWeightMin) { + return new Options().clipWeightMin(clipWeightMin); + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public static Options clipWeightMax(Float clipWeightMax) { + return new Options().clipWeightMax(clipWeightMax); + } + + /** + * Gets updatedEmbeddingTable. + * + * @return updatedEmbeddingTable. + */ + public Output updatedEmbeddingTable() { + return updatedEmbeddingTable; + } + + @Override + public Output asOutput() { + return updatedEmbeddingTable; + } + + /** + * Optional attributes for {@link org.tensorflow.op.xla.XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize} + */ + public static class Options { + private Float clipWeightMin; + + private Float clipWeightMax; + + private Options() { + } + + /** + * Sets the clipWeightMin option. + * + * @param clipWeightMin the clipWeightMin option + * @return this Options instance. + */ + public Options clipWeightMin(Float clipWeightMin) { + this.clipWeightMin = clipWeightMin; + return this; + } + + /** + * Sets the clipWeightMax option. + * + * @param clipWeightMax the clipWeightMax option + * @return this Options instance. + */ + public Options clipWeightMax(Float clipWeightMax) { + this.clipWeightMax = clipWeightMax; + return this; + } + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The activationGradients input + */ + public final Operand activationGradients; + + /** + * The learningRate input + */ + public final Operand learningRate; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The clipWeightMin attribute + */ + public final float clipWeightMin; + + /** + * The clipWeightMax attribute + */ + public final float clipWeightMax; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulGradWithSgdAndStaticBufferSize(op), op, Arrays.asList("clip_weight_min", "clip_weight_max", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + activationGradients = (Operand) op.input(inputIndex++); + learningRate = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + clipWeightMin = op.attributes().getAttrFloat("clip_weight_min"); + clipWeightMax = op.attributes().getAttrFloat("clip_weight_max"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulWithStaticBufferSize.java b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulWithStaticBufferSize.java new file mode 100644 index 00000000000..268a9b0fc4b --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/gen/java/org/tensorflow/op/xla/XlaSparseDenseMatmulWithStaticBufferSize.java @@ -0,0 +1,202 @@ +/* Copyright 2018-2023 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +=======================================================================*/ + +// This class has been generated, DO NOT EDIT! + +package org.tensorflow.op.xla; + +import java.util.Arrays; +import org.tensorflow.GraphOperation; +import org.tensorflow.Operand; +import org.tensorflow.Operation; +import org.tensorflow.OperationBuilder; +import org.tensorflow.Output; +import org.tensorflow.op.RawOp; +import org.tensorflow.op.RawOpInputs; +import org.tensorflow.op.Scope; +import org.tensorflow.op.annotation.Endpoint; +import org.tensorflow.op.annotation.OpInputsMetadata; +import org.tensorflow.op.annotation.OpMetadata; +import org.tensorflow.types.TFloat32; +import org.tensorflow.types.TInt32; + +/** + * The XlaSparseDenseMatmulWithStaticBufferSize operation + */ +@OpMetadata( + opType = XlaSparseDenseMatmulWithStaticBufferSize.OP_NAME, + inputsClass = XlaSparseDenseMatmulWithStaticBufferSize.Inputs.class +) +public final class XlaSparseDenseMatmulWithStaticBufferSize extends RawOp implements Operand { + /** + * The name of this op, as known by TensorFlow core engine + */ + public static final String OP_NAME = "XlaSparseDenseMatmulWithStaticBufferSize"; + + private Output activations; + + public XlaSparseDenseMatmulWithStaticBufferSize(Operation operation) { + super(operation, OP_NAME); + int outputIdx = 0; + activations = operation.output(outputIdx++); + } + + /** + * Factory method to create a class wrapping a new XlaSparseDenseMatmulWithStaticBufferSize operation. + * + * @param scope current scope + * @param rowPointers The rowPointers value + * @param sortedSampleIds The sortedSampleIds value + * @param sortedTokenIds The sortedTokenIds value + * @param sortedGains The sortedGains value + * @param embeddingTable The embeddingTable value + * @param numMinibatchesPerPhysicalSparseCore The numMinibatchesPerPhysicalSparseCore value + * @param inputSize The value of the inputSize attribute + * @param quantizationConfigLow The value of the quantizationConfigLow attribute + * @param quantizationConfigHigh The value of the quantizationConfigHigh attribute + * @param quantizationConfigNumBuckets The value of the quantizationConfigNumBuckets attribute + * @param maxIdsPerSparseCore The value of the maxIdsPerSparseCore attribute + * @param maxUniqueIdsPerSparseCore The value of the maxUniqueIdsPerSparseCore attribute + * @param tableName The value of the tableName attribute + * @return a new instance of XlaSparseDenseMatmulWithStaticBufferSize + */ + @Endpoint( + describeByClass = true + ) + public static XlaSparseDenseMatmulWithStaticBufferSize create(Scope scope, + Operand rowPointers, Operand sortedSampleIds, Operand sortedTokenIds, + Operand sortedGains, Operand embeddingTable, + Operand numMinibatchesPerPhysicalSparseCore, Long inputSize, + Float quantizationConfigLow, Float quantizationConfigHigh, Long quantizationConfigNumBuckets, + Long maxIdsPerSparseCore, Long maxUniqueIdsPerSparseCore, String tableName) { + OperationBuilder opBuilder = scope.opBuilder(OP_NAME, "XlaSparseDenseMatmulWithStaticBufferSize"); + opBuilder.addInput(rowPointers.asOutput()); + opBuilder.addInput(sortedSampleIds.asOutput()); + opBuilder.addInput(sortedTokenIds.asOutput()); + opBuilder.addInput(sortedGains.asOutput()); + opBuilder.addInput(embeddingTable.asOutput()); + opBuilder.addInput(numMinibatchesPerPhysicalSparseCore.asOutput()); + opBuilder.setAttr("input_size", inputSize); + opBuilder.setAttr("quantization_config_low", quantizationConfigLow); + opBuilder.setAttr("quantization_config_high", quantizationConfigHigh); + opBuilder.setAttr("quantization_config_num_buckets", quantizationConfigNumBuckets); + opBuilder.setAttr("max_ids_per_sparse_core", maxIdsPerSparseCore); + opBuilder.setAttr("max_unique_ids_per_sparse_core", maxUniqueIdsPerSparseCore); + opBuilder.setAttr("table_name", tableName); + return new XlaSparseDenseMatmulWithStaticBufferSize(opBuilder.build()); + } + + /** + * Gets activations. + * + * @return activations. + */ + public Output activations() { + return activations; + } + + @Override + public Output asOutput() { + return activations; + } + + @OpInputsMetadata( + outputsClass = XlaSparseDenseMatmulWithStaticBufferSize.class + ) + public static class Inputs extends RawOpInputs { + /** + * The rowPointers input + */ + public final Operand rowPointers; + + /** + * The sortedSampleIds input + */ + public final Operand sortedSampleIds; + + /** + * The sortedTokenIds input + */ + public final Operand sortedTokenIds; + + /** + * The sortedGains input + */ + public final Operand sortedGains; + + /** + * The embeddingTable input + */ + public final Operand embeddingTable; + + /** + * The numMinibatchesPerPhysicalSparseCore input + */ + public final Operand numMinibatchesPerPhysicalSparseCore; + + /** + * The inputSize attribute + */ + public final long inputSize; + + /** + * The quantizationConfigLow attribute + */ + public final float quantizationConfigLow; + + /** + * The quantizationConfigHigh attribute + */ + public final float quantizationConfigHigh; + + /** + * The quantizationConfigNumBuckets attribute + */ + public final long quantizationConfigNumBuckets; + + /** + * The maxIdsPerSparseCore attribute + */ + public final long maxIdsPerSparseCore; + + /** + * The maxUniqueIdsPerSparseCore attribute + */ + public final long maxUniqueIdsPerSparseCore; + + /** + * The tableName attribute + */ + public final String tableName; + + public Inputs(GraphOperation op) { + super(new XlaSparseDenseMatmulWithStaticBufferSize(op), op, Arrays.asList("input_size", "quantization_config_low", "quantization_config_high", "quantization_config_num_buckets", "max_ids_per_sparse_core", "max_unique_ids_per_sparse_core", "table_name")); + int inputIndex = 0; + rowPointers = (Operand) op.input(inputIndex++); + sortedSampleIds = (Operand) op.input(inputIndex++); + sortedTokenIds = (Operand) op.input(inputIndex++); + sortedGains = (Operand) op.input(inputIndex++); + embeddingTable = (Operand) op.input(inputIndex++); + numMinibatchesPerPhysicalSparseCore = (Operand) op.input(inputIndex++); + inputSize = op.attributes().getAttrInt("input_size"); + quantizationConfigLow = op.attributes().getAttrFloat("quantization_config_low"); + quantizationConfigHigh = op.attributes().getAttrFloat("quantization_config_high"); + quantizationConfigNumBuckets = op.attributes().getAttrInt("quantization_config_num_buckets"); + maxIdsPerSparseCore = op.attributes().getAttrInt("max_ids_per_sparse_core"); + maxUniqueIdsPerSparseCore = op.attributes().getAttrInt("max_unique_ids_per_sparse_core"); + tableName = op.attributes().getAttrString("table_name"); + } + } +} diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/module-info.java b/tensorflow-core/tensorflow-core-api/src/main/java/module-info.java index f3e4875193d..b12e7042b48 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/module-info.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/module-info.java @@ -14,6 +14,8 @@ limitations under the License. ======================================================================= */ + +/** Core module implementing the TensorFlow Java API and operator definitions. */ module tensorflow { requires transitive org.tensorflow.ndarray; requires transitive tensorflow.nativelib; diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/NativeFunction.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/NativeFunction.java index 245fff70d1a..4dbde8f2473 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/NativeFunction.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/NativeFunction.java @@ -20,9 +20,7 @@ import com.google.protobuf.InvalidProtocolBufferException; import java.util.ArrayDeque; -import java.util.ArrayList; import java.util.Collection; -import java.util.Collections; import java.util.LinkedHashSet; import java.util.List; import java.util.Map; @@ -92,7 +90,7 @@ public synchronized List getDependencies() { } }); } - dependencies = Collections.unmodifiableList(new ArrayList<>(deps)); + dependencies = List.copyOf(deps); } return dependencies; diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java index 0228519e42c..dbbb1ab759d 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/SavedModelBundle.java @@ -312,6 +312,25 @@ public void export() throws IOException { private final Map functions = new LinkedHashMap<>(); } + /** + * Load a saved model from an export directory. The model that is being loaded should be created + * using the Saved Model + * API. + * + *

    This method is a shorthand for: + * + *

    {@code
    +   * SavedModelBundle.loader().load();
    +   * }
    + * + * @param exportDir the directory path containing a saved model. + * @return a bundle containing the graph and associated session. + */ + public static SavedModelBundle load(String exportDir) { + Loader loader = loader(exportDir); + return loader.load(); + } + /** * Load a saved model from an export directory. The model that is being loaded should be created * using the Saved Model @@ -329,9 +348,7 @@ public void export() throws IOException { */ public static SavedModelBundle load(String exportDir, String... tags) { Loader loader = loader(exportDir); - if (tags != null && tags.length > 0) { - loader.withTags(tags); - } + loader.withTags(tags); return loader.load(); } diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java index bd886d776b7..3bf262bec14 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/buffer/ByteSequenceTensorBuffer.java @@ -23,13 +23,11 @@ import static org.tensorflow.internal.c_api.global.tensorflow.TF_TString_GetSize; import java.nio.ReadOnlyBufferException; -import java.util.function.Function; import org.bytedeco.javacpp.BytePointer; import org.bytedeco.javacpp.Loader; import org.bytedeco.javacpp.Pointer; import org.bytedeco.javacpp.PointerScope; import org.tensorflow.internal.c_api.TF_TString; -import org.tensorflow.ndarray.NdArray; import org.tensorflow.ndarray.buffer.DataBuffer; import org.tensorflow.ndarray.impl.buffer.AbstractDataBuffer; import org.tensorflow.ndarray.impl.buffer.Validator; @@ -40,10 +38,9 @@ *

    The values are stored as an array of {@link TF_TString}, internally wrapped with {@code * tensorflow::tstring}, which is essentially a portable version of {@code std::string}. * - *

    The data of the buffer must be initialized only once, by calling {@link #init(NdArray, - * Function)}, and the buffer must have been allocated with enough space (use {@link - * #computeSize(NdArray, Function)} priory to know exactly how many bytes are required to store the - * data). + *

    The data of the buffer must be initialized only once, by calling {@link #init}, and the buffer + * must have been allocated with enough space (use {@link #computeSize} priory to know exactly how + * many bytes are required to store the data). * *

    After its data has been initialized, the buffer is read-only as it is not possible to change * safely a value without reinitializing the whole data. @@ -66,8 +63,8 @@ public static long computeSize(ByteSequenceProvider byteSequenceProvider) * *

    While it is not enforced programmatically, it is mandatory that this method is called only * once after the creation of the buffer. The buffer must have been allocated according to the - * same set of data, calling {@link #computeSize(NdArray, Function)} priory to make sure there is - * enough space to store it. + * same set of data, calling {@link #computeSize} priory to make sure there is enough space to + * store it. * * @param byteSequenceProvider produces sequences of bytes to use as the tensor data */ diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint16Mapper.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint16Mapper.java index d563302319a..43faa1199ed 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint16Mapper.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/internal/types/TUint16Mapper.java @@ -29,7 +29,7 @@ import org.tensorflow.types.TUint16; /** - * Maps memory of {@link org.tensorflow.proto.DataType#DT_Uint16} tensors to a n-dimensional data + * Maps memory of {@link org.tensorflow.proto.DataType#DT_UINT16} tensors to a n-dimensional data * space. */ public final class TUint16Mapper extends TensorMapper { diff --git a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/package-info.java b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/package-info.java index 983cda5260c..49cdef2a624 100644 --- a/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/package-info.java +++ b/tensorflow-core/tensorflow-core-api/src/main/java/org/tensorflow/package-info.java @@ -16,10 +16,12 @@ /** * Defines classes to build, save, load and execute TensorFlow models. * - *

    WARNING: The API is currently experimental and is not covered by TensorFlow API stability guarantees. See README.md - * for installation instructions. + *

    API Stability: Since version 1.0.0, the TensorFlow Java API is covered by TensorFlow API stability guarantees. + * Please note that as this library is a wrapper for the TensorFlow C API, its stability is subject + * to the stability of the underlying upstream TensorFlow project. See the README.md for installation + * instructions. * *

    The LabelImage diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java index 4b452984574..5eb3bf71660 100644 --- a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/SavedModelBundleTest.java @@ -68,6 +68,11 @@ public class SavedModelBundleTest { @Test public void load() { + try (SavedModelBundle bundle = SavedModelBundle.load(SAVED_MODEL_PATH)) { + assertNotNull(bundle.session()); + assertNotNull(bundle.graph()); + assertNotNull(bundle.metaGraphDef()); + } try (SavedModelBundle bundle = SavedModelBundle.load(SAVED_MODEL_PATH, "serve")) { assertNotNull(bundle.session()); assertNotNull(bundle.graph()); diff --git a/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBoolTest.java b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBoolTest.java new file mode 100644 index 00000000000..df5e1333b00 --- /dev/null +++ b/tensorflow-core/tensorflow-core-api/src/test/java/org/tensorflow/types/TBoolTest.java @@ -0,0 +1,156 @@ +/* + * Copyright 2020 The TensorFlow Authors. All Rights Reserved. + * + * Licensed under the Apache License, Version 2.0 (the "License"); + * you may not use this file except in compliance with the License. + * You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + * ======================================================================= + */ + +package org.tensorflow.types; + +import static org.junit.jupiter.api.Assertions.assertEquals; +import static org.junit.jupiter.api.Assertions.assertNotNull; + +import org.junit.jupiter.api.Test; +import org.tensorflow.EagerSession; +import org.tensorflow.ndarray.NdArray; +import org.tensorflow.ndarray.NdArrays; +import org.tensorflow.ndarray.Shape; +import org.tensorflow.ndarray.index.Indices; +import org.tensorflow.op.Ops; +import org.tensorflow.op.core.Constant; +import org.tensorflow.op.math.LogicalAnd; +import org.tensorflow.op.math.LogicalNot; +import org.tensorflow.op.math.LogicalOr; + +public class TBoolTest { + + @Test + public void createScalar() { + TBool tensorT = TBool.scalarOf(true); + assertNotNull(tensorT); + assertEquals(Shape.scalar(), tensorT.shape()); + assertEquals(true, tensorT.getObject()); + + TBool tensorF = TBool.scalarOf(false); + assertNotNull(tensorF); + assertEquals(Shape.scalar(), tensorF.shape()); + assertEquals(false, tensorF.getObject()); + } + + @Test + public void createVector() { + TBool tensor = TBool.vectorOf(true, false); + assertNotNull(tensor); + assertEquals(Shape.of(2), tensor.shape()); + assertEquals(true, tensor.getObject(0)); + assertEquals(false, tensor.getObject(1)); + } + + @Test + public void createCopy() { + NdArray bools = + NdArrays.ofObjects(Boolean.class, Shape.of(2, 2)) + .setObject(true, 0, 0) + .setObject(false, 0, 1) + .setObject(false, 1, 0) + .setObject(true, 1, 1); + + TBool tensor = TBool.tensorOf(bools); + assertNotNull(tensor); + bools.scalars().forEachIndexed((idx, s) -> assertEquals(s.getObject(), tensor.getObject(idx))); + } + + @Test + public void initializeTensorsWithBools() { + // Allocate a tensor of booleans of the shape (2, 3, 2) + TBool tensor = TBool.tensorOf(Shape.of(2, 3, 2)); + + assertEquals(3, tensor.rank()); + assertEquals(12, tensor.size()); + NdArray data = (NdArray) tensor; + + try (EagerSession session = EagerSession.create()) { + Ops tf = Ops.create(session); + + // Initialize tensor memory with falses and take a snapshot + data.scalars().forEach(scalar -> ((NdArray) scalar).setObject(false)); + Constant x = tf.constantOf(tensor); + + // Initialize the same tensor memory with trues and take a snapshot + data.scalars().forEach(scalar -> ((NdArray) scalar).setObject(true)); + Constant y = tf.constantOf(tensor); + + // Calculate x AND y and validate the result + LogicalAnd xAndY = tf.math.logicalAnd(x, y); + ((NdArray) xAndY.asTensor()) + .scalars() + .forEach(scalar -> assertEquals(false, scalar.getObject())); + + // Calculate x OR y and validate the result + LogicalOr xOrY = tf.math.logicalOr(x, y); + ((NdArray) xOrY.asTensor()) + .scalars() + .forEach(scalar -> assertEquals(true, scalar.getObject())); + + // Calculate !x and validate the result against y + LogicalNot notX = tf.math.logicalNot(x); + assertEquals(y.asTensor(), notX.asTensor()); + } + } + + @Test + public void setAndCompute() { + NdArray heapData = + NdArrays.ofBooleans(Shape.of(4)) + .setObject(true, 0) + .setObject(false, 1) + .setObject(true, 2) + .setObject(false, 3); + + // Creates a 2x2 matrix + try (TBool tensor = TBool.tensorOf(Shape.of(2, 2))) { + NdArray data = (NdArray) tensor; + + // Copy first 2 values of the vector to the first row of the matrix + data.set(heapData.slice(Indices.range(0, 2)), 0); + + // Copy values at an odd position in the vector as the second row of the matrix + data.set(heapData.slice(Indices.odd()), 1); + + assertEquals(true, data.getObject(0, 0)); + assertEquals(false, data.getObject(0, 1)); + assertEquals(false, data.getObject(1, 0)); + assertEquals(false, data.getObject(1, 1)); + + // Read rows of the tensor in reverse order + NdArray flippedData = data.slice(Indices.flip(), Indices.flip()); + + assertEquals(false, flippedData.getObject(0, 0)); + assertEquals(false, flippedData.getObject(0, 1)); + assertEquals(false, flippedData.getObject(1, 0)); + assertEquals(true, flippedData.getObject(1, 1)); + + try (EagerSession session = EagerSession.create()) { + Ops tf = Ops.create(session); + + LogicalNot sub = tf.math.logicalNot(tf.constantOf(tensor)); + NdArray result = (NdArray) sub.asTensor(); + + assertEquals(false, result.getObject(0, 0)); + assertEquals(true, result.getObject(0, 1)); + assertEquals(true, result.getObject(1, 0)); + assertEquals(true, result.getObject(1, 1)); + } + } + } +} diff --git a/tensorflow-core/tensorflow-core-generator/pom.xml b/tensorflow-core/tensorflow-core-generator/pom.xml index a90d85a1d4b..bb532f5deab 100644 --- a/tensorflow-core/tensorflow-core-generator/pom.xml +++ b/tensorflow-core/tensorflow-core-generator/pom.xml @@ -5,7 +5,7 @@ org.tensorflow tensorflow-core - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT tensorflow-core-generator jar diff --git a/tensorflow-core/tensorflow-core-generator/src/main/java/module-info.java b/tensorflow-core/tensorflow-core-generator/src/main/java/module-info.java index 1b155bc3af1..a6efd2561a3 100644 --- a/tensorflow-core/tensorflow-core-generator/src/main/java/module-info.java +++ b/tensorflow-core/tensorflow-core-generator/src/main/java/module-info.java @@ -14,13 +14,18 @@ limitations under the License. ======================================================================= */ + +/** + * Code to generate the Java side implementations of TensorFlow's ops based on the TensorFlow op + * definition files. + */ module tensorflow.generator { requires tensorflow.nativelib; - requires java.compiler; + requires transitive java.compiler; requires com.github.javaparser.core; requires com.google.protobuf; requires com.google.common; - requires com.squareup.javapoet; + requires transitive com.squareup.javapoet; requires org.commonmark; requires spring.core; diff --git a/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/generator/op/ClassGenerator.java b/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/generator/op/ClassGenerator.java index 83b76bdee56..91d66134880 100644 --- a/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/generator/op/ClassGenerator.java +++ b/tensorflow-core/tensorflow-core-generator/src/main/java/org/tensorflow/generator/op/ClassGenerator.java @@ -105,7 +105,7 @@ enum RenderMode { /** * The generated options class, or null if it doesn't have one or {@link #buildOptionsClass()} has - * not been ran. + * not been run. */ private TypeSpec optionsClass = null; @@ -297,10 +297,6 @@ void buildClass() { if (seenGenerics.add(typeVar.name)) { typeParams.add(typeVar); builder.addTypeVariable(typeVar); - // FIXME: check if we need to add this or if it's redundant now with other type - // generations. - // builder.addJavadoc("\n@param <$L> data type for {@code $L} output\n", typeVar.name, - // output.getName()); } } } @@ -752,6 +748,10 @@ private void buildSecondaryFactory( body.add("$T.class", defaultTypes.get(attr)); } else { factoryBuilder.addParameter(param); + // Checking if the parameter being added is the variadic options or not + if (param.name.equals("options")) { + factoryBuilder.varargs(); + } factoryBuilder.addJavadoc("\n@param $L $L", param.name, paramTags.get(param.name)); typeVars.addAll(new ResolvedType(param.type).findGenerics()); body.add("$L", param.name); diff --git a/tensorflow-core/tensorflow-core-native/BUILD b/tensorflow-core/tensorflow-core-native/BUILD index e8d01ef0a72..b3b1a2cfcd7 100644 --- a/tensorflow-core/tensorflow-core-native/BUILD +++ b/tensorflow-core/tensorflow-core-native/BUILD @@ -4,6 +4,8 @@ java_proto_library( name = "java_proto_gen_sources", deps = [ "@org_tensorflow//tensorflow/core:protos_all", + "@local_xla//xla/tsl/protobuf:bfc_memory_map_proto", + "@local_xla//xla/tsl/protobuf:test_log_proto", "@local_tsl//tsl/protobuf:protos_all" ] ) diff --git a/tensorflow-core/tensorflow-core-native/WORKSPACE b/tensorflow-core/tensorflow-core-native/WORKSPACE index 93acef27be1..ad2c74508ad 100644 --- a/tensorflow-core/tensorflow-core-native/WORKSPACE +++ b/tensorflow-core/tensorflow-core-native/WORKSPACE @@ -14,96 +14,74 @@ http_archive( patch_tool = "patch", patch_args = ["-p1"], patch_cmds = [ - "find tensorflow third_party/xla/third_party/tsl -name \\*.proto | xargs sed -i.bak '/^option java_package/d'", - "find tensorflow third_party/xla/third_party/tsl -name \\*.proto | xargs sed -i.bak 's/^package tensorflow\\([^;]*\\).*$/package tensorflow\\1;\\noption java_package = \"org.tensorflow.proto\\1\";/'", + "find tensorflow third_party/xla/third_party/tsl third_party/xla/xla/tsl -name \\*.proto | xargs sed -i.bak '/^option java_package/d'", + "find tensorflow third_party/xla/third_party/tsl third_party/xla/xla/tsl -name \\*.proto | xargs sed -i.bak 's/^package tensorflow\\([^;]*\\).*$/package tensorflow\\1;\\noption java_package = \"org.tensorflow.proto\\1\";/'", ], urls = [ - "https://github.com/tensorflow/tensorflow/archive/refs/tags/v2.16.1.tar.gz", + "https://github.com/tensorflow/tensorflow/archive/refs/tags/v2.18.0.tar.gz", ], - sha256 = "c729e56efc945c6df08efe5c9f5b8b89329c7c91b8f40ad2bb3e13900bd4876d", - strip_prefix = "tensorflow-2.16.1" + sha256 = "d7876f4bb0235cac60eb6316392a7c48676729860da1ab659fb440379ad5186d", + strip_prefix = "tensorflow-2.18.0" ) ##### Copy content of tensorflow/WORKSPACE here (make sure to change references of default package "//" to "@org_tensorflow//") +# buildifier: disable=load-on-top + # We must initialize hermetic python first. load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") http_archive( - name = "bazel_skylib", - sha256 = "74d544d96f4a5bb630d465ca8bbcfe231e3594e5aae57e1edbf17a6eb3ca2506", - urls = [ - "https://storage.googleapis.com/mirror.tensorflow.org/github.com/bazelbuild/bazel-skylib/releases/download/1.3.0/bazel-skylib-1.3.0.tar.gz", - "https://github.com/bazelbuild/bazel-skylib/releases/download/1.3.0/bazel-skylib-1.3.0.tar.gz", - ], + name = "rules_java", + sha256 = "c73336802d0b4882e40770666ad055212df4ea62cfa6edf9cb0f9d29828a0934", + url = "https://github.com/bazelbuild/rules_java/releases/download/5.3.5/rules_java-5.3.5.tar.gz", ) -http_archive( - name = "rules_python", - sha256 = "9d04041ac92a0985e344235f5d946f71ac543f1b1565f2cdbc9a2aaee8adf55b", - strip_prefix = "rules_python-0.26.0", - url = "https://github.com/bazelbuild/rules_python/releases/download/0.26.0/rules_python-0.26.0.tar.gz", -) +# Initialize the TensorFlow repository and all dependencies. +# +# The cascade of load() statements and tf_workspace?() calls works around the +# restriction that load() statements need to be at the top of .bzl files. +# E.g. we can not retrieve a new repository with http_archive and then load() +# a macro from that repository in the same file. +load("@org_tensorflow//tensorflow:workspace3.bzl", "tf_workspace3") -load("@rules_python//python:repositories.bzl", "py_repositories") +tf_workspace3() -py_repositories() +# Initialize hermetic Python +load("@local_xla//third_party/py:python_init_rules.bzl", "python_init_rules") -load("@rules_python//python:repositories.bzl", "python_register_toolchains") -load( - "@org_tensorflow//tensorflow/tools/toolchains/python:python_repo.bzl", - "python_repository", -) - -python_repository(name = "python_version_repo") +python_init_rules() -load("@python_version_repo//:py_version.bzl", "TF_PYTHON_VERSION") +load("@local_xla//third_party/py:python_init_repositories.bzl", "python_init_repositories") -python_register_toolchains( - name = "python", - ignore_root_user_error = True, - python_version = TF_PYTHON_VERSION, +python_init_repositories( + default_python_version = "system", + local_wheel_dist_folder = "dist", + local_wheel_inclusion_list = [ + "tensorflow*", + "tf_nightly*", + ], + local_wheel_workspaces = ["//:WORKSPACE"], + requirements = { + "3.9": "@org_tensorflow//:requirements_lock_3_9.txt", + "3.10": "@org_tensorflow//:requirements_lock_3_10.txt", + "3.11": "@org_tensorflow//:requirements_lock_3_11.txt", + "3.12": "@org_tensorflow//:requirements_lock_3_12.txt", + }, ) -load("@python//:defs.bzl", "interpreter") -load("@rules_python//python:pip.bzl", "package_annotation", "pip_parse") +load("@local_xla//third_party/py:python_init_toolchains.bzl", "python_init_toolchains") -NUMPY_ANNOTATIONS = { - "numpy": package_annotation( - additive_build_content = """\ -filegroup( - name = "includes", - srcs = glob(["site-packages/numpy/core/include/**/*.h"]), -) -cc_library( - name = "numpy_headers", - hdrs = [":includes"], - strip_include_prefix="site-packages/numpy/core/include/", -) -""", - ), -} +python_init_toolchains() -#pip_parse( -# name = "pypi", -# annotations = NUMPY_ANNOTATIONS, -# python_interpreter_target = interpreter, -# requirements = "//:requirements_lock_" + HERMETIC_PYTHON_VERSION.replace(".", "_") + ".txt", -#) +load("@local_xla//third_party/py:python_init_pip.bzl", "python_init_pip") -#load("@pypi//:requirements.bzl", "install_deps") +python_init_pip() -#install_deps() +load("@pypi//:requirements.bzl", "install_deps") -# Initialize the TensorFlow repository and all dependencies. -# -# The cascade of load() statements and tf_workspace?() calls works around the -# restriction that load() statements need to be at the top of .bzl files. -# E.g. we can not retrieve a new repository with http_archive and then load() -# a macro from that repository in the same file. -load("@org_tensorflow//tensorflow:workspace3.bzl", "tf_workspace3") - -tf_workspace3() +install_deps() +# End hermetic Python initialization load("@org_tensorflow//tensorflow:workspace2.bzl", "tf_workspace2") @@ -115,4 +93,51 @@ tf_workspace1() load("@org_tensorflow//tensorflow:workspace0.bzl", "tf_workspace0") -tf_workspace0() \ No newline at end of file +tf_workspace0() + +load( + "@local_tsl//third_party/gpus/cuda/hermetic:cuda_json_init_repository.bzl", + "cuda_json_init_repository", +) + +cuda_json_init_repository() + +load( + "@cuda_redist_json//:distributions.bzl", + "CUDA_REDISTRIBUTIONS", + "CUDNN_REDISTRIBUTIONS", +) +load( + "@local_tsl//third_party/gpus/cuda/hermetic:cuda_redist_init_repositories.bzl", + "cuda_redist_init_repositories", + "cudnn_redist_init_repository", +) + +cuda_redist_init_repositories( + cuda_redistributions = CUDA_REDISTRIBUTIONS, +) + +cudnn_redist_init_repository( + cudnn_redistributions = CUDNN_REDISTRIBUTIONS, +) + +load( + "@local_tsl//third_party/gpus/cuda/hermetic:cuda_configure.bzl", + "cuda_configure", +) + +cuda_configure(name = "local_config_cuda") + +load( + "@local_tsl//third_party/nccl/hermetic:nccl_redist_init_repository.bzl", + "nccl_redist_init_repository", +) + +nccl_redist_init_repository() + +load( + "@local_tsl//third_party/nccl/hermetic:nccl_configure.bzl", + "nccl_configure", +) + +nccl_configure(name = "local_config_nccl") \ No newline at end of file diff --git a/tensorflow-core/tensorflow-core-native/pom.xml b/tensorflow-core/tensorflow-core-native/pom.xml index 700a384a9c8..bb9eb053c33 100644 --- a/tensorflow-core/tensorflow-core-native/pom.xml +++ b/tensorflow-core/tensorflow-core-native/pom.xml @@ -6,7 +6,7 @@ org.tensorflow tensorflow-core - 1.0.0-SNAPSHOT + 1.2.0-SNAPSHOT tensorflow-core-native jar @@ -113,12 +113,6 @@ ${project.version} ${javacpp.platform.linux-x86_64}-gpu - - ${project.groupId} - ${project.artifactId} - ${project.version} - ${javacpp.platform.macosx-x86_64} - ${project.groupId} ${project.artifactId} @@ -131,12 +125,12 @@ ${project.version} ${javacpp.platform.windows-x86_64} - + @@ -167,18 +161,14 @@ ${project.build.directory}/${project.artifactId}-${project.version}-${javacpp.platform.macosx-arm64}.jar ${javacpp.platform.macosx-arm64} - - ${project.build.directory}/${project.artifactId}-${project.version}-${javacpp.platform.macosx-x86_64}.jar - ${javacpp.platform.macosx-x86_64} - ${project.build.directory}/${project.artifactId}-${project.version}-${javacpp.platform.windows-x86_64}.jar ${javacpp.platform.windows-x86_64} - + @@ -329,6 +319,7 @@ ${project.basedir}/bazel-${project.artifactId}/external/org_tensorflow/ ${project.basedir}/bazel-${project.artifactId}/external/local_tsl/ + ${project.basedir}/bazel-${project.artifactId}/external/local_xla/ ${project.basedir}/bazel-bin/external/org_tensorflow/ ${project.basedir}/bazel-${project.artifactId}/external/com_google_absl/ ${project.basedir}/bazel-${project.artifactId}/external/eigen_archive/ @@ -648,34 +639,6 @@ - - - maven-javadoc-plugin - 3.7.0 - - - attach-javadocs - - jar - - - - -Xmaxerrs - 65536 - -Xmaxwarns - 65536 - - false - 256m - 2048m - - https://protobuf.dev/reference/java/api-docs - http://bytedeco.org/javacpp/apidocs - - - - - diff --git a/tensorflow-core/tensorflow-core-native/scripts/bazel_generate.sh b/tensorflow-core/tensorflow-core-native/scripts/bazel_generate.sh index 9d9941d1cf8..ab0fd0ec6c1 100755 --- a/tensorflow-core/tensorflow-core-native/scripts/bazel_generate.sh +++ b/tensorflow-core/tensorflow-core-native/scripts/bazel_generate.sh @@ -24,7 +24,7 @@ cp -f $TENSORFLOW_SRCS/core/ops/ops.pbtxt $GEN_RESOURCE_DIR/org/tensorflow cp -rf $TENSORFLOW_SRCS/core/api_def/base_api $GEN_RESOURCE_DIR/org/tensorflow/ # Copy generated Java protos from source jars -echo "Extracting TF/TSL proto Java sources" +echo "Extracting TF/TSL/XLA proto Java sources" cd $GEN_SRCS_DIR -find $TENSORFLOW_BIN $BAZEL_BIN/external/local_tsl/tsl -name \*-speed-src.jar -exec jar xf {} \; +find $TENSORFLOW_BIN $BAZEL_BIN/external/local_tsl/tsl $BAZEL_BIN/external/local_xla/xla -name \*-speed-src.jar -exec jar xf {} \; rm -rf META-INF diff --git a/tensorflow-core/tensorflow-core-native/scripts/dist_download.sh b/tensorflow-core/tensorflow-core-native/scripts/dist_download.sh index 20068238fc3..acf28b9391d 100755 --- a/tensorflow-core/tensorflow-core-native/scripts/dist_download.sh +++ b/tensorflow-core/tensorflow-core-native/scripts/dist_download.sh @@ -5,23 +5,20 @@ DOWNLOAD_FOLDER="$1" case ${PLATFORM:-} in 'linux-x86_64') - WHEEL_URL='https://files.pythonhosted.org/packages/9b/0b/c18d6464a19d4c9b63df8880dd3ce0c67b5145ada9092f3ac67d82726566/tensorflow_cpu-2.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' + WHEEL_URL='https://files.pythonhosted.org/packages/aa/1d/032a9d40762895e51cad06f382135c14d16487a0ad9dcc65aae5bd89c968/tensorflow_cpu-2.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' ;; 'linux-x86_64-gpu') - WHEEL_URL='https://files.pythonhosted.org/packages/58/70/e8ac764ec80810eefcbab0cb1d21dbba6cf26719c44cd6d9a5e9f0407935/tensorflow-2.16.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' + WHEEL_URL='https://files.pythonhosted.org/packages/84/76/c55967ac9968ddaede25a4dce37aba37e9030656f02c12676151ce1b6f22/tensorflow-2.18.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl' ;; - 'macosx-x86_64') - WHEEL_URL='https://files.pythonhosted.org/packages/b8/75/ce4d8eeb1fb100726634358411bc4a8b12f889f6ce560b0973c0a5dbac39/tensorflow-2.16.1-cp311-cp311-macosx_10_15_x86_64.whl' + 'linux-arm64') + WHEEL_URL='https://files.pythonhosted.org/packages/56/e4/55aaac2b15af4dad079e5af329a79d961e5206589d0e02b1e8da221472ed/tensorflow-2.18.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl' ;; 'macosx-arm64') - WHEEL_URL='https://files.pythonhosted.org/packages/f9/14/67e9b2b2379cb530c0412123a674d045eca387dfcfa7db1c0028857b0a66/tensorflow-2.16.1-cp311-cp311-macosx_12_0_arm64.whl' + WHEEL_URL='https://files.pythonhosted.org/packages/26/08/556c4159675c1a30e077ec2a942eeeb81b457cc35c247a5b4a59a1274f05/tensorflow-2.18.0-cp311-cp311-macosx_12_0_arm64.whl' ;; 'windows-x86_64') - WHEEL_URL='https://files.pythonhosted.org/packages/e0/36/6278e4e7e69a90c00e0f82944d8f2713dd85a69d1add455d9e50446837ab/tensorflow_intel-2.16.1-cp311-cp311-win_amd64.whl' - CLIB_URL='https://storage.googleapis.com/tensorflow/versions/2.16.1/libtensorflow-cpu-windows-x86_64.zip' - ;; - 'linux-arm64') - WHEEL_URL='https://files.pythonhosted.org/packages/41/ab/e5386c722548df2043c1eaadc431ea3ba0ee42a66b3af7f8013bbbacecd3/tensorflow-2.16.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl' + WHEEL_URL='https://files.pythonhosted.org/packages/76/ad/fa6c508a15ff79cb5409294c293388e0999b7d480f84b65e4287277434fe/tensorflow_intel-2.18.0-cp311-cp311-win_amd64.whl' + CLIB_URL='https://storage.googleapis.com/tensorflow/versions/2.18.0/libtensorflow-cpu-windows-x86_64.zip' ;; *) echo "TensorFlow distribution for ${PLATFORM} is not supported for download" @@ -55,7 +52,8 @@ if [[ "$PLATFORM" =~ "linux" ]]; then ln -fs libtensorflow_cc.so.2 libtensorflow_cc.so ln -fs libtensorflow_framework.so.2 libtensorflow_framework.so if [[ "$PLATFORM" == "linux-arm64" ]]; then - ln -fs libomp-*.so.5 libomp.so + cp ../tensorflow.libs/libomp-6196b3b5.so.5 libomp-6196b3b5.so.5 + ln -fs libomp-6196b3b5.so.5 libomp-6196b3b5.so fi elif [[ "$PLATFORM" =~ "macosx" ]]; then ln -fs libtensorflow_cc.2.dylib libtensorflow_cc.dylib @@ -65,4 +63,4 @@ elif [[ "$PLATFORM" =~ "windows" ]]; then # (while it is also available at the root of the include folder for other platforms) cd include && ln -fs tensorflow/tsl tsl && cd - fi -ls -l . \ No newline at end of file +ls -l . diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Deallocator_Pointer_long_Pointer.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Deallocator_Pointer_long_Pointer.java index cadc5930dc9..6db414f7382 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Deallocator_Pointer_long_Pointer.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Deallocator_Pointer_long_Pointer.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_BytePointer.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_BytePointer.java index 3f5ef587ab1..abd96e95392 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_BytePointer.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_BytePointer.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_String.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_String.java index 3e62d7d0acb..af6030e6503 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_String.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Listener_String.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancelCallback.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancelCallback.java index 037bdbfaf2b..a2ab0621623 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancelCallback.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancelCallback.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancellationManager.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancellationManager.java index be8d6ba91d5..1a1524e6593 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancellationManager.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CancellationManager.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Context.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Context.java index 88339d3a463..88322c6d243 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Context.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Context.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_ContextOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_ContextOptions.java index 4697c57a675..8a9768dbaec 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_ContextOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_ContextOptions.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDevice.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDevice.java index 4b51f0e83ea..1b9ddc78173 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDevice.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDevice.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDeviceTensorHandle.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDeviceTensorHandle.java index a4b0939adb7..b6943e9f386 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDeviceTensorHandle.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_CustomDeviceTensorHandle.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Executor.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Executor.java index 29bdf274105..53a66d08755 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Executor.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Executor.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge0.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge0.java index 0d1a29dbe09..2ee4a7020c8 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge0.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge0.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge1.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge1.java index 23ed2050658..004c852fcd7 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge1.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge1.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge2.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge2.java index 50478f15ea9..e46a3f06e0d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge2.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGauge2.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGaugeCell.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGaugeCell.java index 3f3ba2f7abb..6b9d73cb6f2 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGaugeCell.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBoolGaugeCell.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBuckets.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBuckets.java index 53f0870fcb8..8fa952614cf 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBuckets.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringBuckets.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter0.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter0.java index d6a1741d04c..03185b12ac1 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter0.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter0.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter1.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter1.java index 154ea614520..3fc374c963d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter1.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter1.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter2.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter2.java index 12230296e90..3f479145a55 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter2.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounter2.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounterCell.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounterCell.java index 3ba3cffa6c5..c4ff6a322cd 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounterCell.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringCounterCell.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge0.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge0.java index 8e397c42218..b01c212d04e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge0.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge0.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge1.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge1.java index 17e85beebd9..46ca45846ce 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge1.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge1.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge2.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge2.java index 952667a192a..a48f8ea3d8e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge2.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGauge2.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGaugeCell.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGaugeCell.java index 0a5b4ffb2d0..34d7da5854e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGaugeCell.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringIntGaugeCell.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler0.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler0.java index 52696ccd933..d0235201962 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler0.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler0.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler1.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler1.java index 7ee23fd6044..f71d9821bae 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler1.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler1.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler2.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler2.java index 03ceb795203..eaa959122f5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler2.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSampler2.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSamplerCell.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSamplerCell.java index 7450bc22100..7d2b50cd5e5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSamplerCell.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringSamplerCell.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge0.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge0.java index eee853733c2..978e30fca4a 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge0.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge0.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge1.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge1.java index 9b6a251d2fb..d0a0aca659c 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge1.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge1.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge2.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge2.java index ddbe1a5e0cb..85d097da12f 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge2.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge2.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge3.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge3.java index cc304e409ae..aa07f5ee144 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge3.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge3.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge4.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge4.java index c2a2d811c8d..46732e2bfcd 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge4.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGauge4.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGaugeCell.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGaugeCell.java index 62ac9ab0f33..cfee1b9991d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGaugeCell.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_MonitoringStringGaugeCell.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Op.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Op.java index a7566da0df2..b4b9fba825e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Op.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_Op.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_OpAttrs.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_OpAttrs.java index be1e0e5fc9d..c72023d587f 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_OpAttrs.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_OpAttrs.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorDebugInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorDebugInfo.java index 157630bc750..7f5cc8b30f1 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorDebugInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorDebugInfo.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorHandle.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorHandle.java index e984edc1329..39ebd0e0984 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorHandle.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFE_TensorHandle.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GradFuncAdapter.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GradFuncAdapter.java index da652c6b068..7938de58a8e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GradFuncAdapter.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GradFuncAdapter.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GraphId.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GraphId.java index 5f3ec15585c..f503ed65a91 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GraphId.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_GraphId.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_Scope.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_Scope.java index 048f1a23706..8c3c0746c5c 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_Scope.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TFJ_Scope.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AllocatorAttributes.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AllocatorAttributes.java index abe89fdca60..5862c60b31d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AllocatorAttributes.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AllocatorAttributes.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ApiDefMap.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ApiDefMap.java index 2274e428250..57f7d3095bf 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ApiDefMap.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ApiDefMap.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrBuilder.java new file mode 100644 index 00000000000..8e5a084ccce --- /dev/null +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrBuilder.java @@ -0,0 +1,21 @@ +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE + +package org.tensorflow.internal.c_api; + +import java.nio.*; +import org.bytedeco.javacpp.*; +import org.bytedeco.javacpp.annotation.*; + +import static org.tensorflow.internal.c_api.global.tensorflow.*; + + +// TF_NewAttrBuilder() returns an object that you can set attributes on as +// though it were an op. This allows querying properties of that op for +// type-checking purposes like if the op will run on a particular device type. +@Opaque @Properties(inherit = org.tensorflow.internal.c_api.presets.tensorflow.class) +public class TF_AttrBuilder extends Pointer { + /** Empty constructor. Calls {@code super((Pointer)null)}. */ + public TF_AttrBuilder() { super((Pointer)null); } + /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ + public TF_AttrBuilder(Pointer p) { super(p); } +} diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrMetadata.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrMetadata.java index 14d7e44817d..6a99a4d1b8e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrMetadata.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_AttrMetadata.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Buffer.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Buffer.java index 676dd7417f2..a4bf64d3f5f 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Buffer.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Buffer.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_CheckpointReader.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_CheckpointReader.java new file mode 100644 index 00000000000..232cb85fd04 --- /dev/null +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_CheckpointReader.java @@ -0,0 +1,20 @@ +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE + +package org.tensorflow.internal.c_api; + +import java.nio.*; +import org.bytedeco.javacpp.*; +import org.bytedeco.javacpp.annotation.*; + +import static org.tensorflow.internal.c_api.global.tensorflow.*; + + +// TF_NewCheckpointReader() return the CheckpointReader that can be use to +// investigate or load the variable from the checkpoint file +@Opaque @Properties(inherit = org.tensorflow.internal.c_api.presets.tensorflow.class) +public class TF_CheckpointReader extends Pointer { + /** Empty constructor. Calls {@code super((Pointer)null)}. */ + public TF_CheckpointReader() { super((Pointer)null); } + /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ + public TF_CheckpointReader(Pointer p) { super(p); } +} diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeprecatedSession.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeprecatedSession.java index d2382eaca52..d816ab6f832 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeprecatedSession.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeprecatedSession.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeviceList.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeviceList.java index a24fc795c92..6d095f0b8c7 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeviceList.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_DeviceList.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Function.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Function.java index 017a9e653bd..acf54133d12 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Function.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Function.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_FunctionOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_FunctionOptions.java index beeda28ce31..381a690e1e6 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_FunctionOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_FunctionOptions.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Graph.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Graph.java index 1d81f725050..779c5030842 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Graph.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Graph.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefOptions.java index 755b4aeaa42..527b6f1109e 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefOptions.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefResults.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefResults.java index a202d65ea5f..7d3bf3597f0 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefResults.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ImportGraphDefResults.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Input.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Input.java index eb169346beb..05bb181a86d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Input.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Input.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Library.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Library.java index 9ba55f9db0b..22a67f6cd2c 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Library.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Library.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Operation.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Operation.java index 715f0f67ca4..084fef91bda 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Operation.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Operation.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_OperationDescription.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_OperationDescription.java index bf17e0d1f5f..9387c172354 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_OperationDescription.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_OperationDescription.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Output.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Output.java index f8b7103c57a..a52cff3c905 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Output.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Output.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Server.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Server.java index a2495132444..5753e37ae97 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Server.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Server.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Session.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Session.java index dd5b1259279..8ab407637f5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Session.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Session.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_SessionOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_SessionOptions.java index 72d9ea3911f..a85ba6f5c62 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_SessionOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_SessionOptions.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndType.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndType.java new file mode 100644 index 00000000000..315bfa3e01c --- /dev/null +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndType.java @@ -0,0 +1,37 @@ +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE + +package org.tensorflow.internal.c_api; + +import java.nio.*; +import org.bytedeco.javacpp.*; +import org.bytedeco.javacpp.annotation.*; + +import static org.tensorflow.internal.c_api.global.tensorflow.*; + + +// Information about the shape of a Tensor and its type. +@Properties(inherit = org.tensorflow.internal.c_api.presets.tensorflow.class) +public class TF_ShapeAndType extends Pointer { + static { Loader.load(); } + /** Default native constructor. */ + public TF_ShapeAndType() { super((Pointer)null); allocate(); } + /** Native array allocator. Access with {@link Pointer#position(long)}. */ + public TF_ShapeAndType(long size) { super((Pointer)null); allocateArray(size); } + /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ + public TF_ShapeAndType(Pointer p) { super(p); } + private native void allocate(); + private native void allocateArray(long size); + @Override public TF_ShapeAndType position(long position) { + return (TF_ShapeAndType)super.position(position); + } + @Override public TF_ShapeAndType getPointer(long i) { + return new TF_ShapeAndType((Pointer)this).offsetAddress(i); + } + + // Number of dimensions. -1 indicates unknown rank. + public native int num_dims(); public native TF_ShapeAndType num_dims(int setter); + // Array of dimensions. -1 indicates unknown dim. + public native @Cast("int64_t*") LongPointer dims(); public native TF_ShapeAndType dims(LongPointer setter); + // The data type. May be 0 to denote unknown type. + public native @Cast("TF_DataType") int dtype(); public native TF_ShapeAndType dtype(int setter); +} diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndTypeList.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndTypeList.java new file mode 100644 index 00000000000..ac959f2acf7 --- /dev/null +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_ShapeAndTypeList.java @@ -0,0 +1,33 @@ +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE + +package org.tensorflow.internal.c_api; + +import java.nio.*; +import org.bytedeco.javacpp.*; +import org.bytedeco.javacpp.annotation.*; + +import static org.tensorflow.internal.c_api.global.tensorflow.*; + + +// A list of TF_ShapeAndType elements.. +@Properties(inherit = org.tensorflow.internal.c_api.presets.tensorflow.class) +public class TF_ShapeAndTypeList extends Pointer { + static { Loader.load(); } + /** Default native constructor. */ + public TF_ShapeAndTypeList() { super((Pointer)null); allocate(); } + /** Native array allocator. Access with {@link Pointer#position(long)}. */ + public TF_ShapeAndTypeList(long size) { super((Pointer)null); allocateArray(size); } + /** Pointer cast constructor. Invokes {@link Pointer#Pointer(Pointer)}. */ + public TF_ShapeAndTypeList(Pointer p) { super(p); } + private native void allocate(); + private native void allocateArray(long size); + @Override public TF_ShapeAndTypeList position(long position) { + return (TF_ShapeAndTypeList)super.position(position); + } + @Override public TF_ShapeAndTypeList getPointer(long i) { + return new TF_ShapeAndTypeList((Pointer)this).offsetAddress(i); + } + + public native int num_items(); public native TF_ShapeAndTypeList num_items(int setter); + public native TF_ShapeAndType items(); public native TF_ShapeAndTypeList items(TF_ShapeAndType setter); +} diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Status.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Status.java index c2d2c329aa8..3aa5e8156d5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Status.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Status.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_StringView.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_StringView.java index af639c7647c..cd9b9928069 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_StringView.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_StringView.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString.java index 6ecc8d18dd5..66092be629f 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Large.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Large.java index 240b0d83e36..2cab61e7d73 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Large.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Large.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Offset.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Offset.java index 280e4e403a8..3dbdcd468f1 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Offset.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Offset.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Raw.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Raw.java index 22712b73a55..f2916801c5f 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Raw.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Raw.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Small.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Small.java index 6440c91e627..57702a8b716 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Small.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Small.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Union.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Union.java index 51b009cf79a..5ebe9ebfac8 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Union.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_Union.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_View.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_View.java index 907bf5d0389..5951c1b1238 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_View.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_TString_View.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Tensor.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Tensor.java index 4b35bbf637e..4ee1ae89418 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Tensor.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_Tensor.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_WhileParams.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_WhileParams.java index e4ca40d66a3..d3607e4a274 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_WhileParams.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/TF_WhileParams.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Tensor.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Tensor.java index fbbeaec6bea..d534b2caa87 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Tensor.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/Tensor.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java index 2a80e6bb86d..f867058d6bb 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/internal/c_api/global/tensorflow.java @@ -1,4 +1,4 @@ -// Targeted by JavaCPP version 1.5.10: DO NOT EDIT THIS FILE +// Targeted by JavaCPP version 1.5.11: DO NOT EDIT THIS FILE package org.tensorflow.internal.c_api.global; @@ -274,7 +274,7 @@ public static native void TF_TString_Copy(TF_TString dst, String src, // #endif // TENSORFLOW_TSL_PLATFORM_CTSTRING_H_ -// Parsed from tsl/c/tsl_status.h +// Parsed from xla/tsl/c/tsl_status.h /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. @@ -291,8 +291,8 @@ public static native void TF_TString_Copy(TF_TString dst, String src, limitations under the License. ==============================================================================*/ -// #ifndef TENSORFLOW_TSL_C_TSL_STATUS_H_ -// #define TENSORFLOW_TSL_C_TSL_STATUS_H_ +// #ifndef XLA_TSL_C_TSL_STATUS_H_ +// #define XLA_TSL_C_TSL_STATUS_H_ // #ifdef __cplusplus // #endif @@ -351,7 +351,7 @@ public static native void TF_TString_Copy(TF_TString dst, String src, // #ifdef __cplusplus /* end extern "C" */ // #endif -// #endif // TENSORFLOW_TSL_C_TSL_STATUS_H_ +// #endif // XLA_TSL_C_TSL_STATUS_H_ // Parsed from tensorflow/c/c_api_macros.h @@ -507,7 +507,7 @@ public static native void TF_TString_Copy(TF_TString dst, String src, // #define TENSORFLOW_C_TF_STATUS_H_ // #include "tensorflow/c/c_api_macros.h" -// #include "tsl/c/tsl_status.h" +// #include "xla/tsl/c/tsl_status.h" // #ifdef __cplusplus // Targeting ../TF_Status.java @@ -689,6 +689,13 @@ public static native TF_Tensor TF_NewTensor( Deallocator_Pointer_long_Pointer deallocator, Pointer deallocator_arg); +// Returns the alignment, in bytes, required for allocating aligned tensors. +// +// This can be used in combination with TF_NewTensor to manually manage +// memory while ensuring the resulting tensors satisfy TensorFlow's +// memory alignment preferences. +public static native @Cast("size_t") long TF_TensorDefaultAlignment(); + // Allocate and return a new Tensor. // // This function is an alternative to TF_NewTensor and should be used when @@ -4367,7 +4374,8 @@ public static native void TFE_ContextUpdateServerDefWithTimeout( // This API is for experimental usage and may be subject to change. public static native void TFE_ContextSetServerDefWithTimeout( TFE_Context ctx, int keep_alive_secs, @Const Pointer proto, @Cast("size_t") long proto_len, - @Cast("int64_t") long init_timeout_in_ms, TF_Status status); + @Cast("int64_t") long init_timeout_in_ms, TF_Status status, + @Cast("bool") boolean clear_existing_contexts); // Set server def with retries and timeout. This is helpful for fault-tolerant // initial connection in high-preemption environments, such as @@ -4375,7 +4383,8 @@ public static native void TFE_ContextSetServerDefWithTimeout( // This API is for experimental usage and may be subject to change. public static native void TFE_ContextSetServerDefWithTimeoutAndRetries( TFE_Context ctx, int keep_alive_secs, @Const Pointer proto, @Cast("size_t") long proto_len, - @Cast("int64_t") long init_timeout_in_ms, int retries, TF_Status status); + @Cast("int64_t") long init_timeout_in_ms, int retries, TF_Status status, + @Cast("bool") boolean clear_existing_contexts); // Checks whether a remote worker is alive or not. This will return true even if // the context doesn't exist on the remote worker. @@ -4759,6 +4768,434 @@ public static native void TFE_InitializeLocalOnlyContext(TFE_Context ctx, // #endif // TENSORFLOW_C_EAGER_C_API_EXPERIMENTAL_H_ +// Parsed from tensorflow/c/c_api_experimental.h + +/* Copyright 2018 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// #ifndef TENSORFLOW_C_C_API_EXPERIMENTAL_H_ +// #define TENSORFLOW_C_C_API_EXPERIMENTAL_H_ + +// #include +// #include + +// #include "tensorflow/c/c_api.h" +// #include "tensorflow/c/c_api_macros.h" +// #include "tensorflow/c/eager/c_api.h" + +// -------------------------------------------------------------------------- +// Experimental C API for TensorFlow. +// +// The API here is subject to changes in the future. +// -------------------------------------------------------------------------- + +// #ifdef __cplusplus +// #endif + +// When `enable` is true, set +// tensorflow.ConfigProto.OptimizerOptions.global_jit_level to ON_1, and also +// set XLA flag values to prepare for XLA compilation. Otherwise set +// global_jit_level to OFF. +// +// This and the next API are syntax sugar over TF_SetConfig(), and is used by +// clients that cannot read/write the tensorflow.ConfigProto proto. +// TODO: Migrate to TF_CreateConfig() below. +public static native void TF_EnableXLACompilation(TF_SessionOptions options, + @Cast("unsigned char") byte enable); + +// Set XLA's internal BuildXlaOpsPassFlags.tf_xla_enable_lazy_compilation to the +// value of 'enabled'. Also returns the original value of that flag. +// +// Use in tests to allow XLA to fallback to TF classic. This has global effect. +public static native @Cast("unsigned char") byte TF_SetXlaEnableLazyCompilation( + @Cast("unsigned char") byte enable); +public static native @Cast("unsigned char") byte TF_SetTfXlaCpuGlobalJit(@Cast("unsigned char") byte enable); + +// Sets XLA's auto jit mode according to the specified string, which is parsed +// as if passed in XLA_FLAGS. This has global effect. +public static native void TF_SetXlaAutoJitMode(@Cast("const char*") BytePointer mode); +public static native void TF_SetXlaAutoJitMode(String mode); + +// Returns whether the single GPU or general XLA auto jit optimizations are +// enabled through MarkForCompilationPassFlags. +public static native @Cast("unsigned char") byte TF_GetXlaAutoJitEnabled(); + +// Sets XLA's minimum cluster size. This has global effect. +public static native void TF_SetXlaMinClusterSize(int size); + +// Gets/Sets TF/XLA flag for whether(true) or not(false) to disable constant +// folding. This is for testing to ensure that XLA is being tested rather than +// Tensorflow's CPU implementation through constant folding. +public static native @Cast("unsigned char") byte TF_GetXlaConstantFoldingDisabled(); +public static native void TF_SetXlaConstantFoldingDisabled( + @Cast("unsigned char") byte should_enable); + +// Create a serialized tensorflow.ConfigProto proto, where: +// +// a) ConfigProto.optimizer_options.global_jit_level is set to ON_1 if +// `enable_xla_compilation` is non-zero, and OFF otherwise. +// b) ConfigProto.gpu_options.allow_growth is set to `gpu_memory_allow_growth`. +// c) ConfigProto.device_count is set to `num_cpu_devices`. +public static native TF_Buffer TF_CreateConfig( + @Cast("unsigned char") byte enable_xla_compilation, @Cast("unsigned char") byte gpu_memory_allow_growth, + @Cast("unsigned int") int num_cpu_devices); + +// Create a serialized tensorflow.RunOptions proto, where RunOptions.trace_level +// is set to FULL_TRACE if `enable_full_trace` is non-zero, and NO_TRACE +// otherwise. +public static native TF_Buffer TF_CreateRunOptions( + @Cast("unsigned char") byte enable_full_trace); + +// Returns the graph content in a human-readable format, with length set in +// `len`. The format is subject to change in the future. +// The returned string is heap-allocated, and caller should call free() on it. +public static native @Cast("const char*") BytePointer TF_GraphDebugString(TF_Graph graph, + @Cast("size_t*") SizeTPointer len); + +// Returns the function content in a human-readable format, with length set in +// `len`. The format is subject to change in the future. +// The returned string is heap-allocated, and caller should call free() on it. +// +// Do not return const char*, because some foreign language binding +// (e.g. swift) cannot then call free() on the returned pointer. +public static native @Cast("char*") BytePointer TF_FunctionDebugString(TF_Function func, + @Cast("size_t*") SizeTPointer len); + +// On success, dequeues a tensor from a TF-managed FifoQueue given by +// `tensor_id`, associated with `session`. There must be a graph node named +// "fifo_queue_dequeue_", to be executed by this API call. + +// Caller must call TF_DeleteTensor() over the returned tensor. If the queue is +// empty, this call is blocked. +// +// Tensors are enqueued via the corresponding TF enqueue op. +// TODO(hongm): Add support for `timeout_ms`. +public static native TF_Tensor TF_DequeueNamedTensor(TF_Session session, + int tensor_id, + TF_Status status); + +// On success, enqueues `tensor` into a TF-managed FifoQueue given by +// `tensor_id`, associated with `session`. There must be a graph node named +// "fifo_queue_enqueue_", to be executed by this API call. It reads +// from a placeholder node "arg_tensor_enqueue_". +// +// `tensor` is still owned by the caller. This call will be blocked if the queue +// has reached its capacity, and will be unblocked when the queued tensors again +// drop below the capacity due to dequeuing. +// +// Tensors are dequeued via the corresponding TF dequeue op. +// TODO(hongm): Add support for `timeout_ms`. +public static native void TF_EnqueueNamedTensor(TF_Session session, + int tensor_id, + TF_Tensor tensor, + TF_Status status); +// Create a serialized tensorflow.ServerDef proto. +public static native TF_Buffer TFE_GetServerDef(@Cast("const char*") BytePointer text_proto, TF_Status status); +public static native TF_Buffer TFE_GetServerDef(String text_proto, TF_Status status); + +public static native void TF_MakeInternalErrorStatus(TF_Status status, + @Cast("const char*") BytePointer errMsg); +public static native void TF_MakeInternalErrorStatus(TF_Status status, + String errMsg); +// Targeting ../TF_CheckpointReader.java + + +public static native TF_CheckpointReader TF_NewCheckpointReader( + @Cast("const char*") BytePointer filename, TF_Status status); +public static native TF_CheckpointReader TF_NewCheckpointReader( + String filename, TF_Status status); +public static native void TF_DeleteCheckpointReader( + TF_CheckpointReader reader); +public static native int TF_CheckpointReaderHasTensor( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name); +public static native int TF_CheckpointReaderHasTensor( + TF_CheckpointReader reader, String name); +// Get the variable name at the given index +public static native @Cast("const char*") BytePointer TF_CheckpointReaderGetVariable( + TF_CheckpointReader reader, int index); +// Get the number of variable in the checkpoint +public static native int TF_CheckpointReaderSize(TF_CheckpointReader reader); +// Get the DataType of a variable +public static native @Cast("TF_DataType") int TF_CheckpointReaderGetVariableDataType( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name); +public static native @Cast("TF_DataType") int TF_CheckpointReaderGetVariableDataType( + TF_CheckpointReader reader, String name); +// Read the shape of a variable and write to `dims` +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name, @Cast("int64_t*") LongPointer dims, int num_dims, + TF_Status status); +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, String name, @Cast("int64_t*") LongBuffer dims, int num_dims, + TF_Status status); +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name, @Cast("int64_t*") long[] dims, int num_dims, + TF_Status status); +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, String name, @Cast("int64_t*") LongPointer dims, int num_dims, + TF_Status status); +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name, @Cast("int64_t*") LongBuffer dims, int num_dims, + TF_Status status); +public static native void TF_CheckpointReaderGetVariableShape( + TF_CheckpointReader reader, String name, @Cast("int64_t*") long[] dims, int num_dims, + TF_Status status); +// Get the number of dimension of a variable +public static native int TF_CheckpointReaderGetVariableNumDims( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name); +public static native int TF_CheckpointReaderGetVariableNumDims( + TF_CheckpointReader reader, String name); +// Load the weight of a variable +public static native TF_Tensor TF_CheckpointReaderGetTensor( + TF_CheckpointReader reader, @Cast("const char*") BytePointer name, TF_Status status); +public static native TF_Tensor TF_CheckpointReaderGetTensor( + TF_CheckpointReader reader, String name, TF_Status status); +// Targeting ../TF_AttrBuilder.java + + +public static native TF_AttrBuilder TF_NewAttrBuilder(@Cast("const char*") BytePointer op_name); +public static native TF_AttrBuilder TF_NewAttrBuilder(String op_name); +public static native void TF_DeleteAttrBuilder(TF_AttrBuilder builder); +public static native void TF_AttrBuilderSetType(TF_AttrBuilder builder, + @Cast("const char*") BytePointer attr_name, + @Cast("TF_DataType") int value); +public static native void TF_AttrBuilderSetType(TF_AttrBuilder builder, + String attr_name, + @Cast("TF_DataType") int value); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + @Cast("const char*") BytePointer attr_name, + @Cast("const TF_DataType*") IntPointer values, + int num_values); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + String attr_name, + @Cast("const TF_DataType*") IntBuffer values, + int num_values); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + @Cast("const char*") BytePointer attr_name, + @Cast("const TF_DataType*") int[] values, + int num_values); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + String attr_name, + @Cast("const TF_DataType*") IntPointer values, + int num_values); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + @Cast("const char*") BytePointer attr_name, + @Cast("const TF_DataType*") IntBuffer values, + int num_values); +public static native void TF_AttrBuilderSetTypeList(TF_AttrBuilder builder, + String attr_name, + @Cast("const TF_DataType*") int[] values, + int num_values); + +// Checks the tensorflow::NodeDef built via the methods above to see if it can +// run on device_type. +public static native void TF_AttrBuilderCheckCanRunOnDevice( + TF_AttrBuilder builder, @Cast("const char*") BytePointer device_type, TF_Status status); +public static native void TF_AttrBuilderCheckCanRunOnDevice( + TF_AttrBuilder builder, String device_type, TF_Status status); + +// For argument number input_index, fetch the corresponding number_attr that +// needs to be updated with the argument length of the input list. +// Returns nullptr if there is any problem like op_name is not found, or the +// argument does not support this attribute type. +public static native @Cast("const char*") BytePointer TF_GetNumberAttrForOpListInput( + @Cast("const char*") BytePointer op_name, int input_index, TF_Status status); +public static native String TF_GetNumberAttrForOpListInput( + String op_name, int input_index, TF_Status status); + +// Returns 1 if the op is stateful, 0 otherwise. The return value is undefined +// if the status is not ok. +public static native int TF_OpIsStateful(@Cast("const char*") BytePointer op_type, + TF_Status status); +public static native int TF_OpIsStateful(String op_type, + TF_Status status); + +// Platform specific initialization routine. Very few platforms actually require +// this to be called. +public static native void TF_InitMain(@Cast("const char*") BytePointer usage, IntPointer argc, @Cast("char***") @ByPtrPtr PointerPointer argv); +public static native void TF_InitMain(String usage, IntBuffer argc, @Cast("char***") @ByPtrPtr PointerPointer argv); +public static native void TF_InitMain(@Cast("const char*") BytePointer usage, int[] argc, @Cast("char***") @ByPtrPtr PointerPointer argv); +public static native void TF_InitMain(String usage, IntPointer argc, @Cast("char***") @ByPtrPtr PointerPointer argv); +public static native void TF_InitMain(@Cast("const char*") BytePointer usage, IntBuffer argc, @Cast("char***") @ByPtrPtr PointerPointer argv); +public static native void TF_InitMain(String usage, int[] argc, @Cast("char***") @ByPtrPtr PointerPointer argv); + +// Platform-specific implementation to return an unused port. (This should used +// in tests only.) +public static native int TF_PickUnusedPortOrDie(); + +// Fast path method that makes constructing a single scalar tensor require less +// overhead and copies. +public static native TFE_TensorHandle TFE_NewTensorHandleFromScalar( + @Cast("TF_DataType") int data_type, Pointer data, @Cast("size_t") long len, TF_Status status); + +// Specify the server_def that enables collective ops. +// This is different to the above function in that it doesn't create remote +// contexts, and remotely executing ops is not possible. It just enables +// communication for collective ops. +public static native void TFE_EnableCollectiveOps(TFE_Context ctx, + @Const Pointer proto, + @Cast("size_t") long proto_len, + TF_Status status); + +// Aborts all ongoing collectives with the specified status. After abortion, +// subsequent collectives will error with this status immediately. To reset the +// collectives, create a new EagerContext. +// +// This is intended to be used when a peer failure is detected. +public static native void TFE_AbortCollectiveOps(TFE_Context ctx, + TF_Status status); + +// Checks the health of collective ops peers. Explicit health check is needed in +// multi worker collective ops to detect failures in the cluster. If a peer is +// down, collective ops may hang. +public static native void TFE_CollectiveOpsCheckPeerHealth( + TFE_Context ctx, @Cast("const char*") BytePointer task, @Cast("int64_t") long timeout_in_ms, + TF_Status status); +public static native void TFE_CollectiveOpsCheckPeerHealth( + TFE_Context ctx, String task, @Cast("int64_t") long timeout_in_ms, + TF_Status status); +// Targeting ../TF_ShapeAndType.java + + +// Targeting ../TF_ShapeAndTypeList.java + + + +// API for manipulating TF_ShapeAndTypeList objects. +// +public static native TF_ShapeAndTypeList TF_NewShapeAndTypeList( + int num_shapes); +public static native void TF_ShapeAndTypeListSetShape( + TF_ShapeAndTypeList shape_list, int index, @Cast("const int64_t*") LongPointer dims, + int num_dims); +public static native void TF_ShapeAndTypeListSetShape( + TF_ShapeAndTypeList shape_list, int index, @Cast("const int64_t*") LongBuffer dims, + int num_dims); +public static native void TF_ShapeAndTypeListSetShape( + TF_ShapeAndTypeList shape_list, int index, @Cast("const int64_t*") long[] dims, + int num_dims); +public static native void TF_ShapeAndTypeListSetUnknownShape( + TF_ShapeAndTypeList shape_list, int index); +public static native void TF_ShapeAndTypeListSetDtype( + TF_ShapeAndTypeList shape_list, int index, @Cast("TF_DataType") int dtype); +public static native void TF_DeleteShapeAndTypeList( + TF_ShapeAndTypeList shape_list); +public static native void TF_DeleteShapeAndTypeListArray( + @Cast("TF_ShapeAndTypeList**") PointerPointer shape_list_array, int num_items); +public static native void TF_DeleteShapeAndTypeListArray( + @ByPtrPtr TF_ShapeAndTypeList shape_list_array, int num_items); + +// Infer shapes for the given `op`. The arguments mimic the arguments of the +// `shape_inference::InferenceContext` constructor. Note the following: +// - The inputs of the `op` are not used for shape inference. So, it is +// OK to not have the inputs properly set in `op`. See `input_tensors` +// if you want shape inference to consider the input tensors of the +// op for shape inference. +// - The types need not be set in `input_shapes` as it is not used. +// - The number of `input_tensors` should be the same as the number of items +// in `input_shapes`. +// +// The results are returned in `output_shapes` and +// `output_resource_shapes_and_types`. The caller is responsible for freeing the +// memory in these buffers by calling `TF_DeleteShapeAndTypeList`. +public static native void TFE_InferShapes( + TFE_Op op, TF_ShapeAndTypeList input_shapes, @Cast("TF_Tensor**") PointerPointer input_tensors, + TF_ShapeAndTypeList input_tensor_as_shapes, + @Cast("TF_ShapeAndTypeList**") PointerPointer input_resource_shapes_and_types, + @Cast("TF_ShapeAndTypeList**") PointerPointer output_shapes, + @Cast("TF_ShapeAndTypeList***") @ByPtrPtr PointerPointer output_resource_shapes_and_types, TF_Status status); +public static native void TFE_InferShapes( + TFE_Op op, TF_ShapeAndTypeList input_shapes, @ByPtrPtr TF_Tensor input_tensors, + TF_ShapeAndTypeList input_tensor_as_shapes, + @ByPtrPtr TF_ShapeAndTypeList input_resource_shapes_and_types, + @ByPtrPtr TF_ShapeAndTypeList output_shapes, + @Cast("TF_ShapeAndTypeList***") @ByPtrPtr PointerPointer output_resource_shapes_and_types, TF_Status status); + +public static native void TF_ImportGraphDefOptionsSetValidateColocationConstraints( + TF_ImportGraphDefOptions opts, @Cast("unsigned char") byte enable); + +// Load the library specified by library_filename and register the pluggable +// device and related kernels present in that library. This function is not +// supported on embedded on mobile and embedded platforms and will fail if +// called. +// +// Pass "library_filename" to a platform-specific mechanism for dynamically +// loading a library. The rules for determining the exact location of the +// library are platform-specific and are not documented here. +// +// On success, returns the newly created library handle and places OK in status. +// The caller owns the library handle. +// +// On failure, returns nullptr and places an error status in status. +public static native TF_Library TF_LoadPluggableDeviceLibrary( + @Cast("const char*") BytePointer library_filename, TF_Status status); +public static native TF_Library TF_LoadPluggableDeviceLibrary( + String library_filename, TF_Status status); + +// Frees the memory associated with the library handle. +// Does NOT unload the library. +public static native void TF_DeletePluggableDeviceLibraryHandle( + TF_Library lib_handle); + +// Removes `func_name` from `g`. If `func_name` is not in `g`, an error will be +// returned. +public static native void TF_GraphRemoveFunction(TF_Graph g, + @Cast("const char*") BytePointer func_name, + TF_Status status); +public static native void TF_GraphRemoveFunction(TF_Graph g, + String func_name, + TF_Status status); + +// #ifdef __cplusplus /* end extern "C" */ +// #endif + +// #endif // TENSORFLOW_C_C_API_EXPERIMENTAL_H_ + + +// Parsed from tfe_serverdef_stub.h + +/* Copyright 2025 The TensorFlow Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +provided under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. +==============================================================================*/ + +// #ifndef TENSORFLOW_JAVA_TFE_SERVERDEF_STUB_H_ +// #define TENSORFLOW_JAVA_TFE_SERVERDEF_STUB_H_ + +// #ifdef _WIN32 + +// #include "tensorflow/c/c_api.h" +// #include "tensorflow/c/c_api_experimental.h" + +// Include the implementation so that a local definition is always available +// on Windows. +// #include "tfe_serverdef_stub.cc" + +// #endif // _WIN32 + +// #endif // TENSORFLOW_JAVA_TFE_SERVERDEF_STUB_H_ + // Parsed from tfj_graph.h /* Copyright 2024 The TensorFlow Authors. All Rights Reserved. diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfo.java index e71192c47b2..50aa7d93009 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfo.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfoOrBuilder.java index ef9f13504d3..c35a7c6a745 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/AvailableDeviceInfoOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntries.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntries.java index b3ed52d11c0..73be037bfe8 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntries.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntries.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntriesOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntriesOrBuilder.java index b99b30bf045..de029d1d399 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntriesOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntriesOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntry.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntry.java index 0c470285827..efe111640d5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntry.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntry.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntryOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntryOrBuilder.java index 476aae9ca10..fba00ccb7f1 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntryOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BenchmarkEntryOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BfcMemoryMap.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BfcMemoryMap.java index fad0c98b837..e894298881d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BfcMemoryMap.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BfcMemoryMap.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/bfc_memory_map.proto +// source: xla/tsl/protobuf/bfc_memory_map.proto package org.tensorflow.proto; @@ -5091,28 +5091,28 @@ public org.tensorflow.proto.BfcMemoryMap.MemoryDump getDefaultInstanceForType() descriptor; static { java.lang.String[] descriptorData = { - "\n!tsl/protobuf/bfc_memory_map.proto\022\nten" + - "sorflow\"\222\001\n\021MemAllocatorStats\022\022\n\nnum_all" + - "ocs\030\001 \001(\003\022\024\n\014bytes_in_use\030\002 \001(\003\022\031\n\021peak_" + - "bytes_in_use\030\003 \001(\003\022\032\n\022largest_alloc_size" + - "\030\004 \001(\003\022\034\n\024fragmentation_metric\030\005 \001(\002\"\256\001\n" + - "\010MemChunk\022\017\n\007address\030\001 \001(\004\022\014\n\004size\030\002 \001(\003" + - "\022\026\n\016requested_size\030\003 \001(\003\022\013\n\003bin\030\004 \001(\005\022\017\n" + - "\007op_name\030\005 \001(\t\022\026\n\016freed_at_count\030\006 \001(\004\022\024" + - "\n\014action_count\030\007 \001(\004\022\016\n\006in_use\030\010 \001(\010\022\017\n\007" + - "step_id\030\t \001(\004\"\213\001\n\nBinSummary\022\013\n\003bin\030\001 \001(" + - "\005\022\032\n\022total_bytes_in_use\030\002 \001(\003\022\032\n\022total_b" + - "ytes_in_bin\030\003 \001(\003\022\033\n\023total_chunks_in_use" + - "\030\004 \001(\003\022\033\n\023total_chunks_in_bin\030\005 \001(\003\".\n\010S" + - "napShot\022\024\n\014action_count\030\001 \001(\004\022\014\n\004size\030\002 " + - "\001(\003\"\315\001\n\nMemoryDump\022\026\n\016allocator_name\030\001 \001" + - "(\t\022+\n\013bin_summary\030\002 \003(\0132\026.tensorflow.Bin" + - "Summary\022#\n\005chunk\030\003 \003(\0132\024.tensorflow.MemC" + - "hunk\022\'\n\tsnap_shot\030\004 \003(\0132\024.tensorflow.Sna" + - "pShot\022,\n\005stats\030\005 \001(\0132\035.tensorflow.MemAll" + - "ocatorStatsBV\n\024org.tensorflow.protoZ>git" + - "hub.com/google/tsl/tsl/go/protobuf/for_c" + - "ore_protos_go_protob\006proto3" + "\n%xla/tsl/protobuf/bfc_memory_map.proto\022" + + "\ntensorflow\"\222\001\n\021MemAllocatorStats\022\022\n\nnum" + + "_allocs\030\001 \001(\003\022\024\n\014bytes_in_use\030\002 \001(\003\022\031\n\021p" + + "eak_bytes_in_use\030\003 \001(\003\022\032\n\022largest_alloc_" + + "size\030\004 \001(\003\022\034\n\024fragmentation_metric\030\005 \001(\002" + + "\"\256\001\n\010MemChunk\022\017\n\007address\030\001 \001(\004\022\014\n\004size\030\002" + + " \001(\003\022\026\n\016requested_size\030\003 \001(\003\022\013\n\003bin\030\004 \001(" + + "\005\022\017\n\007op_name\030\005 \001(\t\022\026\n\016freed_at_count\030\006 \001" + + "(\004\022\024\n\014action_count\030\007 \001(\004\022\016\n\006in_use\030\010 \001(\010" + + "\022\017\n\007step_id\030\t \001(\004\"\213\001\n\nBinSummary\022\013\n\003bin\030" + + "\001 \001(\005\022\032\n\022total_bytes_in_use\030\002 \001(\003\022\032\n\022tot" + + "al_bytes_in_bin\030\003 \001(\003\022\033\n\023total_chunks_in" + + "_use\030\004 \001(\003\022\033\n\023total_chunks_in_bin\030\005 \001(\003\"" + + ".\n\010SnapShot\022\024\n\014action_count\030\001 \001(\004\022\014\n\004siz" + + "e\030\002 \001(\003\"\315\001\n\nMemoryDump\022\026\n\016allocator_name" + + "\030\001 \001(\t\022+\n\013bin_summary\030\002 \003(\0132\026.tensorflow" + + ".BinSummary\022#\n\005chunk\030\003 \003(\0132\024.tensorflow." + + "MemChunk\022\'\n\tsnap_shot\030\004 \003(\0132\024.tensorflow" + + ".SnapShot\022,\n\005stats\030\005 \001(\0132\035.tensorflow.Me" + + "mAllocatorStatsBV\n\024org.tensorflow.protoZ" + + ">github.com/google/tsl/tsl/go/protobuf/f" + + "or_core_protos_go_protob\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfiguration.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfiguration.java index 8e3f0c9e7b5..19b464ffb52 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfiguration.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfiguration.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfigurationOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfigurationOrBuilder.java index 0f4bc0c0740..112534dc95a 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfigurationOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/BuildConfigurationOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfo.java index 906c5e01a83..3816e55e459 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfo.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfoOrBuilder.java index de66bb23d57..9ede760853d 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CPUInfoOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitId.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitId.java index 3fdd1c804b6..9f6ad5f08bc 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitId.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitId.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitIdOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitIdOrBuilder.java index 1b124825e66..cb78f3bd9d2 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitIdOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CommitIdOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProto.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProto.java index 04d15e4a308..5dcca1ed5f7 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProto.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProto.java @@ -354,6 +354,17 @@ public interface ExperimentalOrBuilder extends */ boolean getEnableMultiHost(); + /** + *

    +     * If true, use ifrt as the backend for TFRT. This is only used when
    +     * `use_tfrt` is true.
    +     * 
    + * + * bool tfrt_use_ifrt = 32; + * @return The tfrtUseIfrt. + */ + boolean getTfrtUseIfrt(); + /** *
          * Port for the Pathways server. Ignored if enable_multi_host=false.
    @@ -1101,6 +1112,22 @@ public boolean getEnableMultiHost() {
           return enableMultiHost_;
         }
     
    +    public static final int TFRT_USE_IFRT_FIELD_NUMBER = 32;
    +    private boolean tfrtUseIfrt_;
    +    /**
    +     * 
    +     * If true, use ifrt as the backend for TFRT. This is only used when
    +     * `use_tfrt` is true.
    +     * 
    + * + * bool tfrt_use_ifrt = 32; + * @return The tfrtUseIfrt. + */ + @java.lang.Override + public boolean getTfrtUseIfrt() { + return tfrtUseIfrt_; + } + public static final int BACKEND_SERVER_PORT_FIELD_NUMBER = 28; private int backendServerPort_; /** @@ -1369,6 +1396,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (streamMergeThreshold_ != 0) { output.writeInt32(31, streamMergeThreshold_); } + if (tfrtUseIfrt_ != false) { + output.writeBool(32, tfrtUseIfrt_); + } getUnknownFields().writeTo(output); } @@ -1484,6 +1514,10 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeInt32Size(31, streamMergeThreshold_); } + if (tfrtUseIfrt_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(32, tfrtUseIfrt_); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -1537,6 +1571,8 @@ public boolean equals(final java.lang.Object obj) { != other.getUseTfrt()) return false; if (getEnableMultiHost() != other.getEnableMultiHost()) return false; + if (getTfrtUseIfrt() + != other.getTfrtUseIfrt()) return false; if (getBackendServerPort() != other.getBackendServerPort()) return false; if (getTargetTpu() @@ -1620,6 +1656,9 @@ public int hashCode() { hash = (37 * hash) + ENABLE_MULTI_HOST_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getEnableMultiHost()); + hash = (37 * hash) + TFRT_USE_IFRT_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getTfrtUseIfrt()); hash = (37 * hash) + BACKEND_SERVER_PORT_FIELD_NUMBER; hash = (53 * hash) + getBackendServerPort(); hash = (37 * hash) + TARGET_TPU_FIELD_NUMBER; @@ -1820,6 +1859,8 @@ public Builder clear() { enableMultiHost_ = false; + tfrtUseIfrt_ = false; + backendServerPort_ = 0; targetTpu_ = false; @@ -1890,6 +1931,7 @@ public org.tensorflow.proto.ConfigProto.Experimental buildPartial() { result.xlaFusionAutotunerThresh_ = xlaFusionAutotunerThresh_; result.useTfrt_ = useTfrt_; result.enableMultiHost_ = enableMultiHost_; + result.tfrtUseIfrt_ = tfrtUseIfrt_; result.backendServerPort_ = backendServerPort_; result.targetTpu_ = targetTpu_; result.targetGpu_ = targetGpu_; @@ -2007,6 +2049,9 @@ public Builder mergeFrom(org.tensorflow.proto.ConfigProto.Experimental other) { if (other.getEnableMultiHost() != false) { setEnableMultiHost(other.getEnableMultiHost()); } + if (other.getTfrtUseIfrt() != false) { + setTfrtUseIfrt(other.getTfrtUseIfrt()); + } if (other.getBackendServerPort() != 0) { setBackendServerPort(other.getBackendServerPort()); } @@ -2199,6 +2244,11 @@ public Builder mergeFrom( break; } // case 248 + case 256: { + tfrtUseIfrt_ = input.readBool(); + + break; + } // case 256 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -3423,6 +3473,52 @@ public Builder clearEnableMultiHost() { return this; } + private boolean tfrtUseIfrt_ ; + /** + *
    +       * If true, use ifrt as the backend for TFRT. This is only used when
    +       * `use_tfrt` is true.
    +       * 
    + * + * bool tfrt_use_ifrt = 32; + * @return The tfrtUseIfrt. + */ + @java.lang.Override + public boolean getTfrtUseIfrt() { + return tfrtUseIfrt_; + } + /** + *
    +       * If true, use ifrt as the backend for TFRT. This is only used when
    +       * `use_tfrt` is true.
    +       * 
    + * + * bool tfrt_use_ifrt = 32; + * @param value The tfrtUseIfrt to set. + * @return This builder for chaining. + */ + public Builder setTfrtUseIfrt(boolean value) { + + tfrtUseIfrt_ = value; + onChanged(); + return this; + } + /** + *
    +       * If true, use ifrt as the backend for TFRT. This is only used when
    +       * `use_tfrt` is true.
    +       * 
    + * + * bool tfrt_use_ifrt = 32; + * @return This builder for chaining. + */ + public Builder clearTfrtUseIfrt() { + + tfrtUseIfrt_ = false; + onChanged(); + return this; + } + private int backendServerPort_ ; /** *
    @@ -4461,6 +4557,44 @@ public org.tensorflow.proto.GPUOptionsOrBuilder getGpuOptionsOrBuilder() {
         return getGpuOptions();
       }
     
    +  public static final int PLUGGABLE_DEVICE_OPTIONS_FIELD_NUMBER = 18;
    +  private org.tensorflow.proto.GPUOptions pluggableDeviceOptions_;
    +  /**
    +   * 
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return Whether the pluggableDeviceOptions field is set. + */ + @java.lang.Override + public boolean hasPluggableDeviceOptions() { + return pluggableDeviceOptions_ != null; + } + /** + *
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return The pluggableDeviceOptions. + */ + @java.lang.Override + public org.tensorflow.proto.GPUOptions getPluggableDeviceOptions() { + return pluggableDeviceOptions_ == null ? org.tensorflow.proto.GPUOptions.getDefaultInstance() : pluggableDeviceOptions_; + } + /** + *
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + @java.lang.Override + public org.tensorflow.proto.GPUOptionsOrBuilder getPluggableDeviceOptionsOrBuilder() { + return getPluggableDeviceOptions(); + } + public static final int ALLOW_SOFT_PLACEMENT_FIELD_NUMBER = 7; private boolean allowSoftPlacement_; /** @@ -4757,6 +4891,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (shareClusterDevicesInSession_ != false) { output.writeBool(17, shareClusterDevicesInSession_); } + if (pluggableDeviceOptions_ != null) { + output.writeMessage(18, getPluggableDeviceOptions()); + } getUnknownFields().writeTo(output); } @@ -4844,6 +4981,10 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeBoolSize(17, shareClusterDevicesInSession_); } + if (pluggableDeviceOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(18, getPluggableDeviceOptions()); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -4878,6 +5019,11 @@ public boolean equals(final java.lang.Object obj) { if (!getGpuOptions() .equals(other.getGpuOptions())) return false; } + if (hasPluggableDeviceOptions() != other.hasPluggableDeviceOptions()) return false; + if (hasPluggableDeviceOptions()) { + if (!getPluggableDeviceOptions() + .equals(other.getPluggableDeviceOptions())) return false; + } if (getAllowSoftPlacement() != other.getAllowSoftPlacement()) return false; if (getLogDevicePlacement() @@ -4944,6 +5090,10 @@ public int hashCode() { hash = (37 * hash) + GPU_OPTIONS_FIELD_NUMBER; hash = (53 * hash) + getGpuOptions().hashCode(); } + if (hasPluggableDeviceOptions()) { + hash = (37 * hash) + PLUGGABLE_DEVICE_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getPluggableDeviceOptions().hashCode(); + } hash = (37 * hash) + ALLOW_SOFT_PLACEMENT_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getAllowSoftPlacement()); @@ -5154,6 +5304,12 @@ public Builder clear() { gpuOptions_ = null; gpuOptionsBuilder_ = null; } + if (pluggableDeviceOptionsBuilder_ == null) { + pluggableDeviceOptions_ = null; + } else { + pluggableDeviceOptions_ = null; + pluggableDeviceOptionsBuilder_ = null; + } allowSoftPlacement_ = false; logDevicePlacement_ = false; @@ -5240,6 +5396,11 @@ public org.tensorflow.proto.ConfigProto buildPartial() { } else { result.gpuOptions_ = gpuOptionsBuilder_.build(); } + if (pluggableDeviceOptionsBuilder_ == null) { + result.pluggableDeviceOptions_ = pluggableDeviceOptions_; + } else { + result.pluggableDeviceOptions_ = pluggableDeviceOptionsBuilder_.build(); + } result.allowSoftPlacement_ = allowSoftPlacement_; result.logDevicePlacement_ = logDevicePlacement_; if (graphOptionsBuilder_ == null) { @@ -5366,6 +5527,9 @@ public Builder mergeFrom(org.tensorflow.proto.ConfigProto other) { if (other.hasGpuOptions()) { mergeGpuOptions(other.getGpuOptions()); } + if (other.hasPluggableDeviceOptions()) { + mergePluggableDeviceOptions(other.getPluggableDeviceOptions()); + } if (other.getAllowSoftPlacement() != false) { setAllowSoftPlacement(other.getAllowSoftPlacement()); } @@ -5526,6 +5690,13 @@ public Builder mergeFrom( break; } // case 136 + case 146: { + input.readMessage( + getPluggableDeviceOptionsFieldBuilder().getBuilder(), + extensionRegistry); + + break; + } // case 146 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -6886,6 +7057,161 @@ public org.tensorflow.proto.GPUOptionsOrBuilder getGpuOptionsOrBuilder() { return gpuOptionsBuilder_; } + private org.tensorflow.proto.GPUOptions pluggableDeviceOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions, org.tensorflow.proto.GPUOptions.Builder, org.tensorflow.proto.GPUOptionsOrBuilder> pluggableDeviceOptionsBuilder_; + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return Whether the pluggableDeviceOptions field is set. + */ + public boolean hasPluggableDeviceOptions() { + return pluggableDeviceOptionsBuilder_ != null || pluggableDeviceOptions_ != null; + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return The pluggableDeviceOptions. + */ + public org.tensorflow.proto.GPUOptions getPluggableDeviceOptions() { + if (pluggableDeviceOptionsBuilder_ == null) { + return pluggableDeviceOptions_ == null ? org.tensorflow.proto.GPUOptions.getDefaultInstance() : pluggableDeviceOptions_; + } else { + return pluggableDeviceOptionsBuilder_.getMessage(); + } + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public Builder setPluggableDeviceOptions(org.tensorflow.proto.GPUOptions value) { + if (pluggableDeviceOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + pluggableDeviceOptions_ = value; + onChanged(); + } else { + pluggableDeviceOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public Builder setPluggableDeviceOptions( + org.tensorflow.proto.GPUOptions.Builder builderForValue) { + if (pluggableDeviceOptionsBuilder_ == null) { + pluggableDeviceOptions_ = builderForValue.build(); + onChanged(); + } else { + pluggableDeviceOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public Builder mergePluggableDeviceOptions(org.tensorflow.proto.GPUOptions value) { + if (pluggableDeviceOptionsBuilder_ == null) { + if (pluggableDeviceOptions_ != null) { + pluggableDeviceOptions_ = + org.tensorflow.proto.GPUOptions.newBuilder(pluggableDeviceOptions_).mergeFrom(value).buildPartial(); + } else { + pluggableDeviceOptions_ = value; + } + onChanged(); + } else { + pluggableDeviceOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public Builder clearPluggableDeviceOptions() { + if (pluggableDeviceOptionsBuilder_ == null) { + pluggableDeviceOptions_ = null; + onChanged(); + } else { + pluggableDeviceOptions_ = null; + pluggableDeviceOptionsBuilder_ = null; + } + + return this; + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public org.tensorflow.proto.GPUOptions.Builder getPluggableDeviceOptionsBuilder() { + + onChanged(); + return getPluggableDeviceOptionsFieldBuilder().getBuilder(); + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + public org.tensorflow.proto.GPUOptionsOrBuilder getPluggableDeviceOptionsOrBuilder() { + if (pluggableDeviceOptionsBuilder_ != null) { + return pluggableDeviceOptionsBuilder_.getMessageOrBuilder(); + } else { + return pluggableDeviceOptions_ == null ? + org.tensorflow.proto.GPUOptions.getDefaultInstance() : pluggableDeviceOptions_; + } + } + /** + *
    +     * Options that apply to pluggable devices.
    +     * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions, org.tensorflow.proto.GPUOptions.Builder, org.tensorflow.proto.GPUOptionsOrBuilder> + getPluggableDeviceOptionsFieldBuilder() { + if (pluggableDeviceOptionsBuilder_ == null) { + pluggableDeviceOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions, org.tensorflow.proto.GPUOptions.Builder, org.tensorflow.proto.GPUOptionsOrBuilder>( + getPluggableDeviceOptions(), + getParentForChildren(), + isClean()); + pluggableDeviceOptions_ = null; + } + return pluggableDeviceOptionsBuilder_; + } + private boolean allowSoftPlacement_ ; /** *
    diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtoOrBuilder.java
    index d158b44e08f..29a052555c6 100644
    --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtoOrBuilder.java
    +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtoOrBuilder.java
    @@ -341,6 +341,33 @@ org.tensorflow.proto.ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolO
        */
       org.tensorflow.proto.GPUOptionsOrBuilder getGpuOptionsOrBuilder();
     
    +  /**
    +   * 
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return Whether the pluggableDeviceOptions field is set. + */ + boolean hasPluggableDeviceOptions(); + /** + *
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + * @return The pluggableDeviceOptions. + */ + org.tensorflow.proto.GPUOptions getPluggableDeviceOptions(); + /** + *
    +   * Options that apply to pluggable devices.
    +   * 
    + * + * .tensorflow.GPUOptions pluggable_device_options = 18; + */ + org.tensorflow.proto.GPUOptionsOrBuilder getPluggableDeviceOptionsOrBuilder(); + /** *
        * Whether soft placement is allowed. If allow_soft_placement is true,
    diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtos.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtos.java
    index bca6f96f8b0..ee8eb70f710 100644
    --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtos.java
    +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ConfigProtos.java
    @@ -29,6 +29,11 @@ public static void registerAllExtensions(
       static final 
         com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
           internal_static_tensorflow_GPUOptions_Experimental_VirtualDevices_fieldAccessorTable;
    +  static final com.google.protobuf.Descriptors.Descriptor
    +    internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor;
    +  static final 
    +    com.google.protobuf.GeneratedMessageV3.FieldAccessorTable
    +      internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_fieldAccessorTable;
       static final com.google.protobuf.Descriptors.Descriptor
         internal_static_tensorflow_OptimizerOptions_descriptor;
       static final 
    @@ -127,7 +132,7 @@ public static void registerAllExtensions(
           "obuf/debug.proto\032.tensorflow/core/protob" +
           "uf/rewriter_config.proto\032*tensorflow/cor" +
           "e/protobuf/rpc_options.proto\032&tsl/protob" +
    -      "uf/coordination_config.proto\"\352\007\n\nGPUOpti" +
    +      "uf/coordination_config.proto\"\211\n\n\nGPUOpti" +
           "ons\022\'\n\037per_process_gpu_memory_fraction\030\001" +
           " \001(\001\022\024\n\014allow_growth\030\004 \001(\010\022\026\n\016allocator_" +
           "type\030\002 \001(\t\022\037\n\027deferred_deletion_bytes\030\003 " +
    @@ -135,7 +140,7 @@ public static void registerAllExtensions(
           "ing_active_delay_usecs\030\006 \001(\005\022$\n\034polling_" +
           "inactive_delay_msecs\030\007 \001(\005\022\034\n\024force_gpu_" +
           "compatible\030\010 \001(\010\0229\n\014experimental\030\t \001(\0132#" +
    -      ".tensorflow.GPUOptions.Experimental\032\243\005\n\014" +
    +      ".tensorflow.GPUOptions.Experimental\032\302\007\n\014" +
           "Experimental\022K\n\017virtual_devices\030\001 \003(\01322." +
           "tensorflow.GPUOptions.Experimental.Virtu" +
           "alDevices\022#\n\033num_virtual_devices_per_gpu" +
    @@ -150,126 +155,135 @@ public static void registerAllExtensions(
           "llow_retry_on_allocation_failure\030\014 \001(\010\022 " +
           "\n\030gpu_host_mem_limit_in_mb\030\r \001(\002\022$\n\034gpu_" +
           "host_mem_disallow_growth\030\016 \001(\010\022$\n\034gpu_sy" +
    -      "stem_memory_size_in_mb\030\020 \001(\005\032S\n\016VirtualD" +
    -      "evices\022\027\n\017memory_limit_mb\030\001 \003(\002\022\020\n\010prior" +
    -      "ity\030\002 \003(\005\022\026\n\016device_ordinal\030\003 \003(\005\"\235\003\n\020Op" +
    -      "timizerOptions\022+\n#do_common_subexpressio" +
    -      "n_elimination\030\001 \001(\010\022\033\n\023do_constant_foldi" +
    -      "ng\030\002 \001(\010\022$\n\034max_folded_constant_in_bytes" +
    -      "\030\006 \001(\003\022\034\n\024do_function_inlining\030\004 \001(\010\0225\n\t" +
    -      "opt_level\030\003 \001(\0162\".tensorflow.OptimizerOp" +
    -      "tions.Level\022E\n\020global_jit_level\030\005 \001(\0162+." +
    -      "tensorflow.OptimizerOptions.GlobalJitLev" +
    -      "el\022\026\n\016cpu_global_jit\030\007 \001(\010\" \n\005Level\022\006\n\002L" +
    -      "1\020\000\022\017\n\002L0\020\377\377\377\377\377\377\377\377\377\001\"C\n\016GlobalJitLevel\022\013" +
    -      "\n\007DEFAULT\020\000\022\020\n\003OFF\020\377\377\377\377\377\377\377\377\377\001\022\010\n\004ON_1\020\001\022" +
    -      "\010\n\004ON_2\020\002\"\356\002\n\014GraphOptions\022\036\n\026enable_rec" +
    -      "v_scheduling\030\002 \001(\010\0227\n\021optimizer_options\030" +
    -      "\003 \001(\0132\034.tensorflow.OptimizerOptions\022\030\n\020b" +
    -      "uild_cost_model\030\004 \001(\003\022\036\n\026build_cost_mode" +
    -      "l_after\030\t \001(\003\022\024\n\014infer_shapes\030\005 \001(\010\022\032\n\022p" +
    -      "lace_pruned_graph\030\006 \001(\010\022 \n\030enable_bfloat" +
    -      "16_sendrecv\030\007 \001(\010\022\025\n\rtimeline_step\030\010 \001(\005" +
    -      "\0223\n\017rewrite_options\030\n \001(\0132\032.tensorflow.R" +
    -      "ewriterConfigJ\004\010\001\020\002R%skip_common_subexpr" +
    -      "ession_elimination\"A\n\025ThreadPoolOptionPr" +
    -      "oto\022\023\n\013num_threads\030\001 \001(\005\022\023\n\013global_name\030" +
    -      "\002 \001(\t\"0\n\017SessionMetadata\022\014\n\004name\030\001 \001(\t\022\017" +
    -      "\n\007version\030\002 \001(\003\"\225\020\n\013ConfigProto\022>\n\014devic" +
    -      "e_count\030\001 \003(\0132(.tensorflow.ConfigProto.D" +
    -      "eviceCountEntry\022$\n\034intra_op_parallelism_" +
    -      "threads\030\002 \001(\005\022$\n\034inter_op_parallelism_th" +
    -      "reads\030\005 \001(\005\022\037\n\027use_per_session_threads\030\t" +
    -      " \001(\010\022G\n\034session_inter_op_thread_pool\030\014 \003" +
    -      "(\0132!.tensorflow.ThreadPoolOptionProto\022\030\n" +
    -      "\020placement_period\030\003 \001(\005\022\026\n\016device_filter" +
    -      "s\030\004 \003(\t\022+\n\013gpu_options\030\006 \001(\0132\026.tensorflo" +
    -      "w.GPUOptions\022\034\n\024allow_soft_placement\030\007 \001" +
    -      "(\010\022\034\n\024log_device_placement\030\010 \001(\010\022/\n\rgrap" +
    -      "h_options\030\n \001(\0132\030.tensorflow.GraphOption" +
    -      "s\022\037\n\027operation_timeout_in_ms\030\013 \001(\003\022+\n\013rp" +
    -      "c_options\030\r \001(\0132\026.tensorflow.RPCOptions\022" +
    -      "+\n\013cluster_def\030\016 \001(\0132\026.tensorflow.Cluste" +
    -      "rDef\022\035\n\025isolate_session_state\030\017 \001(\010\022(\n s" +
    -      "hare_cluster_devices_in_session\030\021 \001(\010\022:\n" +
    -      "\014experimental\030\020 \001(\0132$.tensorflow.ConfigP" +
    -      "roto.Experimental\0322\n\020DeviceCountEntry\022\013\n" +
    -      "\003key\030\001 \001(\t\022\r\n\005value\030\002 \001(\005:\0028\001\032\217\n\n\014Experi" +
    -      "mental\022\037\n\027collective_group_leader\030\001 \001(\t\022" +
    -      "\025\n\rexecutor_type\030\003 \001(\t\022\032\n\022recv_buf_max_c" +
    -      "hunk\030\004 \001(\005\022\031\n\021use_numa_affinity\030\005 \001(\010\0225\n" +
    -      "-collective_deterministic_sequential_exe" +
    -      "cution\030\006 \001(\010\022\027\n\017collective_nccl\030\007 \001(\010\0226\n" +
    -      ".share_session_state_in_clusterspec_prop" +
    -      "agation\030\010 \001(\010\022\037\n\027disable_thread_spinning" +
    -      "\030\t \001(\010\022(\n share_cluster_devices_in_sessi" +
    -      "on\030\n \001(\010\0225\n\020session_metadata\030\013 \001(\0132\033.ten" +
    -      "sorflow.SessionMetadata\022!\n\031optimize_for_" +
    -      "static_graph\030\014 \001(\010\022\032\n\022enable_mlir_bridge" +
    -      "\030\r \001(\010\022S\n\023mlir_bridge_rollout\030\021 \001(\01626.te" +
    -      "nsorflow.ConfigProto.Experimental.MlirBr" +
    -      "idgeRollout\022&\n\036enable_mlir_graph_optimiz" +
    -      "ation\030\020 \001(\010\022\'\n\037disable_output_partition_" +
    -      "graphs\030\016 \001(\010\022#\n\033xla_fusion_autotuner_thr" +
    -      "esh\030\017 \001(\003\022\020\n\010use_tfrt\030\022 \001(\010\022\031\n\021enable_mu" +
    -      "lti_host\030\033 \001(\010\022\033\n\023backend_server_port\030\034 " +
    -      "\001(\005\022\022\n\ntarget_tpu\030\035 \001(\010\022\022\n\ntarget_gpu\030\036 " +
    -      "\001(\010\022\036\n\026stream_merge_threshold\030\037 \001(\005\022\'\n\037d" +
    -      "isable_functional_ops_lowering\030\025 \001(\010\022\'\n\037" +
    -      "xla_prefer_single_graph_cluster\030\026 \001(\010\022B\n" +
    -      "\023coordination_config\030\027 \001(\0132%.tensorflow." +
    -      "CoordinationServiceConfig\022)\n!disable_opt" +
    -      "imize_for_static_graph\030\030 \001(\010\0220\n(disable_" +
    -      "eager_executor_streaming_enqueue\030\032 \001(\010\"\336" +
    -      "\001\n\021MlirBridgeRollout\022#\n\037MLIR_BRIDGE_ROLL" +
    -      "OUT_UNSPECIFIED\020\000\022\037\n\033MLIR_BRIDGE_ROLLOUT" +
    -      "_ENABLED\020\001\022 \n\034MLIR_BRIDGE_ROLLOUT_DISABL" +
    -      "ED\020\002\"\004\010\003\020\003\"\004\010\004\020\004*%MLIR_BRIDGE_ROLLOUT_SA" +
    -      "FE_MODE_ENABLED*.MLIR_BRIDGE_ROLLOUT_SAF" +
    -      "E_MODE_FALLBACK_ENABLEDJ\004\010\002\020\003J\004\010\023\020\024J\004\010\024\020" +
    -      "\025J\004\010\031\020\032\"\341\004\n\nRunOptions\0226\n\013trace_level\030\001 " +
    -      "\001(\0162!.tensorflow.RunOptions.TraceLevel\022\025" +
    -      "\n\rtimeout_in_ms\030\002 \001(\003\022\034\n\024inter_op_thread" +
    -      "_pool\030\003 \001(\005\022\037\n\027output_partition_graphs\030\005" +
    -      " \001(\010\022/\n\rdebug_options\030\006 \001(\0132\030.tensorflow" +
    -      ".DebugOptions\022*\n\"report_tensor_allocatio" +
    -      "ns_upon_oom\030\007 \001(\010\0229\n\014experimental\030\010 \001(\0132" +
    -      "#.tensorflow.RunOptions.Experimental\032\322\001\n" +
    -      "\014Experimental\022\034\n\024collective_graph_key\030\001 " +
    -      "\001(\003\022\034\n\024use_run_handler_pool\030\002 \001(\010\022[\n\030run" +
    -      "_handler_pool_options\030\003 \001(\01329.tensorflow" +
    -      ".RunOptions.Experimental.RunHandlerPoolO" +
    -      "ptions\032)\n\025RunHandlerPoolOptions\022\020\n\010prior" +
    -      "ity\030\001 \001(\003\"R\n\nTraceLevel\022\014\n\010NO_TRACE\020\000\022\022\n" +
    -      "\016SOFTWARE_TRACE\020\001\022\022\n\016HARDWARE_TRACE\020\002\022\016\n" +
    -      "\nFULL_TRACE\020\003J\004\010\004\020\005\"\276\003\n\013RunMetadata\022)\n\ns" +
    -      "tep_stats\030\001 \001(\0132\025.tensorflow.StepStats\022," +
    -      "\n\ncost_graph\030\002 \001(\0132\030.tensorflow.CostGrap" +
    -      "hDef\022.\n\020partition_graphs\030\003 \003(\0132\024.tensorf" +
    -      "low.GraphDef\022?\n\017function_graphs\030\004 \003(\0132&." +
    -      "tensorflow.RunMetadata.FunctionGraphs\0225\n" +
    -      "\020session_metadata\030\005 \001(\0132\033.tensorflow.Ses" +
    -      "sionMetadata\032\255\001\n\016FunctionGraphs\022.\n\020parti" +
    -      "tion_graphs\030\001 \003(\0132\024.tensorflow.GraphDef\022" +
    -      "4\n\026pre_optimization_graph\030\002 \001(\0132\024.tensor" +
    -      "flow.GraphDef\0225\n\027post_optimization_graph" +
    -      "\030\003 \001(\0132\024.tensorflow.GraphDef\":\n\020TensorCo" +
    -      "nnection\022\023\n\013from_tensor\030\001 \001(\t\022\021\n\tto_tens" +
    -      "or\030\002 \001(\t\"\260\003\n\017CallableOptions\022\014\n\004feed\030\001 \003" +
    -      "(\t\022\r\n\005fetch\030\002 \003(\t\022\016\n\006target\030\003 \003(\t\022+\n\013run" +
    -      "_options\030\004 \001(\0132\026.tensorflow.RunOptions\0227" +
    -      "\n\021tensor_connection\030\005 \003(\0132\034.tensorflow.T" +
    -      "ensorConnection\022B\n\014feed_devices\030\006 \003(\0132,." +
    -      "tensorflow.CallableOptions.FeedDevicesEn" +
    -      "try\022D\n\rfetch_devices\030\007 \003(\0132-.tensorflow." +
    -      "CallableOptions.FetchDevicesEntry\022\027\n\017fet" +
    -      "ch_skip_sync\030\010 \001(\010\0322\n\020FeedDevicesEntry\022\013" +
    -      "\n\003key\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:\0028\001\0323\n\021FetchD" +
    -      "evicesEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:" +
    -      "\0028\001B\200\001\n\024org.tensorflow.protoB\014ConfigProt" +
    -      "osP\001ZUgithub.com/tensorflow/tensorflow/t" +
    -      "ensorflow/go/core/protobuf/for_core_prot" +
    -      "os_go_proto\370\001\001b\006proto3"
    +      "stem_memory_size_in_mb\030\020 \001(\005\022.\n&populate" +
    +      "_pjrt_gpu_client_creation_info\030\021 \001(\010\022\017\n\007" +
    +      "node_id\030\022 \001(\005\022T\n\024stream_merge_options\030\023 " +
    +      "\001(\01326.tensorflow.GPUOptions.Experimental" +
    +      ".StreamMergeOptions\032S\n\016VirtualDevices\022\027\n" +
    +      "\017memory_limit_mb\030\001 \003(\002\022\020\n\010priority\030\002 \003(\005" +
    +      "\022\026\n\016device_ordinal\030\003 \003(\005\032\205\001\n\022StreamMerge" +
    +      "Options\022#\n\033merge_host_to_device_stream\030\001" +
    +      " \001(\010\022#\n\033merge_device_to_host_stream\030\002 \001(" +
    +      "\010\022%\n\035merge_device_to_device_stream\030\003 \001(\010" +
    +      "\"\235\003\n\020OptimizerOptions\022+\n#do_common_subex" +
    +      "pression_elimination\030\001 \001(\010\022\033\n\023do_constan" +
    +      "t_folding\030\002 \001(\010\022$\n\034max_folded_constant_i" +
    +      "n_bytes\030\006 \001(\003\022\034\n\024do_function_inlining\030\004 " +
    +      "\001(\010\0225\n\topt_level\030\003 \001(\0162\".tensorflow.Opti" +
    +      "mizerOptions.Level\022E\n\020global_jit_level\030\005" +
    +      " \001(\0162+.tensorflow.OptimizerOptions.Globa" +
    +      "lJitLevel\022\026\n\016cpu_global_jit\030\007 \001(\010\" \n\005Lev" +
    +      "el\022\006\n\002L1\020\000\022\017\n\002L0\020\377\377\377\377\377\377\377\377\377\001\"C\n\016GlobalJit" +
    +      "Level\022\013\n\007DEFAULT\020\000\022\020\n\003OFF\020\377\377\377\377\377\377\377\377\377\001\022\010\n\004" +
    +      "ON_1\020\001\022\010\n\004ON_2\020\002\"\356\002\n\014GraphOptions\022\036\n\026ena" +
    +      "ble_recv_scheduling\030\002 \001(\010\0227\n\021optimizer_o" +
    +      "ptions\030\003 \001(\0132\034.tensorflow.OptimizerOptio" +
    +      "ns\022\030\n\020build_cost_model\030\004 \001(\003\022\036\n\026build_co" +
    +      "st_model_after\030\t \001(\003\022\024\n\014infer_shapes\030\005 \001" +
    +      "(\010\022\032\n\022place_pruned_graph\030\006 \001(\010\022 \n\030enable" +
    +      "_bfloat16_sendrecv\030\007 \001(\010\022\025\n\rtimeline_ste" +
    +      "p\030\010 \001(\005\0223\n\017rewrite_options\030\n \001(\0132\032.tenso" +
    +      "rflow.RewriterConfigJ\004\010\001\020\002R%skip_common_" +
    +      "subexpression_elimination\"A\n\025ThreadPoolO" +
    +      "ptionProto\022\023\n\013num_threads\030\001 \001(\005\022\023\n\013globa" +
    +      "l_name\030\002 \001(\t\"0\n\017SessionMetadata\022\014\n\004name\030" +
    +      "\001 \001(\t\022\017\n\007version\030\002 \001(\003\"\346\020\n\013ConfigProto\022>" +
    +      "\n\014device_count\030\001 \003(\0132(.tensorflow.Config" +
    +      "Proto.DeviceCountEntry\022$\n\034intra_op_paral" +
    +      "lelism_threads\030\002 \001(\005\022$\n\034inter_op_paralle" +
    +      "lism_threads\030\005 \001(\005\022\037\n\027use_per_session_th" +
    +      "reads\030\t \001(\010\022G\n\034session_inter_op_thread_p" +
    +      "ool\030\014 \003(\0132!.tensorflow.ThreadPoolOptionP" +
    +      "roto\022\030\n\020placement_period\030\003 \001(\005\022\026\n\016device" +
    +      "_filters\030\004 \003(\t\022+\n\013gpu_options\030\006 \001(\0132\026.te" +
    +      "nsorflow.GPUOptions\0228\n\030pluggable_device_" +
    +      "options\030\022 \001(\0132\026.tensorflow.GPUOptions\022\034\n" +
    +      "\024allow_soft_placement\030\007 \001(\010\022\034\n\024log_devic" +
    +      "e_placement\030\010 \001(\010\022/\n\rgraph_options\030\n \001(\013" +
    +      "2\030.tensorflow.GraphOptions\022\037\n\027operation_" +
    +      "timeout_in_ms\030\013 \001(\003\022+\n\013rpc_options\030\r \001(\013" +
    +      "2\026.tensorflow.RPCOptions\022+\n\013cluster_def\030" +
    +      "\016 \001(\0132\026.tensorflow.ClusterDef\022\035\n\025isolate" +
    +      "_session_state\030\017 \001(\010\022(\n share_cluster_de" +
    +      "vices_in_session\030\021 \001(\010\022:\n\014experimental\030\020" +
    +      " \001(\0132$.tensorflow.ConfigProto.Experiment" +
    +      "al\0322\n\020DeviceCountEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005v" +
    +      "alue\030\002 \001(\005:\0028\001\032\246\n\n\014Experimental\022\037\n\027colle" +
    +      "ctive_group_leader\030\001 \001(\t\022\025\n\rexecutor_typ" +
    +      "e\030\003 \001(\t\022\032\n\022recv_buf_max_chunk\030\004 \001(\005\022\031\n\021u" +
    +      "se_numa_affinity\030\005 \001(\010\0225\n-collective_det" +
    +      "erministic_sequential_execution\030\006 \001(\010\022\027\n" +
    +      "\017collective_nccl\030\007 \001(\010\0226\n.share_session_" +
    +      "state_in_clusterspec_propagation\030\010 \001(\010\022\037" +
    +      "\n\027disable_thread_spinning\030\t \001(\010\022(\n share" +
    +      "_cluster_devices_in_session\030\n \001(\010\0225\n\020ses" +
    +      "sion_metadata\030\013 \001(\0132\033.tensorflow.Session" +
    +      "Metadata\022!\n\031optimize_for_static_graph\030\014 " +
    +      "\001(\010\022\032\n\022enable_mlir_bridge\030\r \001(\010\022S\n\023mlir_" +
    +      "bridge_rollout\030\021 \001(\01626.tensorflow.Config" +
    +      "Proto.Experimental.MlirBridgeRollout\022&\n\036" +
    +      "enable_mlir_graph_optimization\030\020 \001(\010\022\'\n\037" +
    +      "disable_output_partition_graphs\030\016 \001(\010\022#\n" +
    +      "\033xla_fusion_autotuner_thresh\030\017 \001(\003\022\020\n\010us" +
    +      "e_tfrt\030\022 \001(\010\022\031\n\021enable_multi_host\030\033 \001(\010\022" +
    +      "\025\n\rtfrt_use_ifrt\030  \001(\010\022\033\n\023backend_server" +
    +      "_port\030\034 \001(\005\022\022\n\ntarget_tpu\030\035 \001(\010\022\022\n\ntarge" +
    +      "t_gpu\030\036 \001(\010\022\036\n\026stream_merge_threshold\030\037 " +
    +      "\001(\005\022\'\n\037disable_functional_ops_lowering\030\025" +
    +      " \001(\010\022\'\n\037xla_prefer_single_graph_cluster\030" +
    +      "\026 \001(\010\022B\n\023coordination_config\030\027 \001(\0132%.ten" +
    +      "sorflow.CoordinationServiceConfig\022)\n!dis" +
    +      "able_optimize_for_static_graph\030\030 \001(\010\0220\n(" +
    +      "disable_eager_executor_streaming_enqueue" +
    +      "\030\032 \001(\010\"\336\001\n\021MlirBridgeRollout\022#\n\037MLIR_BRI" +
    +      "DGE_ROLLOUT_UNSPECIFIED\020\000\022\037\n\033MLIR_BRIDGE" +
    +      "_ROLLOUT_ENABLED\020\001\022 \n\034MLIR_BRIDGE_ROLLOU" +
    +      "T_DISABLED\020\002\"\004\010\003\020\003\"\004\010\004\020\004*%MLIR_BRIDGE_RO" +
    +      "LLOUT_SAFE_MODE_ENABLED*.MLIR_BRIDGE_ROL" +
    +      "LOUT_SAFE_MODE_FALLBACK_ENABLEDJ\004\010\002\020\003J\004\010" +
    +      "\023\020\024J\004\010\024\020\025J\004\010\031\020\032\"\341\004\n\nRunOptions\0226\n\013trace_" +
    +      "level\030\001 \001(\0162!.tensorflow.RunOptions.Trac" +
    +      "eLevel\022\025\n\rtimeout_in_ms\030\002 \001(\003\022\034\n\024inter_o" +
    +      "p_thread_pool\030\003 \001(\005\022\037\n\027output_partition_" +
    +      "graphs\030\005 \001(\010\022/\n\rdebug_options\030\006 \001(\0132\030.te" +
    +      "nsorflow.DebugOptions\022*\n\"report_tensor_a" +
    +      "llocations_upon_oom\030\007 \001(\010\0229\n\014experimenta" +
    +      "l\030\010 \001(\0132#.tensorflow.RunOptions.Experime" +
    +      "ntal\032\322\001\n\014Experimental\022\034\n\024collective_grap" +
    +      "h_key\030\001 \001(\003\022\034\n\024use_run_handler_pool\030\002 \001(" +
    +      "\010\022[\n\030run_handler_pool_options\030\003 \001(\01329.te" +
    +      "nsorflow.RunOptions.Experimental.RunHand" +
    +      "lerPoolOptions\032)\n\025RunHandlerPoolOptions\022" +
    +      "\020\n\010priority\030\001 \001(\003\"R\n\nTraceLevel\022\014\n\010NO_TR" +
    +      "ACE\020\000\022\022\n\016SOFTWARE_TRACE\020\001\022\022\n\016HARDWARE_TR" +
    +      "ACE\020\002\022\016\n\nFULL_TRACE\020\003J\004\010\004\020\005\"\276\003\n\013RunMetad" +
    +      "ata\022)\n\nstep_stats\030\001 \001(\0132\025.tensorflow.Ste" +
    +      "pStats\022,\n\ncost_graph\030\002 \001(\0132\030.tensorflow." +
    +      "CostGraphDef\022.\n\020partition_graphs\030\003 \003(\0132\024" +
    +      ".tensorflow.GraphDef\022?\n\017function_graphs\030" +
    +      "\004 \003(\0132&.tensorflow.RunMetadata.FunctionG" +
    +      "raphs\0225\n\020session_metadata\030\005 \001(\0132\033.tensor" +
    +      "flow.SessionMetadata\032\255\001\n\016FunctionGraphs\022" +
    +      ".\n\020partition_graphs\030\001 \003(\0132\024.tensorflow.G" +
    +      "raphDef\0224\n\026pre_optimization_graph\030\002 \001(\0132" +
    +      "\024.tensorflow.GraphDef\0225\n\027post_optimizati" +
    +      "on_graph\030\003 \001(\0132\024.tensorflow.GraphDef\":\n\020" +
    +      "TensorConnection\022\023\n\013from_tensor\030\001 \001(\t\022\021\n" +
    +      "\tto_tensor\030\002 \001(\t\"\260\003\n\017CallableOptions\022\014\n\004" +
    +      "feed\030\001 \003(\t\022\r\n\005fetch\030\002 \003(\t\022\016\n\006target\030\003 \003(" +
    +      "\t\022+\n\013run_options\030\004 \001(\0132\026.tensorflow.RunO" +
    +      "ptions\0227\n\021tensor_connection\030\005 \003(\0132\034.tens" +
    +      "orflow.TensorConnection\022B\n\014feed_devices\030" +
    +      "\006 \003(\0132,.tensorflow.CallableOptions.FeedD" +
    +      "evicesEntry\022D\n\rfetch_devices\030\007 \003(\0132-.ten" +
    +      "sorflow.CallableOptions.FetchDevicesEntr" +
    +      "y\022\027\n\017fetch_skip_sync\030\010 \001(\010\0322\n\020FeedDevice" +
    +      "sEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:\0028\001\0323" +
    +      "\n\021FetchDevicesEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005valu" +
    +      "e\030\002 \001(\t:\0028\001B\200\001\n\024org.tensorflow.protoB\014Co" +
    +      "nfigProtosP\001ZUgithub.com/tensorflow/tens" +
    +      "orflow/tensorflow/go/core/protobuf/for_c" +
    +      "ore_protos_go_proto\370\001\001b\006proto3"
         };
         descriptor = com.google.protobuf.Descriptors.FileDescriptor
           .internalBuildGeneratedFileFrom(descriptorData,
    @@ -294,13 +308,19 @@ public static void registerAllExtensions(
         internal_static_tensorflow_GPUOptions_Experimental_fieldAccessorTable = new
           com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
             internal_static_tensorflow_GPUOptions_Experimental_descriptor,
    -        new java.lang.String[] { "VirtualDevices", "NumVirtualDevicesPerGpu", "UseUnifiedMemory", "NumDevToDevCopyStreams", "CollectiveRingOrder", "TimestampedAllocator", "KernelTrackerMaxInterval", "KernelTrackerMaxBytes", "KernelTrackerMaxPending", "InternalFragmentationFraction", "UseCudaMallocAsync", "DisallowRetryOnAllocationFailure", "GpuHostMemLimitInMb", "GpuHostMemDisallowGrowth", "GpuSystemMemorySizeInMb", });
    +        new java.lang.String[] { "VirtualDevices", "NumVirtualDevicesPerGpu", "UseUnifiedMemory", "NumDevToDevCopyStreams", "CollectiveRingOrder", "TimestampedAllocator", "KernelTrackerMaxInterval", "KernelTrackerMaxBytes", "KernelTrackerMaxPending", "InternalFragmentationFraction", "UseCudaMallocAsync", "DisallowRetryOnAllocationFailure", "GpuHostMemLimitInMb", "GpuHostMemDisallowGrowth", "GpuSystemMemorySizeInMb", "PopulatePjrtGpuClientCreationInfo", "NodeId", "StreamMergeOptions", });
         internal_static_tensorflow_GPUOptions_Experimental_VirtualDevices_descriptor =
           internal_static_tensorflow_GPUOptions_Experimental_descriptor.getNestedTypes().get(0);
         internal_static_tensorflow_GPUOptions_Experimental_VirtualDevices_fieldAccessorTable = new
           com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
             internal_static_tensorflow_GPUOptions_Experimental_VirtualDevices_descriptor,
             new java.lang.String[] { "MemoryLimitMb", "Priority", "DeviceOrdinal", });
    +    internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor =
    +      internal_static_tensorflow_GPUOptions_Experimental_descriptor.getNestedTypes().get(1);
    +    internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_fieldAccessorTable = new
    +      com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
    +        internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor,
    +        new java.lang.String[] { "MergeHostToDeviceStream", "MergeDeviceToHostStream", "MergeDeviceToDeviceStream", });
         internal_static_tensorflow_OptimizerOptions_descriptor =
           getDescriptor().getMessageTypes().get(1);
         internal_static_tensorflow_OptimizerOptions_fieldAccessorTable = new
    @@ -330,7 +350,7 @@ public static void registerAllExtensions(
         internal_static_tensorflow_ConfigProto_fieldAccessorTable = new
           com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
             internal_static_tensorflow_ConfigProto_descriptor,
    -        new java.lang.String[] { "DeviceCount", "IntraOpParallelismThreads", "InterOpParallelismThreads", "UsePerSessionThreads", "SessionInterOpThreadPool", "PlacementPeriod", "DeviceFilters", "GpuOptions", "AllowSoftPlacement", "LogDevicePlacement", "GraphOptions", "OperationTimeoutInMs", "RpcOptions", "ClusterDef", "IsolateSessionState", "ShareClusterDevicesInSession", "Experimental", });
    +        new java.lang.String[] { "DeviceCount", "IntraOpParallelismThreads", "InterOpParallelismThreads", "UsePerSessionThreads", "SessionInterOpThreadPool", "PlacementPeriod", "DeviceFilters", "GpuOptions", "PluggableDeviceOptions", "AllowSoftPlacement", "LogDevicePlacement", "GraphOptions", "OperationTimeoutInMs", "RpcOptions", "ClusterDef", "IsolateSessionState", "ShareClusterDevicesInSession", "Experimental", });
         internal_static_tensorflow_ConfigProto_DeviceCountEntry_descriptor =
           internal_static_tensorflow_ConfigProto_descriptor.getNestedTypes().get(0);
         internal_static_tensorflow_ConfigProto_DeviceCountEntry_fieldAccessorTable = new
    @@ -342,7 +362,7 @@ public static void registerAllExtensions(
         internal_static_tensorflow_ConfigProto_Experimental_fieldAccessorTable = new
           com.google.protobuf.GeneratedMessageV3.FieldAccessorTable(
             internal_static_tensorflow_ConfigProto_Experimental_descriptor,
    -        new java.lang.String[] { "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", "EnableMultiHost", "BackendServerPort", "TargetTpu", "TargetGpu", "StreamMergeThreshold", "DisableFunctionalOpsLowering", "XlaPreferSingleGraphCluster", "CoordinationConfig", "DisableOptimizeForStaticGraph", "DisableEagerExecutorStreamingEnqueue", });
    +        new java.lang.String[] { "CollectiveGroupLeader", "ExecutorType", "RecvBufMaxChunk", "UseNumaAffinity", "CollectiveDeterministicSequentialExecution", "CollectiveNccl", "ShareSessionStateInClusterspecPropagation", "DisableThreadSpinning", "ShareClusterDevicesInSession", "SessionMetadata", "OptimizeForStaticGraph", "EnableMlirBridge", "MlirBridgeRollout", "EnableMlirGraphOptimization", "DisableOutputPartitionGraphs", "XlaFusionAutotunerThresh", "UseTfrt", "EnableMultiHost", "TfrtUseIfrt", "BackendServerPort", "TargetTpu", "TargetGpu", "StreamMergeThreshold", "DisableFunctionalOpsLowering", "XlaPreferSingleGraphCluster", "CoordinationConfig", "DisableOptimizeForStaticGraph", "DisableEagerExecutorStreamingEnqueue", });
         internal_static_tensorflow_RunOptions_descriptor =
           getDescriptor().getMessageTypes().get(6);
         internal_static_tensorflow_RunOptions_fieldAccessorTable = new
    diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CoordinationConfig.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CoordinationConfig.java
    index 6c1f875d2f6..5dfed710211 100644
    --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CoordinationConfig.java
    +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/CoordinationConfig.java
    @@ -853,6 +853,17 @@ org.tensorflow.proto.CoordinationConfig.CoordinatedJobOrBuilder getCoordinatedJo
          * @return The forceDisable.
          */
         boolean getForceDisable();
    +
    +    /**
    +     * 
    +     * Use long polling to get error from coordination service as the error
    +     * propagation mechanism.
    +     * 
    + * + * bool poll_for_error_from_service_at_startup = 13; + * @return The pollForErrorFromServiceAtStartup. + */ + boolean getPollForErrorFromServiceAtStartup(); } /** *
    @@ -1223,6 +1234,22 @@ public boolean getForceDisable() {
           return forceDisable_;
         }
     
    +    public static final int POLL_FOR_ERROR_FROM_SERVICE_AT_STARTUP_FIELD_NUMBER = 13;
    +    private boolean pollForErrorFromServiceAtStartup_;
    +    /**
    +     * 
    +     * Use long polling to get error from coordination service as the error
    +     * propagation mechanism.
    +     * 
    + * + * bool poll_for_error_from_service_at_startup = 13; + * @return The pollForErrorFromServiceAtStartup. + */ + @java.lang.Override + public boolean getPollForErrorFromServiceAtStartup() { + return pollForErrorFromServiceAtStartup_; + } + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -1270,6 +1297,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (forceDisable_ != false) { output.writeBool(12, forceDisable_); } + if (pollForErrorFromServiceAtStartup_ != false) { + output.writeBool(13, pollForErrorFromServiceAtStartup_); + } getUnknownFields().writeTo(output); } @@ -1325,6 +1355,10 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeBoolSize(12, forceDisable_); } + if (pollForErrorFromServiceAtStartup_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(13, pollForErrorFromServiceAtStartup_); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -1362,6 +1396,8 @@ public boolean equals(final java.lang.Object obj) { != other.getAllowNewIncarnationToReconnect()) return false; if (getForceDisable() != other.getForceDisable()) return false; + if (getPollForErrorFromServiceAtStartup() + != other.getPollForErrorFromServiceAtStartup()) return false; if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @@ -1406,6 +1442,9 @@ public int hashCode() { hash = (37 * hash) + FORCE_DISABLE_FIELD_NUMBER; hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( getForceDisable()); + hash = (37 * hash) + POLL_FOR_ERROR_FROM_SERVICE_AT_STARTUP_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getPollForErrorFromServiceAtStartup()); hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; @@ -1566,6 +1605,8 @@ public Builder clear() { forceDisable_ = false; + pollForErrorFromServiceAtStartup_ = false; + return this; } @@ -1616,6 +1657,7 @@ public org.tensorflow.proto.CoordinationConfig.CoordinationServiceConfig buildPa result.recoverableJobs_ = recoverableJobs_; result.allowNewIncarnationToReconnect_ = allowNewIncarnationToReconnect_; result.forceDisable_ = forceDisable_; + result.pollForErrorFromServiceAtStartup_ = pollForErrorFromServiceAtStartup_; onBuilt(); return result; } @@ -1729,6 +1771,9 @@ public Builder mergeFrom(org.tensorflow.proto.CoordinationConfig.CoordinationSer if (other.getForceDisable() != false) { setForceDisable(other.getForceDisable()); } + if (other.getPollForErrorFromServiceAtStartup() != false) { + setPollForErrorFromServiceAtStartup(other.getPollForErrorFromServiceAtStartup()); + } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; @@ -1819,6 +1864,11 @@ public Builder mergeFrom( break; } // case 96 + case 104: { + pollForErrorFromServiceAtStartup_ = input.readBool(); + + break; + } // case 104 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -2798,6 +2848,52 @@ public Builder clearForceDisable() { onChanged(); return this; } + + private boolean pollForErrorFromServiceAtStartup_ ; + /** + *
    +       * Use long polling to get error from coordination service as the error
    +       * propagation mechanism.
    +       * 
    + * + * bool poll_for_error_from_service_at_startup = 13; + * @return The pollForErrorFromServiceAtStartup. + */ + @java.lang.Override + public boolean getPollForErrorFromServiceAtStartup() { + return pollForErrorFromServiceAtStartup_; + } + /** + *
    +       * Use long polling to get error from coordination service as the error
    +       * propagation mechanism.
    +       * 
    + * + * bool poll_for_error_from_service_at_startup = 13; + * @param value The pollForErrorFromServiceAtStartup to set. + * @return This builder for chaining. + */ + public Builder setPollForErrorFromServiceAtStartup(boolean value) { + + pollForErrorFromServiceAtStartup_ = value; + onChanged(); + return this; + } + /** + *
    +       * Use long polling to get error from coordination service as the error
    +       * propagation mechanism.
    +       * 
    + * + * bool poll_for_error_from_service_at_startup = 13; + * @return This builder for chaining. + */ + public Builder clearPollForErrorFromServiceAtStartup() { + + pollForErrorFromServiceAtStartup_ = false; + onChanged(); + return this; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { @@ -2883,7 +2979,7 @@ public org.tensorflow.proto.CoordinationConfig.CoordinationServiceConfig getDefa java.lang.String[] descriptorData = { "\n&tsl/protobuf/coordination_config.proto" + "\022\ntensorflow\"1\n\016CoordinatedJob\022\014\n\004name\030\001" + - " \001(\t\022\021\n\tnum_tasks\030\002 \001(\005\"\240\003\n\031Coordination" + + " \001(\t\022\021\n\tnum_tasks\030\002 \001(\005\"\320\003\n\031Coordination" + "ServiceConfig\022\024\n\014service_type\030\001 \001(\t\022\026\n\016s" + "ervice_leader\030\002 \001(\t\022\033\n\023enable_health_che" + "ck\030\003 \001(\010\022&\n\036cluster_register_timeout_in_" + @@ -2893,11 +2989,12 @@ public org.tensorflow.proto.CoordinationConfig.CoordinationServiceConfig getDefa "timeout_in_ms\030\007 \001(\003\022*\n\"agent_destruction" + "_without_shutdown\030\010 \001(\010\022\030\n\020recoverable_j" + "obs\030\t \003(\t\022*\n\"allow_new_incarnation_to_re" + - "connect\030\013 \001(\010\022\025\n\rforce_disable\030\014 \001(\010J\004\010\006" + - "\020\007Bm\n\024org.tensorflow.protoZUgithub.com/t" + - "ensorflow/tensorflow/tensorflow/go/core/" + - "protobuf/for_core_protos_go_protob\006proto" + - "3" + "connect\030\013 \001(\010\022\025\n\rforce_disable\030\014 \001(\010\022.\n&" + + "poll_for_error_from_service_at_startup\030\r" + + " \001(\010J\004\010\006\020\007Bm\n\024org.tensorflow.protoZUgith" + + "ub.com/tensorflow/tensorflow/tensorflow/" + + "go/core/protobuf/for_core_protos_go_prot" + + "ob\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -2914,7 +3011,7 @@ public org.tensorflow.proto.CoordinationConfig.CoordinationServiceConfig getDefa internal_static_tensorflow_CoordinationServiceConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_CoordinationServiceConfig_descriptor, - new java.lang.String[] { "ServiceType", "ServiceLeader", "EnableHealthCheck", "ClusterRegisterTimeoutInMs", "HeartbeatTimeoutInMs", "CoordinatedJobList", "ShutdownBarrierTimeoutInMs", "AgentDestructionWithoutShutdown", "RecoverableJobs", "AllowNewIncarnationToReconnect", "ForceDisable", }); + new java.lang.String[] { "ServiceType", "ServiceLeader", "EnableHealthCheck", "ClusterRegisterTimeoutInMs", "HeartbeatTimeoutInMs", "CoordinatedJobList", "ShutdownBarrierTimeoutInMs", "AgentDestructionWithoutShutdown", "RecoverableJobs", "AllowNewIncarnationToReconnect", "ForceDisable", "PollForErrorFromServiceAtStartup", }); } // @@protoc_insertion_point(outer_class_scope) diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValue.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValue.java index 44deff4cb4d..0b6ce2fef52 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValue.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValue.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValueOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValueOrBuilder.java index 525dfd70275..6338554d477 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValueOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/EntryValueOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfo.java index f07305dc1aa..858f216fb45 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfo.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfoOrBuilder.java index 6aefc92ee8c..02d2cc61740 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUInfoOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUOptions.java index 8eac8bc4ef1..d9db2330adb 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/GPUOptions.java @@ -467,6 +467,43 @@ org.tensorflow.proto.GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualD * @return The gpuSystemMemorySizeInMb. */ int getGpuSystemMemorySizeInMb(); + + /** + *
    +     * If true, save information needed for created a PjRt GPU client for
    +     * creating a client with remote devices.
    +     * 
    + * + * bool populate_pjrt_gpu_client_creation_info = 17; + * @return The populatePjrtGpuClientCreationInfo. + */ + boolean getPopulatePjrtGpuClientCreationInfo(); + + /** + *
    +     * node_id for use when creating a PjRt GPU client with remote devices,
    +     * which enumerates jobs*tasks from a ServerDef.
    +     * 
    + * + * int32 node_id = 18; + * @return The nodeId. + */ + int getNodeId(); + + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return Whether the streamMergeOptions field is set. + */ + boolean hasStreamMergeOptions(); + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return The streamMergeOptions. + */ + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getStreamMergeOptions(); + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder getStreamMergeOptionsOrBuilder(); } /** * Protobuf type {@code tensorflow.GPUOptions.Experimental} @@ -1673,105 +1710,846 @@ private void ensureDeviceOrdinalIsMutable() { } /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @return The count of deviceOrdinal. + */ + public int getDeviceOrdinalCount() { + return deviceOrdinal_.size(); + } + /** + *
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @param index The index of the element to return. + * @return The deviceOrdinal at the given index. + */ + public int getDeviceOrdinal(int index) { + return deviceOrdinal_.getInt(index); + } + /** + *
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @param index The index to set the value at. + * @param value The deviceOrdinal to set. + * @return This builder for chaining. + */ + public Builder setDeviceOrdinal( + int index, int value) { + ensureDeviceOrdinalIsMutable(); + deviceOrdinal_.setInt(index, value); + onChanged(); + return this; + } + /** + *
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @param value The deviceOrdinal to add. + * @return This builder for chaining. + */ + public Builder addDeviceOrdinal(int value) { + ensureDeviceOrdinalIsMutable(); + deviceOrdinal_.addInt(value); + onChanged(); + return this; + } + /** + *
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @param values The deviceOrdinal to add. + * @return This builder for chaining. + */ + public Builder addAllDeviceOrdinal( + java.lang.Iterable values) { + ensureDeviceOrdinalIsMutable(); + com.google.protobuf.AbstractMessageLite.Builder.addAll( + values, deviceOrdinal_); + onChanged(); + return this; + } + /** + *
    +         * Virtual Device ordinal number determines the device ID of the device.
    +         * A Virtual device with a lower ordinal number always receives the a
    +         * smaller device id. The phyiscal device id and location in the
    +         * virtual device list is used to break ties.
    +         * 
    + * + * repeated int32 device_ordinal = 3; + * @return This builder for chaining. + */ + public Builder clearDeviceOrdinal() { + deviceOrdinal_ = emptyIntList(); + bitField0_ = (bitField0_ & ~0x00000004); + onChanged(); + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.GPUOptions.Experimental.VirtualDevices) + } + + // @@protoc_insertion_point(class_scope:tensorflow.GPUOptions.Experimental.VirtualDevices) + private static final org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices(); + } + + public static org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public VirtualDevices parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + Builder builder = newBuilder(); + try { + builder.mergeFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(builder.buildPartial()); + } catch (com.google.protobuf.UninitializedMessageException e) { + throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException(e) + .setUnfinishedMessage(builder.buildPartial()); + } + return builder.buildPartial(); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public interface StreamMergeOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.GPUOptions.Experimental.StreamMergeOptions) + com.google.protobuf.MessageOrBuilder { + + /** + *
    +       * If true, the compute stream will be used for host_to_device copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream to finish. There is
    +       * also no need to wait for the copy to complete before executing the
    +       * callback function.
    +       * 
    + * + * bool merge_host_to_device_stream = 1; + * @return The mergeHostToDeviceStream. + */ + boolean getMergeHostToDeviceStream(); + + /** + *
    +       * If true, the compute stream will be used for device_to_host copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream to finish.
    +       * 
    + * + * bool merge_device_to_host_stream = 2; + * @return The mergeDeviceToHostStream. + */ + boolean getMergeDeviceToHostStream(); + + /** + *
    +       * If true, the compute stream will be used for device_to_device copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream of the sending device
    +       * to finish. There is also no need to wait for the compute stream of the
    +       * receiving device to finish if the copy is within the same device.
    +       * 
    + * + * bool merge_device_to_device_stream = 3; + * @return The mergeDeviceToDeviceStream. + */ + boolean getMergeDeviceToDeviceStream(); + } + /** + *
    +     * Whether to merge data transfer streams into the compute stream in the
    +     * same stream group. Stream merging helps reduce the overhead caused by
    +     * stream synchronization, especially when data transfers are frequent. For
    +     * example, setting "merge_host_to_device_stream = true" will make the
    +     * compute stream responsible for both computation and host to device memory
    +     * copy.
    +     * 
    + * + * Protobuf type {@code tensorflow.GPUOptions.Experimental.StreamMergeOptions} + */ + public static final class StreamMergeOptions extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.GPUOptions.Experimental.StreamMergeOptions) + StreamMergeOptionsOrBuilder { + private static final long serialVersionUID = 0L; + // Use StreamMergeOptions.newBuilder() to construct. + private StreamMergeOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private StreamMergeOptions() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new StreamMergeOptions(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.ConfigProtos.internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.ConfigProtos.internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.class, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder.class); + } + + public static final int MERGE_HOST_TO_DEVICE_STREAM_FIELD_NUMBER = 1; + private boolean mergeHostToDeviceStream_; + /** + *
    +       * If true, the compute stream will be used for host_to_device copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream to finish. There is
    +       * also no need to wait for the copy to complete before executing the
    +       * callback function.
    +       * 
    + * + * bool merge_host_to_device_stream = 1; + * @return The mergeHostToDeviceStream. + */ + @java.lang.Override + public boolean getMergeHostToDeviceStream() { + return mergeHostToDeviceStream_; + } + + public static final int MERGE_DEVICE_TO_HOST_STREAM_FIELD_NUMBER = 2; + private boolean mergeDeviceToHostStream_; + /** + *
    +       * If true, the compute stream will be used for device_to_host copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream to finish.
    +       * 
    + * + * bool merge_device_to_host_stream = 2; + * @return The mergeDeviceToHostStream. + */ + @java.lang.Override + public boolean getMergeDeviceToHostStream() { + return mergeDeviceToHostStream_; + } + + public static final int MERGE_DEVICE_TO_DEVICE_STREAM_FIELD_NUMBER = 3; + private boolean mergeDeviceToDeviceStream_; + /** + *
    +       * If true, the compute stream will be used for device_to_device copy as
    +       * well. It's no longer necessary to record an event before the copy to
    +       * let the copy stream wait for the compute stream of the sending device
    +       * to finish. There is also no need to wait for the compute stream of the
    +       * receiving device to finish if the copy is within the same device.
    +       * 
    + * + * bool merge_device_to_device_stream = 3; + * @return The mergeDeviceToDeviceStream. + */ + @java.lang.Override + public boolean getMergeDeviceToDeviceStream() { + return mergeDeviceToDeviceStream_; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (mergeHostToDeviceStream_ != false) { + output.writeBool(1, mergeHostToDeviceStream_); + } + if (mergeDeviceToHostStream_ != false) { + output.writeBool(2, mergeDeviceToHostStream_); + } + if (mergeDeviceToDeviceStream_ != false) { + output.writeBool(3, mergeDeviceToDeviceStream_); + } + getUnknownFields().writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (mergeHostToDeviceStream_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(1, mergeHostToDeviceStream_); + } + if (mergeDeviceToHostStream_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(2, mergeDeviceToHostStream_); + } + if (mergeDeviceToDeviceStream_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(3, mergeDeviceToDeviceStream_); + } + size += getUnknownFields().getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions)) { + return super.equals(obj); + } + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions other = (org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions) obj; + + if (getMergeHostToDeviceStream() + != other.getMergeHostToDeviceStream()) return false; + if (getMergeDeviceToHostStream() + != other.getMergeDeviceToHostStream()) return false; + if (getMergeDeviceToDeviceStream() + != other.getMergeDeviceToDeviceStream()) return false; + if (!getUnknownFields().equals(other.getUnknownFields())) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + hash = (37 * hash) + MERGE_HOST_TO_DEVICE_STREAM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMergeHostToDeviceStream()); + hash = (37 * hash) + MERGE_DEVICE_TO_HOST_STREAM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMergeDeviceToHostStream()); + hash = (37 * hash) + MERGE_DEVICE_TO_DEVICE_STREAM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getMergeDeviceToDeviceStream()); + hash = (29 * hash) + getUnknownFields().hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
    +       * Whether to merge data transfer streams into the compute stream in the
    +       * same stream group. Stream merging helps reduce the overhead caused by
    +       * stream synchronization, especially when data transfers are frequent. For
    +       * example, setting "merge_host_to_device_stream = true" will make the
    +       * compute stream responsible for both computation and host to device memory
    +       * copy.
    +       * 
    + * + * Protobuf type {@code tensorflow.GPUOptions.Experimental.StreamMergeOptions} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.GPUOptions.Experimental.StreamMergeOptions) + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.ConfigProtos.internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.ConfigProtos.internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.class, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder.class); + } + + // Construct using org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.newBuilder() + private Builder() { + + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + + } + @java.lang.Override + public Builder clear() { + super.clear(); + mergeHostToDeviceStream_ = false; + + mergeDeviceToHostStream_ = false; + + mergeDeviceToDeviceStream_ = false; + + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.ConfigProtos.internal_static_tensorflow_GPUOptions_Experimental_StreamMergeOptions_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getDefaultInstanceForType() { + return org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions build() { + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions buildPartial() { + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions result = new org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions(this); + result.mergeHostToDeviceStream_ = mergeHostToDeviceStream_; + result.mergeDeviceToHostStream_ = mergeDeviceToHostStream_; + result.mergeDeviceToDeviceStream_ = mergeDeviceToDeviceStream_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions) { + return mergeFrom((org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions other) { + if (other == org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.getDefaultInstance()) return this; + if (other.getMergeHostToDeviceStream() != false) { + setMergeHostToDeviceStream(other.getMergeHostToDeviceStream()); + } + if (other.getMergeDeviceToHostStream() != false) { + setMergeDeviceToHostStream(other.getMergeDeviceToHostStream()); + } + if (other.getMergeDeviceToDeviceStream() != false) { + setMergeDeviceToDeviceStream(other.getMergeDeviceToDeviceStream()); + } + this.mergeUnknownFields(other.getUnknownFields()); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + mergeHostToDeviceStream_ = input.readBool(); + + break; + } // case 8 + case 16: { + mergeDeviceToHostStream_ = input.readBool(); + + break; + } // case 16 + case 24: { + mergeDeviceToDeviceStream_ = input.readBool(); + + break; + } // case 24 + default: { + if (!super.parseUnknownField(input, extensionRegistry, tag)) { + done = true; // was an endgroup tag + } + break; + } // default: + } // switch (tag) + } // while (!done) + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.unwrapIOException(); + } finally { + onChanged(); + } // finally + return this; + } + + private boolean mergeHostToDeviceStream_ ; + /** + *
    +         * If true, the compute stream will be used for host_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish. There is
    +         * also no need to wait for the copy to complete before executing the
    +         * callback function.
    +         * 
    + * + * bool merge_host_to_device_stream = 1; + * @return The mergeHostToDeviceStream. + */ + @java.lang.Override + public boolean getMergeHostToDeviceStream() { + return mergeHostToDeviceStream_; + } + /** + *
    +         * If true, the compute stream will be used for host_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish. There is
    +         * also no need to wait for the copy to complete before executing the
    +         * callback function.
    +         * 
    + * + * bool merge_host_to_device_stream = 1; + * @param value The mergeHostToDeviceStream to set. + * @return This builder for chaining. + */ + public Builder setMergeHostToDeviceStream(boolean value) { + + mergeHostToDeviceStream_ = value; + onChanged(); + return this; + } + /** + *
    +         * If true, the compute stream will be used for host_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish. There is
    +         * also no need to wait for the copy to complete before executing the
    +         * callback function.
              * 
    * - * repeated int32 device_ordinal = 3; - * @return The count of deviceOrdinal. + * bool merge_host_to_device_stream = 1; + * @return This builder for chaining. */ - public int getDeviceOrdinalCount() { - return deviceOrdinal_.size(); + public Builder clearMergeHostToDeviceStream() { + + mergeHostToDeviceStream_ = false; + onChanged(); + return this; } + + private boolean mergeDeviceToHostStream_ ; /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * If true, the compute stream will be used for device_to_host copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish.
              * 
    * - * repeated int32 device_ordinal = 3; - * @param index The index of the element to return. - * @return The deviceOrdinal at the given index. + * bool merge_device_to_host_stream = 2; + * @return The mergeDeviceToHostStream. */ - public int getDeviceOrdinal(int index) { - return deviceOrdinal_.getInt(index); + @java.lang.Override + public boolean getMergeDeviceToHostStream() { + return mergeDeviceToHostStream_; } /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * If true, the compute stream will be used for device_to_host copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish.
              * 
    * - * repeated int32 device_ordinal = 3; - * @param index The index to set the value at. - * @param value The deviceOrdinal to set. + * bool merge_device_to_host_stream = 2; + * @param value The mergeDeviceToHostStream to set. * @return This builder for chaining. */ - public Builder setDeviceOrdinal( - int index, int value) { - ensureDeviceOrdinalIsMutable(); - deviceOrdinal_.setInt(index, value); + public Builder setMergeDeviceToHostStream(boolean value) { + + mergeDeviceToHostStream_ = value; onChanged(); return this; } /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * If true, the compute stream will be used for device_to_host copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream to finish.
              * 
    * - * repeated int32 device_ordinal = 3; - * @param value The deviceOrdinal to add. + * bool merge_device_to_host_stream = 2; * @return This builder for chaining. */ - public Builder addDeviceOrdinal(int value) { - ensureDeviceOrdinalIsMutable(); - deviceOrdinal_.addInt(value); + public Builder clearMergeDeviceToHostStream() { + + mergeDeviceToHostStream_ = false; onChanged(); return this; } + + private boolean mergeDeviceToDeviceStream_ ; /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * If true, the compute stream will be used for device_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream of the sending device
    +         * to finish. There is also no need to wait for the compute stream of the
    +         * receiving device to finish if the copy is within the same device.
              * 
    * - * repeated int32 device_ordinal = 3; - * @param values The deviceOrdinal to add. + * bool merge_device_to_device_stream = 3; + * @return The mergeDeviceToDeviceStream. + */ + @java.lang.Override + public boolean getMergeDeviceToDeviceStream() { + return mergeDeviceToDeviceStream_; + } + /** + *
    +         * If true, the compute stream will be used for device_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream of the sending device
    +         * to finish. There is also no need to wait for the compute stream of the
    +         * receiving device to finish if the copy is within the same device.
    +         * 
    + * + * bool merge_device_to_device_stream = 3; + * @param value The mergeDeviceToDeviceStream to set. * @return This builder for chaining. */ - public Builder addAllDeviceOrdinal( - java.lang.Iterable values) { - ensureDeviceOrdinalIsMutable(); - com.google.protobuf.AbstractMessageLite.Builder.addAll( - values, deviceOrdinal_); + public Builder setMergeDeviceToDeviceStream(boolean value) { + + mergeDeviceToDeviceStream_ = value; onChanged(); return this; } /** *
    -         * Virtual Device ordinal number determines the device ID of the device.
    -         * A Virtual device with a lower ordinal number always receives the a
    -         * smaller device id. The phyiscal device id and location in the
    -         * virtual device list is used to break ties.
    +         * If true, the compute stream will be used for device_to_device copy as
    +         * well. It's no longer necessary to record an event before the copy to
    +         * let the copy stream wait for the compute stream of the sending device
    +         * to finish. There is also no need to wait for the compute stream of the
    +         * receiving device to finish if the copy is within the same device.
              * 
    * - * repeated int32 device_ordinal = 3; + * bool merge_device_to_device_stream = 3; * @return This builder for chaining. */ - public Builder clearDeviceOrdinal() { - deviceOrdinal_ = emptyIntList(); - bitField0_ = (bitField0_ & ~0x00000004); + public Builder clearMergeDeviceToDeviceStream() { + + mergeDeviceToDeviceStream_ = false; onChanged(); return this; } @@ -1788,23 +2566,23 @@ public final Builder mergeUnknownFields( } - // @@protoc_insertion_point(builder_scope:tensorflow.GPUOptions.Experimental.VirtualDevices) + // @@protoc_insertion_point(builder_scope:tensorflow.GPUOptions.Experimental.StreamMergeOptions) } - // @@protoc_insertion_point(class_scope:tensorflow.GPUOptions.Experimental.VirtualDevices) - private static final org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices DEFAULT_INSTANCE; + // @@protoc_insertion_point(class_scope:tensorflow.GPUOptions.Experimental.StreamMergeOptions) + private static final org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions DEFAULT_INSTANCE; static { - DEFAULT_INSTANCE = new org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices(); + DEFAULT_INSTANCE = new org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions(); } - public static org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices getDefaultInstance() { + public static org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getDefaultInstance() { return DEFAULT_INSTANCE; } - private static final com.google.protobuf.Parser - PARSER = new com.google.protobuf.AbstractParser() { + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { @java.lang.Override - public VirtualDevices parsePartialFrom( + public StreamMergeOptions parsePartialFrom( com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry) throws com.google.protobuf.InvalidProtocolBufferException { @@ -1823,17 +2601,17 @@ public VirtualDevices parsePartialFrom( } }; - public static com.google.protobuf.Parser parser() { + public static com.google.protobuf.Parser parser() { return PARSER; } @java.lang.Override - public com.google.protobuf.Parser getParserForType() { + public com.google.protobuf.Parser getParserForType() { return PARSER; } @java.lang.Override - public org.tensorflow.proto.GPUOptions.Experimental.VirtualDevices getDefaultInstanceForType() { + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getDefaultInstanceForType() { return DEFAULT_INSTANCE; } @@ -2365,6 +3143,64 @@ public int getGpuSystemMemorySizeInMb() { return gpuSystemMemorySizeInMb_; } + public static final int POPULATE_PJRT_GPU_CLIENT_CREATION_INFO_FIELD_NUMBER = 17; + private boolean populatePjrtGpuClientCreationInfo_; + /** + *
    +     * If true, save information needed for created a PjRt GPU client for
    +     * creating a client with remote devices.
    +     * 
    + * + * bool populate_pjrt_gpu_client_creation_info = 17; + * @return The populatePjrtGpuClientCreationInfo. + */ + @java.lang.Override + public boolean getPopulatePjrtGpuClientCreationInfo() { + return populatePjrtGpuClientCreationInfo_; + } + + public static final int NODE_ID_FIELD_NUMBER = 18; + private int nodeId_; + /** + *
    +     * node_id for use when creating a PjRt GPU client with remote devices,
    +     * which enumerates jobs*tasks from a ServerDef.
    +     * 
    + * + * int32 node_id = 18; + * @return The nodeId. + */ + @java.lang.Override + public int getNodeId() { + return nodeId_; + } + + public static final int STREAM_MERGE_OPTIONS_FIELD_NUMBER = 19; + private org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions streamMergeOptions_; + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return Whether the streamMergeOptions field is set. + */ + @java.lang.Override + public boolean hasStreamMergeOptions() { + return streamMergeOptions_ != null; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return The streamMergeOptions. + */ + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getStreamMergeOptions() { + return streamMergeOptions_ == null ? org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.getDefaultInstance() : streamMergeOptions_; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + @java.lang.Override + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder getStreamMergeOptionsOrBuilder() { + return getStreamMergeOptions(); + } + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -2424,6 +3260,15 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (gpuSystemMemorySizeInMb_ != 0) { output.writeInt32(16, gpuSystemMemorySizeInMb_); } + if (populatePjrtGpuClientCreationInfo_ != false) { + output.writeBool(17, populatePjrtGpuClientCreationInfo_); + } + if (nodeId_ != 0) { + output.writeInt32(18, nodeId_); + } + if (streamMergeOptions_ != null) { + output.writeMessage(19, getStreamMergeOptions()); + } getUnknownFields().writeTo(output); } @@ -2492,6 +3337,18 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeInt32Size(16, gpuSystemMemorySizeInMb_); } + if (populatePjrtGpuClientCreationInfo_ != false) { + size += com.google.protobuf.CodedOutputStream + .computeBoolSize(17, populatePjrtGpuClientCreationInfo_); + } + if (nodeId_ != 0) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size(18, nodeId_); + } + if (streamMergeOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(19, getStreamMergeOptions()); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -2539,6 +3396,15 @@ public boolean equals(final java.lang.Object obj) { != other.getGpuHostMemDisallowGrowth()) return false; if (getGpuSystemMemorySizeInMb() != other.getGpuSystemMemorySizeInMb()) return false; + if (getPopulatePjrtGpuClientCreationInfo() + != other.getPopulatePjrtGpuClientCreationInfo()) return false; + if (getNodeId() + != other.getNodeId()) return false; + if (hasStreamMergeOptions() != other.hasStreamMergeOptions()) return false; + if (hasStreamMergeOptions()) { + if (!getStreamMergeOptions() + .equals(other.getStreamMergeOptions())) return false; + } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @@ -2589,6 +3455,15 @@ public int hashCode() { getGpuHostMemDisallowGrowth()); hash = (37 * hash) + GPU_SYSTEM_MEMORY_SIZE_IN_MB_FIELD_NUMBER; hash = (53 * hash) + getGpuSystemMemorySizeInMb(); + hash = (37 * hash) + POPULATE_PJRT_GPU_CLIENT_CREATION_INFO_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getPopulatePjrtGpuClientCreationInfo()); + hash = (37 * hash) + NODE_ID_FIELD_NUMBER; + hash = (53 * hash) + getNodeId(); + if (hasStreamMergeOptions()) { + hash = (37 * hash) + STREAM_MERGE_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getStreamMergeOptions().hashCode(); + } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; @@ -2752,6 +3627,16 @@ public Builder clear() { gpuSystemMemorySizeInMb_ = 0; + populatePjrtGpuClientCreationInfo_ = false; + + nodeId_ = 0; + + if (streamMergeOptionsBuilder_ == null) { + streamMergeOptions_ = null; + } else { + streamMergeOptions_ = null; + streamMergeOptionsBuilder_ = null; + } return this; } @@ -2802,6 +3687,13 @@ public org.tensorflow.proto.GPUOptions.Experimental buildPartial() { result.gpuHostMemLimitInMb_ = gpuHostMemLimitInMb_; result.gpuHostMemDisallowGrowth_ = gpuHostMemDisallowGrowth_; result.gpuSystemMemorySizeInMb_ = gpuSystemMemorySizeInMb_; + result.populatePjrtGpuClientCreationInfo_ = populatePjrtGpuClientCreationInfo_; + result.nodeId_ = nodeId_; + if (streamMergeOptionsBuilder_ == null) { + result.streamMergeOptions_ = streamMergeOptions_; + } else { + result.streamMergeOptions_ = streamMergeOptionsBuilder_.build(); + } onBuilt(); return result; } @@ -2919,6 +3811,15 @@ public Builder mergeFrom(org.tensorflow.proto.GPUOptions.Experimental other) { if (other.getGpuSystemMemorySizeInMb() != 0) { setGpuSystemMemorySizeInMb(other.getGpuSystemMemorySizeInMb()); } + if (other.getPopulatePjrtGpuClientCreationInfo() != false) { + setPopulatePjrtGpuClientCreationInfo(other.getPopulatePjrtGpuClientCreationInfo()); + } + if (other.getNodeId() != 0) { + setNodeId(other.getNodeId()); + } + if (other.hasStreamMergeOptions()) { + mergeStreamMergeOptions(other.getStreamMergeOptions()); + } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; @@ -3028,6 +3929,23 @@ public Builder mergeFrom( break; } // case 128 + case 136: { + populatePjrtGpuClientCreationInfo_ = input.readBool(); + + break; + } // case 136 + case 144: { + nodeId_ = input.readInt32(); + + break; + } // case 144 + case 154: { + input.readMessage( + getStreamMergeOptionsFieldBuilder().getBuilder(), + extensionRegistry); + + break; + } // case 154 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -4783,6 +5701,217 @@ public Builder clearGpuSystemMemorySizeInMb() { onChanged(); return this; } + + private boolean populatePjrtGpuClientCreationInfo_ ; + /** + *
    +       * If true, save information needed for created a PjRt GPU client for
    +       * creating a client with remote devices.
    +       * 
    + * + * bool populate_pjrt_gpu_client_creation_info = 17; + * @return The populatePjrtGpuClientCreationInfo. + */ + @java.lang.Override + public boolean getPopulatePjrtGpuClientCreationInfo() { + return populatePjrtGpuClientCreationInfo_; + } + /** + *
    +       * If true, save information needed for created a PjRt GPU client for
    +       * creating a client with remote devices.
    +       * 
    + * + * bool populate_pjrt_gpu_client_creation_info = 17; + * @param value The populatePjrtGpuClientCreationInfo to set. + * @return This builder for chaining. + */ + public Builder setPopulatePjrtGpuClientCreationInfo(boolean value) { + + populatePjrtGpuClientCreationInfo_ = value; + onChanged(); + return this; + } + /** + *
    +       * If true, save information needed for created a PjRt GPU client for
    +       * creating a client with remote devices.
    +       * 
    + * + * bool populate_pjrt_gpu_client_creation_info = 17; + * @return This builder for chaining. + */ + public Builder clearPopulatePjrtGpuClientCreationInfo() { + + populatePjrtGpuClientCreationInfo_ = false; + onChanged(); + return this; + } + + private int nodeId_ ; + /** + *
    +       * node_id for use when creating a PjRt GPU client with remote devices,
    +       * which enumerates jobs*tasks from a ServerDef.
    +       * 
    + * + * int32 node_id = 18; + * @return The nodeId. + */ + @java.lang.Override + public int getNodeId() { + return nodeId_; + } + /** + *
    +       * node_id for use when creating a PjRt GPU client with remote devices,
    +       * which enumerates jobs*tasks from a ServerDef.
    +       * 
    + * + * int32 node_id = 18; + * @param value The nodeId to set. + * @return This builder for chaining. + */ + public Builder setNodeId(int value) { + + nodeId_ = value; + onChanged(); + return this; + } + /** + *
    +       * node_id for use when creating a PjRt GPU client with remote devices,
    +       * which enumerates jobs*tasks from a ServerDef.
    +       * 
    + * + * int32 node_id = 18; + * @return This builder for chaining. + */ + public Builder clearNodeId() { + + nodeId_ = 0; + onChanged(); + return this; + } + + private org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions streamMergeOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder> streamMergeOptionsBuilder_; + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return Whether the streamMergeOptions field is set. + */ + public boolean hasStreamMergeOptions() { + return streamMergeOptionsBuilder_ != null || streamMergeOptions_ != null; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + * @return The streamMergeOptions. + */ + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions getStreamMergeOptions() { + if (streamMergeOptionsBuilder_ == null) { + return streamMergeOptions_ == null ? org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.getDefaultInstance() : streamMergeOptions_; + } else { + return streamMergeOptionsBuilder_.getMessage(); + } + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public Builder setStreamMergeOptions(org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions value) { + if (streamMergeOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + streamMergeOptions_ = value; + onChanged(); + } else { + streamMergeOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public Builder setStreamMergeOptions( + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder builderForValue) { + if (streamMergeOptionsBuilder_ == null) { + streamMergeOptions_ = builderForValue.build(); + onChanged(); + } else { + streamMergeOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public Builder mergeStreamMergeOptions(org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions value) { + if (streamMergeOptionsBuilder_ == null) { + if (streamMergeOptions_ != null) { + streamMergeOptions_ = + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.newBuilder(streamMergeOptions_).mergeFrom(value).buildPartial(); + } else { + streamMergeOptions_ = value; + } + onChanged(); + } else { + streamMergeOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public Builder clearStreamMergeOptions() { + if (streamMergeOptionsBuilder_ == null) { + streamMergeOptions_ = null; + onChanged(); + } else { + streamMergeOptions_ = null; + streamMergeOptionsBuilder_ = null; + } + + return this; + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder getStreamMergeOptionsBuilder() { + + onChanged(); + return getStreamMergeOptionsFieldBuilder().getBuilder(); + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + public org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder getStreamMergeOptionsOrBuilder() { + if (streamMergeOptionsBuilder_ != null) { + return streamMergeOptionsBuilder_.getMessageOrBuilder(); + } else { + return streamMergeOptions_ == null ? + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.getDefaultInstance() : streamMergeOptions_; + } + } + /** + * .tensorflow.GPUOptions.Experimental.StreamMergeOptions stream_merge_options = 19; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder> + getStreamMergeOptionsFieldBuilder() { + if (streamMergeOptionsBuilder_ == null) { + streamMergeOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptions.Builder, org.tensorflow.proto.GPUOptions.Experimental.StreamMergeOptionsOrBuilder>( + getStreamMergeOptions(), + getParentForChildren(), + isClean()); + streamMergeOptions_ = null; + } + return streamMergeOptionsBuilder_; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfiguration.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfiguration.java index 56ab6b425d1..6dbc6ce6f3b 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfiguration.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfiguration.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfigurationOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfigurationOrBuilder.java index 5821218bf8f..e3c944d06be 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfigurationOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MachineConfigurationOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfo.java index 8c4b5b692a6..d351a728e2a 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfo.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfoOrBuilder.java index 265206a7c19..6a2f7e6c9e8 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MemoryInfoOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntry.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntry.java index 70a5e1ba8bc..d9454e9bc70 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntry.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntry.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntryOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntryOrBuilder.java index 9898de2810f..e8f2867a14a 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntryOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/MetricEntryOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfo.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfo.java index 782524cf4d4..d2875cf5041 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfo.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfo.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfoOrBuilder.java index fd9455571a2..caade7d2f32 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/PlatformInfoOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ResourceHandleProto.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ResourceHandleProto.java index 159c9574b47..df26d1e77cd 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ResourceHandleProto.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/ResourceHandleProto.java @@ -59,27 +59,47 @@ public interface DtypeAndShapeOrBuilder extends com.google.protobuf.MessageOrBuilder { /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ int getDtypeValue(); /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ org.tensorflow.proto.DataType getDtype(); /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ boolean hasShape(); /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return The shape. */ org.tensorflow.proto.TensorShapeProto getShape(); /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ org.tensorflow.proto.TensorShapeProtoOrBuilder getShapeOrBuilder(); @@ -132,6 +152,10 @@ protected java.lang.Object newInstance( public static final int DTYPE_FIELD_NUMBER = 1; private int dtype_; /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ @@ -139,6 +163,10 @@ protected java.lang.Object newInstance( return dtype_; } /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ @@ -151,6 +179,10 @@ protected java.lang.Object newInstance( public static final int SHAPE_FIELD_NUMBER = 2; private org.tensorflow.proto.TensorShapeProto shape_; /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ @@ -159,6 +191,10 @@ public boolean hasShape() { return shape_ != null; } /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return The shape. */ @@ -167,6 +203,10 @@ public org.tensorflow.proto.TensorShapeProto getShape() { return shape_ == null ? org.tensorflow.proto.TensorShapeProto.getDefaultInstance() : shape_; } /** + *
    +     * Shape of the tensor.
    +     * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ @java.lang.Override @@ -531,6 +571,10 @@ public Builder mergeFrom( private int dtype_ = 0; /** + *
    +       * Data type of the tensor.
    +       * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ @@ -538,6 +582,10 @@ public Builder mergeFrom( return dtype_; } /** + *
    +       * Data type of the tensor.
    +       * 
    + * * .tensorflow.DataType dtype = 1; * @param value The enum numeric value on the wire for dtype to set. * @return This builder for chaining. @@ -549,6 +597,10 @@ public Builder setDtypeValue(int value) { return this; } /** + *
    +       * Data type of the tensor.
    +       * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ @@ -559,6 +611,10 @@ public org.tensorflow.proto.DataType getDtype() { return result == null ? org.tensorflow.proto.DataType.UNRECOGNIZED : result; } /** + *
    +       * Data type of the tensor.
    +       * 
    + * * .tensorflow.DataType dtype = 1; * @param value The dtype to set. * @return This builder for chaining. @@ -573,6 +629,10 @@ public Builder setDtype(org.tensorflow.proto.DataType value) { return this; } /** + *
    +       * Data type of the tensor.
    +       * 
    + * * .tensorflow.DataType dtype = 1; * @return This builder for chaining. */ @@ -587,6 +647,10 @@ public Builder clearDtype() { private com.google.protobuf.SingleFieldBuilderV3< org.tensorflow.proto.TensorShapeProto, org.tensorflow.proto.TensorShapeProto.Builder, org.tensorflow.proto.TensorShapeProtoOrBuilder> shapeBuilder_; /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return Whether the shape field is set. */ @@ -594,6 +658,10 @@ public boolean hasShape() { return shapeBuilder_ != null || shape_ != null; } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; * @return The shape. */ @@ -605,6 +673,10 @@ public org.tensorflow.proto.TensorShapeProto getShape() { } } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public Builder setShape(org.tensorflow.proto.TensorShapeProto value) { @@ -621,6 +693,10 @@ public Builder setShape(org.tensorflow.proto.TensorShapeProto value) { return this; } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public Builder setShape( @@ -635,6 +711,10 @@ public Builder setShape( return this; } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public Builder mergeShape(org.tensorflow.proto.TensorShapeProto value) { @@ -653,6 +733,10 @@ public Builder mergeShape(org.tensorflow.proto.TensorShapeProto value) { return this; } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public Builder clearShape() { @@ -667,6 +751,10 @@ public Builder clearShape() { return this; } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.proto.TensorShapeProto.Builder getShapeBuilder() { @@ -675,6 +763,10 @@ public org.tensorflow.proto.TensorShapeProto.Builder getShapeBuilder() { return getShapeFieldBuilder().getBuilder(); } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ public org.tensorflow.proto.TensorShapeProtoOrBuilder getShapeOrBuilder() { @@ -686,6 +778,10 @@ public org.tensorflow.proto.TensorShapeProtoOrBuilder getShapeOrBuilder() { } } /** + *
    +       * Shape of the tensor.
    +       * 
    + * * .tensorflow.TensorShapeProto shape = 2; */ private com.google.protobuf.SingleFieldBuilderV3< diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfig.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfig.java index ae97c9cc75f..c235fb30634 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfig.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfig.java @@ -2002,8 +2002,8 @@ public boolean getDisableModelPruning() { private int autoMixedPrecision_; /** *
    -   * Optimize data types for CUDA (default is OFF).
    -   * This will try to use float16 on GPU which is faster.
    +   * Optimize data types for CUDA/oneDNN (default is OFF).
    +   * This will try to use float16 on GPU/CPU which is faster.
        * Note that this can change the numerical stability of the graph and may
        * require the use of loss scaling to maintain model convergence.
        * 
    @@ -2016,8 +2016,8 @@ public boolean getDisableModelPruning() { } /** *
    -   * Optimize data types for CUDA (default is OFF).
    -   * This will try to use float16 on GPU which is faster.
    +   * Optimize data types for CUDA/oneDNN (default is OFF).
    +   * This will try to use float16 on GPU/CPU which is faster.
        * Note that this can change the numerical stability of the graph and may
        * require the use of loss scaling to maintain model convergence.
        * 
    @@ -5074,8 +5074,8 @@ public Builder clearImplementationSelector() { private int autoMixedPrecision_ = 0; /** *
    -     * Optimize data types for CUDA (default is OFF).
    -     * This will try to use float16 on GPU which is faster.
    +     * Optimize data types for CUDA/oneDNN (default is OFF).
    +     * This will try to use float16 on GPU/CPU which is faster.
          * Note that this can change the numerical stability of the graph and may
          * require the use of loss scaling to maintain model convergence.
          * 
    @@ -5088,8 +5088,8 @@ public Builder clearImplementationSelector() { } /** *
    -     * Optimize data types for CUDA (default is OFF).
    -     * This will try to use float16 on GPU which is faster.
    +     * Optimize data types for CUDA/oneDNN (default is OFF).
    +     * This will try to use float16 on GPU/CPU which is faster.
          * Note that this can change the numerical stability of the graph and may
          * require the use of loss scaling to maintain model convergence.
          * 
    @@ -5106,8 +5106,8 @@ public Builder setAutoMixedPrecisionValue(int value) { } /** *
    -     * Optimize data types for CUDA (default is OFF).
    -     * This will try to use float16 on GPU which is faster.
    +     * Optimize data types for CUDA/oneDNN (default is OFF).
    +     * This will try to use float16 on GPU/CPU which is faster.
          * Note that this can change the numerical stability of the graph and may
          * require the use of loss scaling to maintain model convergence.
          * 
    @@ -5123,8 +5123,8 @@ public org.tensorflow.proto.RewriterConfig.Toggle getAutoMixedPrecision() { } /** *
    -     * Optimize data types for CUDA (default is OFF).
    -     * This will try to use float16 on GPU which is faster.
    +     * Optimize data types for CUDA/oneDNN (default is OFF).
    +     * This will try to use float16 on GPU/CPU which is faster.
          * Note that this can change the numerical stability of the graph and may
          * require the use of loss scaling to maintain model convergence.
          * 
    @@ -5144,8 +5144,8 @@ public Builder setAutoMixedPrecision(org.tensorflow.proto.RewriterConfig.Toggle } /** *
    -     * Optimize data types for CUDA (default is OFF).
    -     * This will try to use float16 on GPU which is faster.
    +     * Optimize data types for CUDA/oneDNN (default is OFF).
    +     * This will try to use float16 on GPU/CPU which is faster.
          * Note that this can change the numerical stability of the graph and may
          * require the use of loss scaling to maintain model convergence.
          * 
    diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfigOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfigOrBuilder.java index 9ad4b3cf401..2676ca54911 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfigOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RewriterConfigOrBuilder.java @@ -305,8 +305,8 @@ public interface RewriterConfigOrBuilder extends /** *
    -   * Optimize data types for CUDA (default is OFF).
    -   * This will try to use float16 on GPU which is faster.
    +   * Optimize data types for CUDA/oneDNN (default is OFF).
    +   * This will try to use float16 on GPU/CPU which is faster.
        * Note that this can change the numerical stability of the graph and may
        * require the use of loss scaling to maintain model convergence.
        * 
    @@ -317,8 +317,8 @@ public interface RewriterConfigOrBuilder extends int getAutoMixedPrecisionValue(); /** *
    -   * Optimize data types for CUDA (default is OFF).
    -   * This will try to use float16 on GPU which is faster.
    +   * Optimize data types for CUDA/oneDNN (default is OFF).
    +   * This will try to use float16 on GPU/CPU which is faster.
        * Note that this can change the numerical stability of the graph and may
        * require the use of loss scaling to maintain model convergence.
        * 
    diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfiguration.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfiguration.java index 2a17bdafaf1..f8f244b522c 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfiguration.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfiguration.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfigurationOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfigurationOrBuilder.java index a3b3ca982e8..4f2ef9a6b2c 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfigurationOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/RunConfigurationOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDef.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDef.java index ecb73cc96e7..b701daabd03 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDef.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDef.java @@ -7,58 +7,6 @@ *
      * SignatureDef defines the signature of a computation supported by a TensorFlow
      * graph.
    - * For example, a model with two loss computations, sharing a single input,
    - * might have the following signature_def map, in a MetaGraphDef message.
    - * Note that across the two SignatureDefs "loss_A" and "loss_B", the input key,
    - * output key, and method_name are identical, and will be used by system(s) that
    - * implement or rely upon this particular loss method. The output tensor names
    - * differ, demonstrating how different outputs can exist for the same method.
    - * signature_def {
    - *   key: "loss_A"
    - *   value {
    - *     inputs {
    - *       key: "input"
    - *       value {
    - *         name: "input:0"
    - *         dtype: DT_STRING
    - *         tensor_shape: ...
    - *       }
    - *     }
    - *     outputs {
    - *       key: "loss_output"
    - *       value {
    - *         name: "loss_output_A:0"
    - *         dtype: DT_FLOAT
    - *         tensor_shape: ...
    - *       }
    - *     }
    - *     method_name: "some/package/compute_loss"
    - *   }
    - *   ...
    - * }
    - * signature_def {
    - *   key: "loss_B"
    - *   value {
    - *     inputs {
    - *       key: "input"
    - *       value {
    - *         name: "input:0"
    - *         dtype: DT_STRING
    - *         tensor_shape: ...
    - *       }
    - *     }
    - *     outputs {
    - *       key: "loss_output"
    - *       value {
    - *         name: "loss_output_B:0"
    - *         dtype: DT_FLOAT
    - *         tensor_shape: ...
    - *       }
    - *     }
    - *     method_name: "some/package/compute_loss"
    - *   }
    - *   ...
    - * }
      * 
    * * Protobuf type {@code tensorflow.SignatureDef} @@ -315,13 +263,12 @@ public org.tensorflow.proto.TensorInfo getOutputsOrThrow( private volatile java.lang.Object methodName_; /** *
    -   * Extensible method_name information enabling third-party users to mark a
    -   * SignatureDef as supporting a particular method. This enables producers and
    -   * consumers of SignatureDefs, e.g. a model definition library and a serving
    -   * library to have a clear hand-off regarding the semantics of a computation.
    -   * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -   * method_name. This is commonly used to support multi-headed computation,
    -   * where a single graph computation may return multiple results.
    +   * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +   * open-source TF Serving stopped checking by default since release 2.4.
    +   * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +   * supporting a particular method. Multiple SignatureDefs in a single
    +   * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +   * computation).
        * 
    * * string method_name = 3; @@ -342,13 +289,12 @@ public java.lang.String getMethodName() { } /** *
    -   * Extensible method_name information enabling third-party users to mark a
    -   * SignatureDef as supporting a particular method. This enables producers and
    -   * consumers of SignatureDefs, e.g. a model definition library and a serving
    -   * library to have a clear hand-off regarding the semantics of a computation.
    -   * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -   * method_name. This is commonly used to support multi-headed computation,
    -   * where a single graph computation may return multiple results.
    +   * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +   * open-source TF Serving stopped checking by default since release 2.4.
    +   * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +   * supporting a particular method. Multiple SignatureDefs in a single
    +   * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +   * computation).
        * 
    * * string method_name = 3; @@ -690,58 +636,6 @@ protected Builder newBuilderForType( *
        * SignatureDef defines the signature of a computation supported by a TensorFlow
        * graph.
    -   * For example, a model with two loss computations, sharing a single input,
    -   * might have the following signature_def map, in a MetaGraphDef message.
    -   * Note that across the two SignatureDefs "loss_A" and "loss_B", the input key,
    -   * output key, and method_name are identical, and will be used by system(s) that
    -   * implement or rely upon this particular loss method. The output tensor names
    -   * differ, demonstrating how different outputs can exist for the same method.
    -   * signature_def {
    -   *   key: "loss_A"
    -   *   value {
    -   *     inputs {
    -   *       key: "input"
    -   *       value {
    -   *         name: "input:0"
    -   *         dtype: DT_STRING
    -   *         tensor_shape: ...
    -   *       }
    -   *     }
    -   *     outputs {
    -   *       key: "loss_output"
    -   *       value {
    -   *         name: "loss_output_A:0"
    -   *         dtype: DT_FLOAT
    -   *         tensor_shape: ...
    -   *       }
    -   *     }
    -   *     method_name: "some/package/compute_loss"
    -   *   }
    -   *   ...
    -   * }
    -   * signature_def {
    -   *   key: "loss_B"
    -   *   value {
    -   *     inputs {
    -   *       key: "input"
    -   *       value {
    -   *         name: "input:0"
    -   *         dtype: DT_STRING
    -   *         tensor_shape: ...
    -   *       }
    -   *     }
    -   *     outputs {
    -   *       key: "loss_output"
    -   *       value {
    -   *         name: "loss_output_B:0"
    -   *         dtype: DT_FLOAT
    -   *         tensor_shape: ...
    -   *       }
    -   *     }
    -   *     method_name: "some/package/compute_loss"
    -   *   }
    -   *   ...
    -   * }
        * 
    * * Protobuf type {@code tensorflow.SignatureDef} @@ -1296,13 +1190,12 @@ public Builder putAllOutputs( private java.lang.Object methodName_ = ""; /** *
    -     * Extensible method_name information enabling third-party users to mark a
    -     * SignatureDef as supporting a particular method. This enables producers and
    -     * consumers of SignatureDefs, e.g. a model definition library and a serving
    -     * library to have a clear hand-off regarding the semantics of a computation.
    -     * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -     * method_name. This is commonly used to support multi-headed computation,
    -     * where a single graph computation may return multiple results.
    +     * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +     * open-source TF Serving stopped checking by default since release 2.4.
    +     * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +     * supporting a particular method. Multiple SignatureDefs in a single
    +     * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +     * computation).
          * 
    * * string method_name = 3; @@ -1322,13 +1215,12 @@ public java.lang.String getMethodName() { } /** *
    -     * Extensible method_name information enabling third-party users to mark a
    -     * SignatureDef as supporting a particular method. This enables producers and
    -     * consumers of SignatureDefs, e.g. a model definition library and a serving
    -     * library to have a clear hand-off regarding the semantics of a computation.
    -     * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -     * method_name. This is commonly used to support multi-headed computation,
    -     * where a single graph computation may return multiple results.
    +     * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +     * open-source TF Serving stopped checking by default since release 2.4.
    +     * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +     * supporting a particular method. Multiple SignatureDefs in a single
    +     * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +     * computation).
          * 
    * * string method_name = 3; @@ -1349,13 +1241,12 @@ public java.lang.String getMethodName() { } /** *
    -     * Extensible method_name information enabling third-party users to mark a
    -     * SignatureDef as supporting a particular method. This enables producers and
    -     * consumers of SignatureDefs, e.g. a model definition library and a serving
    -     * library to have a clear hand-off regarding the semantics of a computation.
    -     * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -     * method_name. This is commonly used to support multi-headed computation,
    -     * where a single graph computation may return multiple results.
    +     * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +     * open-source TF Serving stopped checking by default since release 2.4.
    +     * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +     * supporting a particular method. Multiple SignatureDefs in a single
    +     * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +     * computation).
          * 
    * * string method_name = 3; @@ -1374,13 +1265,12 @@ public Builder setMethodName( } /** *
    -     * Extensible method_name information enabling third-party users to mark a
    -     * SignatureDef as supporting a particular method. This enables producers and
    -     * consumers of SignatureDefs, e.g. a model definition library and a serving
    -     * library to have a clear hand-off regarding the semantics of a computation.
    -     * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -     * method_name. This is commonly used to support multi-headed computation,
    -     * where a single graph computation may return multiple results.
    +     * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +     * open-source TF Serving stopped checking by default since release 2.4.
    +     * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +     * supporting a particular method. Multiple SignatureDefs in a single
    +     * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +     * computation).
          * 
    * * string method_name = 3; @@ -1394,13 +1284,12 @@ public Builder clearMethodName() { } /** *
    -     * Extensible method_name information enabling third-party users to mark a
    -     * SignatureDef as supporting a particular method. This enables producers and
    -     * consumers of SignatureDefs, e.g. a model definition library and a serving
    -     * library to have a clear hand-off regarding the semantics of a computation.
    -     * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -     * method_name. This is commonly used to support multi-headed computation,
    -     * where a single graph computation may return multiple results.
    +     * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +     * open-source TF Serving stopped checking by default since release 2.4.
    +     * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +     * supporting a particular method. Multiple SignatureDefs in a single
    +     * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +     * computation).
          * 
    * * string method_name = 3; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDefOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDefOrBuilder.java index 86ae1bcf3d1..28bd86c8f8a 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDefOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/SignatureDefOrBuilder.java @@ -121,13 +121,12 @@ org.tensorflow.proto.TensorInfo getOutputsOrThrow( /** *
    -   * Extensible method_name information enabling third-party users to mark a
    -   * SignatureDef as supporting a particular method. This enables producers and
    -   * consumers of SignatureDefs, e.g. a model definition library and a serving
    -   * library to have a clear hand-off regarding the semantics of a computation.
    -   * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -   * method_name. This is commonly used to support multi-headed computation,
    -   * where a single graph computation may return multiple results.
    +   * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +   * open-source TF Serving stopped checking by default since release 2.4.
    +   * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +   * supporting a particular method. Multiple SignatureDefs in a single
    +   * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +   * computation).
        * 
    * * string method_name = 3; @@ -136,13 +135,12 @@ org.tensorflow.proto.TensorInfo getOutputsOrThrow( java.lang.String getMethodName(); /** *
    -   * Extensible method_name information enabling third-party users to mark a
    -   * SignatureDef as supporting a particular method. This enables producers and
    -   * consumers of SignatureDefs, e.g. a model definition library and a serving
    -   * library to have a clear hand-off regarding the semantics of a computation.
    -   * Note that multiple SignatureDefs in a single MetaGraphDef may have the same
    -   * method_name. This is commonly used to support multi-headed computation,
    -   * where a single graph computation may return multiple results.
    +   * Deprecated: TensorFlow 2 always sets this to a fixed value;
    +   * open-source TF Serving stopped checking by default since release 2.4.
    +   * In TensorFlow 1, the method_name enabled users to mark a SignatureDef as
    +   * supporting a particular method. Multiple SignatureDefs in a single
    +   * MetaGraphDef could have the same method_name (e.g., to support multi-headed
    +   * computation).
        * 
    * * string method_name = 3; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProto.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProto.java index 0440777955e..ef4157a3352 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProto.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProto.java @@ -66,6 +66,10 @@ protected java.lang.Object newInstance( public static final int DTYPE_FIELD_NUMBER = 1; private int dtype_; /** + *
    +   * Data type of the tensor.
    +   * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ @@ -73,6 +77,10 @@ protected java.lang.Object newInstance( return dtype_; } /** + *
    +   * Data type of the tensor.
    +   * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ @@ -1929,6 +1937,10 @@ public Builder mergeFrom( private int dtype_ = 0; /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ @@ -1936,6 +1948,10 @@ public Builder mergeFrom( return dtype_; } /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @param value The enum numeric value on the wire for dtype to set. * @return This builder for chaining. @@ -1947,6 +1963,10 @@ public Builder setDtypeValue(int value) { return this; } /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ @@ -1957,6 +1977,10 @@ public org.tensorflow.proto.DataType getDtype() { return result == null ? org.tensorflow.proto.DataType.UNRECOGNIZED : result; } /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @param value The dtype to set. * @return This builder for chaining. @@ -1971,6 +1995,10 @@ public Builder setDtype(org.tensorflow.proto.DataType value) { return this; } /** + *
    +     * Data type of the tensor.
    +     * 
    + * * .tensorflow.DataType dtype = 1; * @return This builder for chaining. */ diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProtoOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProtoOrBuilder.java index fe901586e8c..9eafe8177e2 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProtoOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TensorProtoOrBuilder.java @@ -8,11 +8,19 @@ public interface TensorProtoOrBuilder extends com.google.protobuf.MessageOrBuilder { /** + *
    +   * Data type of the tensor.
    +   * 
    + * * .tensorflow.DataType dtype = 1; * @return The enum numeric value on the wire for dtype. */ int getDtypeValue(); /** + *
    +   * Data type of the tensor.
    +   * 
    + * * .tensorflow.DataType dtype = 1; * @return The dtype. */ diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestLogProtos.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestLogProtos.java index fb587acc9e8..f56cbf6b82b 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestLogProtos.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestLogProtos.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; @@ -108,68 +108,68 @@ public static void registerAllExtensions( descriptor; static { java.lang.String[] descriptorData = { - "\n\033tsl/protobuf/test_log.proto\022\ntensorflo" + - "w\032\031google/protobuf/any.proto\032\036google/pro" + - "tobuf/wrappers.proto\"D\n\nEntryValue\022\026\n\014do" + - "uble_value\030\001 \001(\001H\000\022\026\n\014string_value\030\002 \001(\t" + - "H\000B\006\n\004kind\"\214\001\n\013MetricEntry\022\014\n\004name\030\001 \001(\t" + - "\022\r\n\005value\030\002 \001(\001\022/\n\tmin_value\030\003 \001(\0132\034.goo" + - "gle.protobuf.DoubleValue\022/\n\tmax_value\030\004 " + - "\001(\0132\034.google.protobuf.DoubleValue\"\217\002\n\016Be" + - "nchmarkEntry\022\014\n\004name\030\001 \001(\t\022\r\n\005iters\030\002 \001(" + - "\003\022\020\n\010cpu_time\030\003 \001(\001\022\021\n\twall_time\030\004 \001(\001\022\022" + - "\n\nthroughput\030\005 \001(\001\0226\n\006extras\030\006 \003(\0132&.ten" + - "sorflow.BenchmarkEntry.ExtrasEntry\022(\n\007me" + - "trics\030\007 \003(\0132\027.tensorflow.MetricEntry\032E\n\013" + - "ExtrasEntry\022\013\n\003key\030\001 \001(\t\022%\n\005value\030\002 \001(\0132" + - "\026.tensorflow.EntryValue:\0028\001\"=\n\020Benchmark" + - "Entries\022)\n\005entry\030\001 \003(\0132\032.tensorflow.Benc" + - "hmarkEntry\"B\n\022BuildConfiguration\022\014\n\004mode" + - "\030\001 \001(\t\022\020\n\010cc_flags\030\002 \003(\t\022\014\n\004opts\030\003 \003(\t\"f" + - "\n\010CommitId\022\024\n\nchangelist\030\001 \001(\003H\000\022\016\n\004hash" + - "\030\002 \001(\tH\000\022\020\n\010snapshot\030\003 \001(\t\022\032\n\022pending_ch" + - "angelist\030\004 \001(\003B\006\n\004kind\"\336\001\n\007CPUInfo\022\021\n\tnu" + - "m_cores\030\001 \001(\003\022\031\n\021num_cores_allowed\030\002 \001(\003" + - "\022\023\n\013mhz_per_cpu\030\003 \001(\001\022\020\n\010cpu_info\030\004 \001(\t\022" + - "\024\n\014cpu_governor\030\005 \001(\t\0226\n\ncache_size\030\006 \003(" + - "\0132\".tensorflow.CPUInfo.CacheSizeEntry\0320\n" + - "\016CacheSizeEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005value\030\002 " + - "\001(\003:\0028\001\".\n\nMemoryInfo\022\r\n\005total\030\001 \001(\003\022\021\n\t" + - "available\030\002 \001(\003\"6\n\007GPUInfo\022\r\n\005model\030\001 \001(" + - "\t\022\014\n\004uuid\030\002 \001(\t\022\016\n\006bus_id\030\003 \001(\t\"p\n\014Platf" + - "ormInfo\022\014\n\004bits\030\001 \001(\t\022\017\n\007linkage\030\002 \001(\t\022\017" + - "\n\007machine\030\003 \001(\t\022\017\n\007release\030\004 \001(\t\022\016\n\006syst" + - "em\030\005 \001(\t\022\017\n\007version\030\006 \001(\t\"e\n\023AvailableDe" + - "viceInfo\022\014\n\004name\030\001 \001(\t\022\014\n\004type\030\002 \001(\t\022\024\n\014" + - "memory_limit\030\003 \001(\003\022\034\n\024physical_descripti" + - "on\030\004 \001(\t\"\263\002\n\024MachineConfiguration\022\020\n\010hos" + - "tname\030\001 \001(\t\022\031\n\021serial_identifier\030\007 \001(\t\022/" + - "\n\rplatform_info\030\002 \001(\0132\030.tensorflow.Platf" + - "ormInfo\022%\n\010cpu_info\030\003 \001(\0132\023.tensorflow.C" + - "PUInfo\022)\n\013device_info\030\004 \003(\0132\024.google.pro" + - "tobuf.Any\022>\n\025available_device_info\030\005 \003(\013" + - "2\037.tensorflow.AvailableDeviceInfo\022+\n\013mem" + - "ory_info\030\006 \001(\0132\026.tensorflow.MemoryInfo\"\221" + - "\001\n\020RunConfiguration\022\020\n\010argument\030\001 \003(\t\022;\n" + - "\010env_vars\030\002 \003(\0132).tensorflow.RunConfigur" + - "ation.EnvVarsEntry\032.\n\014EnvVarsEntry\022\013\n\003ke" + - "y\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:\0028\001\"\320\004\n\013TestResul" + - "ts\022\016\n\006target\030\001 \001(\t\022-\n\007entries\030\002 \001(\0132\034.te" + - "nsorflow.BenchmarkEntries\022;\n\023build_confi" + - "guration\030\003 \001(\0132\036.tensorflow.BuildConfigu" + - "ration\022\'\n\tcommit_id\030\004 \001(\0132\024.tensorflow.C" + - "ommitId\022\022\n\nstart_time\030\005 \001(\003\022\020\n\010run_time\030" + - "\006 \001(\001\022?\n\025machine_configuration\030\007 \001(\0132 .t" + - "ensorflow.MachineConfiguration\0227\n\021run_co" + - "nfiguration\030\010 \001(\0132\034.tensorflow.RunConfig" + - "uration\022\014\n\004name\030\t \001(\t\022=\n\016benchmark_type\030" + - "\n \001(\0162%.tensorflow.TestResults.Benchmark" + - "Type\022\020\n\010run_mode\030\013 \001(\t\022\022\n\ntf_version\030\014 \001" + - "(\t\"\210\001\n\rBenchmarkType\022\013\n\007UNKNOWN\020\000\022\026\n\022CPP" + - "_MICROBENCHMARK\020\001\022\024\n\020PYTHON_BENCHMARK\020\002\022" + - "\025\n\021ANDROID_BENCHMARK\020\003\022\022\n\016EDGE_BENCHMARK" + - "\020\004\022\021\n\rIOS_BENCHMARK\020\005B*\n\024org.tensorflow." + - "protoB\rTestLogProtosP\001\370\001\001b\006proto3" + "\n\037xla/tsl/protobuf/test_log.proto\022\ntenso" + + "rflow\032\031google/protobuf/any.proto\032\036google" + + "/protobuf/wrappers.proto\"D\n\nEntryValue\022\026" + + "\n\014double_value\030\001 \001(\001H\000\022\026\n\014string_value\030\002" + + " \001(\tH\000B\006\n\004kind\"\214\001\n\013MetricEntry\022\014\n\004name\030\001" + + " \001(\t\022\r\n\005value\030\002 \001(\001\022/\n\tmin_value\030\003 \001(\0132\034" + + ".google.protobuf.DoubleValue\022/\n\tmax_valu" + + "e\030\004 \001(\0132\034.google.protobuf.DoubleValue\"\217\002" + + "\n\016BenchmarkEntry\022\014\n\004name\030\001 \001(\t\022\r\n\005iters\030" + + "\002 \001(\003\022\020\n\010cpu_time\030\003 \001(\001\022\021\n\twall_time\030\004 \001" + + "(\001\022\022\n\nthroughput\030\005 \001(\001\0226\n\006extras\030\006 \003(\0132&" + + ".tensorflow.BenchmarkEntry.ExtrasEntry\022(" + + "\n\007metrics\030\007 \003(\0132\027.tensorflow.MetricEntry" + + "\032E\n\013ExtrasEntry\022\013\n\003key\030\001 \001(\t\022%\n\005value\030\002 " + + "\001(\0132\026.tensorflow.EntryValue:\0028\001\"=\n\020Bench" + + "markEntries\022)\n\005entry\030\001 \003(\0132\032.tensorflow." + + "BenchmarkEntry\"B\n\022BuildConfiguration\022\014\n\004" + + "mode\030\001 \001(\t\022\020\n\010cc_flags\030\002 \003(\t\022\014\n\004opts\030\003 \003" + + "(\t\"f\n\010CommitId\022\024\n\nchangelist\030\001 \001(\003H\000\022\016\n\004" + + "hash\030\002 \001(\tH\000\022\020\n\010snapshot\030\003 \001(\t\022\032\n\022pendin" + + "g_changelist\030\004 \001(\003B\006\n\004kind\"\336\001\n\007CPUInfo\022\021" + + "\n\tnum_cores\030\001 \001(\003\022\031\n\021num_cores_allowed\030\002" + + " \001(\003\022\023\n\013mhz_per_cpu\030\003 \001(\001\022\020\n\010cpu_info\030\004 " + + "\001(\t\022\024\n\014cpu_governor\030\005 \001(\t\0226\n\ncache_size\030" + + "\006 \003(\0132\".tensorflow.CPUInfo.CacheSizeEntr" + + "y\0320\n\016CacheSizeEntry\022\013\n\003key\030\001 \001(\t\022\r\n\005valu" + + "e\030\002 \001(\003:\0028\001\".\n\nMemoryInfo\022\r\n\005total\030\001 \001(\003" + + "\022\021\n\tavailable\030\002 \001(\003\"6\n\007GPUInfo\022\r\n\005model\030" + + "\001 \001(\t\022\014\n\004uuid\030\002 \001(\t\022\016\n\006bus_id\030\003 \001(\t\"p\n\014P" + + "latformInfo\022\014\n\004bits\030\001 \001(\t\022\017\n\007linkage\030\002 \001" + + "(\t\022\017\n\007machine\030\003 \001(\t\022\017\n\007release\030\004 \001(\t\022\016\n\006" + + "system\030\005 \001(\t\022\017\n\007version\030\006 \001(\t\"e\n\023Availab" + + "leDeviceInfo\022\014\n\004name\030\001 \001(\t\022\014\n\004type\030\002 \001(\t" + + "\022\024\n\014memory_limit\030\003 \001(\003\022\034\n\024physical_descr" + + "iption\030\004 \001(\t\"\263\002\n\024MachineConfiguration\022\020\n" + + "\010hostname\030\001 \001(\t\022\031\n\021serial_identifier\030\007 \001" + + "(\t\022/\n\rplatform_info\030\002 \001(\0132\030.tensorflow.P" + + "latformInfo\022%\n\010cpu_info\030\003 \001(\0132\023.tensorfl" + + "ow.CPUInfo\022)\n\013device_info\030\004 \003(\0132\024.google" + + ".protobuf.Any\022>\n\025available_device_info\030\005" + + " \003(\0132\037.tensorflow.AvailableDeviceInfo\022+\n" + + "\013memory_info\030\006 \001(\0132\026.tensorflow.MemoryIn" + + "fo\"\221\001\n\020RunConfiguration\022\020\n\010argument\030\001 \003(" + + "\t\022;\n\010env_vars\030\002 \003(\0132).tensorflow.RunConf" + + "iguration.EnvVarsEntry\032.\n\014EnvVarsEntry\022\013" + + "\n\003key\030\001 \001(\t\022\r\n\005value\030\002 \001(\t:\0028\001\"\320\004\n\013TestR" + + "esults\022\016\n\006target\030\001 \001(\t\022-\n\007entries\030\002 \001(\0132" + + "\034.tensorflow.BenchmarkEntries\022;\n\023build_c" + + "onfiguration\030\003 \001(\0132\036.tensorflow.BuildCon" + + "figuration\022\'\n\tcommit_id\030\004 \001(\0132\024.tensorfl" + + "ow.CommitId\022\022\n\nstart_time\030\005 \001(\003\022\020\n\010run_t" + + "ime\030\006 \001(\001\022?\n\025machine_configuration\030\007 \001(\013" + + "2 .tensorflow.MachineConfiguration\0227\n\021ru" + + "n_configuration\030\010 \001(\0132\034.tensorflow.RunCo" + + "nfiguration\022\014\n\004name\030\t \001(\t\022=\n\016benchmark_t" + + "ype\030\n \001(\0162%.tensorflow.TestResults.Bench" + + "markType\022\020\n\010run_mode\030\013 \001(\t\022\022\n\ntf_version" + + "\030\014 \001(\t\"\210\001\n\rBenchmarkType\022\013\n\007UNKNOWN\020\000\022\026\n" + + "\022CPP_MICROBENCHMARK\020\001\022\024\n\020PYTHON_BENCHMAR" + + "K\020\002\022\025\n\021ANDROID_BENCHMARK\020\003\022\022\n\016EDGE_BENCH" + + "MARK\020\004\022\021\n\rIOS_BENCHMARK\020\005B*\n\024org.tensorf" + + "low.protoB\rTestLogProtosP\001\370\001\001b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResults.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResults.java index 09ed588ef20..4bc27cbdde7 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResults.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResults.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResultsOrBuilder.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResultsOrBuilder.java index 3afd736b478..1d6f1545988 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResultsOrBuilder.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/TestResultsOrBuilder.java @@ -1,5 +1,5 @@ // Generated by the protocol buffer compiler. DO NOT EDIT! -// source: tsl/protobuf/test_log.proto +// source: xla/tsl/protobuf/test_log.proto package org.tensorflow.proto; diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/DatasetOptions.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/DatasetOptions.java index c7d43294b14..424adecedbd 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/DatasetOptions.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/DatasetOptions.java @@ -381,6 +381,17 @@ public interface AutotuneOptionsOrBuilder extends */ org.tensorflow.proto.data.model.Model.AutotuneAlgorithm getAutotuneAlgorithm(); + /** + * int64 initial_parallelism = 5; + * @return Whether the initialParallelism field is set. + */ + boolean hasInitialParallelism(); + /** + * int64 initial_parallelism = 5; + * @return The initialParallelism. + */ + long getInitialParallelism(); + public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions.OptionalEnabledCase getOptionalEnabledCase(); public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions.OptionalCpuBudgetCase getOptionalCpuBudgetCase(); @@ -388,10 +399,12 @@ public interface AutotuneOptionsOrBuilder extends public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions.OptionalRamBudgetCase getOptionalRamBudgetCase(); public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions.OptionalAutotuneAlgorithmCase getOptionalAutotuneAlgorithmCase(); + + public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions.OptionalInitialParallelismCase getOptionalInitialParallelismCase(); } /** *
    -   * next: 5
    +   * next: 6
        * 
    * * Protobuf type {@code tensorflow.data.AutotuneOptions} @@ -589,6 +602,45 @@ public int getNumber() { optionalAutotuneAlgorithmCase_); } + private int optionalInitialParallelismCase_ = 0; + private java.lang.Object optionalInitialParallelism_; + public enum OptionalInitialParallelismCase + implements com.google.protobuf.Internal.EnumLite, + com.google.protobuf.AbstractMessage.InternalOneOfEnum { + INITIAL_PARALLELISM(5), + OPTIONALINITIALPARALLELISM_NOT_SET(0); + private final int value; + private OptionalInitialParallelismCase(int value) { + this.value = value; + } + /** + * @param value The number of the enum to look for. + * @return The enum associated with the given number. + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalInitialParallelismCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalInitialParallelismCase forNumber(int value) { + switch (value) { + case 5: return INITIAL_PARALLELISM; + case 0: return OPTIONALINITIALPARALLELISM_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalInitialParallelismCase + getOptionalInitialParallelismCase() { + return OptionalInitialParallelismCase.forNumber( + optionalInitialParallelismCase_); + } + public static final int ENABLED_FIELD_NUMBER = 1; /** * bool enabled = 1; @@ -684,6 +736,27 @@ public org.tensorflow.proto.data.model.Model.AutotuneAlgorithm getAutotuneAlgori return org.tensorflow.proto.data.model.Model.AutotuneAlgorithm.DEFAULT; } + public static final int INITIAL_PARALLELISM_FIELD_NUMBER = 5; + /** + * int64 initial_parallelism = 5; + * @return Whether the initialParallelism field is set. + */ + @java.lang.Override + public boolean hasInitialParallelism() { + return optionalInitialParallelismCase_ == 5; + } + /** + * int64 initial_parallelism = 5; + * @return The initialParallelism. + */ + @java.lang.Override + public long getInitialParallelism() { + if (optionalInitialParallelismCase_ == 5) { + return (java.lang.Long) optionalInitialParallelism_; + } + return 0L; + } + private byte memoizedIsInitialized = -1; @java.lang.Override public final boolean isInitialized() { @@ -713,6 +786,10 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (optionalAutotuneAlgorithmCase_ == 4) { output.writeEnum(4, ((java.lang.Integer) optionalAutotuneAlgorithm_)); } + if (optionalInitialParallelismCase_ == 5) { + output.writeInt64( + 5, (long)((java.lang.Long) optionalInitialParallelism_)); + } getUnknownFields().writeTo(output); } @@ -741,6 +818,11 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeEnumSize(4, ((java.lang.Integer) optionalAutotuneAlgorithm_)); } + if (optionalInitialParallelismCase_ == 5) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size( + 5, (long)((java.lang.Long) optionalInitialParallelism_)); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -792,6 +874,15 @@ public boolean equals(final java.lang.Object obj) { case 0: default: } + if (!getOptionalInitialParallelismCase().equals(other.getOptionalInitialParallelismCase())) return false; + switch (optionalInitialParallelismCase_) { + case 5: + if (getInitialParallelism() + != other.getInitialParallelism()) return false; + break; + case 0: + default: + } if (!getUnknownFields().equals(other.getUnknownFields())) return false; return true; } @@ -837,6 +928,15 @@ public int hashCode() { case 0: default: } + switch (optionalInitialParallelismCase_) { + case 5: + hash = (37 * hash) + INITIAL_PARALLELISM_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getInitialParallelism()); + break; + case 0: + default: + } hash = (29 * hash) + getUnknownFields().hashCode(); memoizedHashCode = hash; return hash; @@ -934,7 +1034,7 @@ protected Builder newBuilderForType( } /** *
    -     * next: 5
    +     * next: 6
          * 
    * * Protobuf type {@code tensorflow.data.AutotuneOptions} @@ -977,6 +1077,8 @@ public Builder clear() { optionalRamBudget_ = null; optionalAutotuneAlgorithmCase_ = 0; optionalAutotuneAlgorithm_ = null; + optionalInitialParallelismCase_ = 0; + optionalInitialParallelism_ = null; return this; } @@ -1015,10 +1117,14 @@ public org.tensorflow.proto.data.DatasetOptions.AutotuneOptions buildPartial() { if (optionalAutotuneAlgorithmCase_ == 4) { result.optionalAutotuneAlgorithm_ = optionalAutotuneAlgorithm_; } + if (optionalInitialParallelismCase_ == 5) { + result.optionalInitialParallelism_ = optionalInitialParallelism_; + } result.optionalEnabledCase_ = optionalEnabledCase_; result.optionalCpuBudgetCase_ = optionalCpuBudgetCase_; result.optionalRamBudgetCase_ = optionalRamBudgetCase_; result.optionalAutotuneAlgorithmCase_ = optionalAutotuneAlgorithmCase_; + result.optionalInitialParallelismCase_ = optionalInitialParallelismCase_; onBuilt(); return result; } @@ -1103,6 +1209,15 @@ public Builder mergeFrom(org.tensorflow.proto.data.DatasetOptions.AutotuneOption break; } } + switch (other.getOptionalInitialParallelismCase()) { + case INITIAL_PARALLELISM: { + setInitialParallelism(other.getInitialParallelism()); + break; + } + case OPTIONALINITIALPARALLELISM_NOT_SET: { + break; + } + } this.mergeUnknownFields(other.getUnknownFields()); onChanged(); return this; @@ -1150,6 +1265,11 @@ public Builder mergeFrom( optionalAutotuneAlgorithm_ = rawValue; break; } // case 32 + case 40: { + optionalInitialParallelism_ = input.readInt64(); + optionalInitialParallelismCase_ = 5; + break; + } // case 40 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -1225,6 +1345,21 @@ public Builder clearOptionalAutotuneAlgorithm() { return this; } + private int optionalInitialParallelismCase_ = 0; + private java.lang.Object optionalInitialParallelism_; + public OptionalInitialParallelismCase + getOptionalInitialParallelismCase() { + return OptionalInitialParallelismCase.forNumber( + optionalInitialParallelismCase_); + } + + public Builder clearOptionalInitialParallelism() { + optionalInitialParallelismCase_ = 0; + optionalInitialParallelism_ = null; + onChanged(); + return this; + } + /** * bool enabled = 1; @@ -1419,6 +1554,47 @@ public Builder clearAutotuneAlgorithm() { } return this; } + + /** + * int64 initial_parallelism = 5; + * @return Whether the initialParallelism field is set. + */ + public boolean hasInitialParallelism() { + return optionalInitialParallelismCase_ == 5; + } + /** + * int64 initial_parallelism = 5; + * @return The initialParallelism. + */ + public long getInitialParallelism() { + if (optionalInitialParallelismCase_ == 5) { + return (java.lang.Long) optionalInitialParallelism_; + } + return 0L; + } + /** + * int64 initial_parallelism = 5; + * @param value The initialParallelism to set. + * @return This builder for chaining. + */ + public Builder setInitialParallelism(long value) { + optionalInitialParallelismCase_ = 5; + optionalInitialParallelism_ = value; + onChanged(); + return this; + } + /** + * int64 initial_parallelism = 5; + * @return This builder for chaining. + */ + public Builder clearInitialParallelism() { + if (optionalInitialParallelismCase_ == 5) { + optionalInitialParallelismCase_ = 0; + optionalInitialParallelism_ = null; + onChanged(); + } + return this; + } @java.lang.Override public final Builder setUnknownFields( final com.google.protobuf.UnknownFieldSet unknownFields) { @@ -5349,60 +5525,47 @@ public org.tensorflow.proto.data.DatasetOptions.OptimizationOptions getDefaultIn } - public interface ThreadingOptionsOrBuilder extends - // @@protoc_insertion_point(interface_extends:tensorflow.data.ThreadingOptions) + public interface ServiceOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.ServiceOptions) com.google.protobuf.MessageOrBuilder { /** - * int32 max_intra_op_parallelism = 1; - * @return Whether the maxIntraOpParallelism field is set. - */ - boolean hasMaxIntraOpParallelism(); - /** - * int32 max_intra_op_parallelism = 1; - * @return The maxIntraOpParallelism. - */ - int getMaxIntraOpParallelism(); - - /** - * int32 private_threadpool_size = 2; - * @return Whether the privateThreadpoolSize field is set. + * bool pinned = 1; + * @return Whether the pinned field is set. */ - boolean hasPrivateThreadpoolSize(); + boolean hasPinned(); /** - * int32 private_threadpool_size = 2; - * @return The privateThreadpoolSize. + * bool pinned = 1; + * @return The pinned. */ - int getPrivateThreadpoolSize(); - - public org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.OptionalMaxIntraOpParallelismCase getOptionalMaxIntraOpParallelismCase(); + boolean getPinned(); - public org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.OptionalPrivateThreadpoolSizeCase getOptionalPrivateThreadpoolSizeCase(); + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions.OptionalPinnedCase getOptionalPinnedCase(); } /** *
    -   * next: 3
    +   * next: 2
        * 
    * - * Protobuf type {@code tensorflow.data.ThreadingOptions} + * Protobuf type {@code tensorflow.data.ServiceOptions} */ - public static final class ThreadingOptions extends + public static final class ServiceOptions extends com.google.protobuf.GeneratedMessageV3 implements - // @@protoc_insertion_point(message_implements:tensorflow.data.ThreadingOptions) - ThreadingOptionsOrBuilder { + // @@protoc_insertion_point(message_implements:tensorflow.data.ServiceOptions) + ServiceOptionsOrBuilder { private static final long serialVersionUID = 0L; - // Use ThreadingOptions.newBuilder() to construct. - private ThreadingOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + // Use ServiceOptions.newBuilder() to construct. + private ServiceOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { super(builder); } - private ThreadingOptions() { + private ServiceOptions() { } @java.lang.Override @SuppressWarnings({"unused"}) protected java.lang.Object newInstance( UnusedPrivateParameter unused) { - return new ThreadingOptions(); + return new ServiceOptions(); } @java.lang.Override @@ -5412,65 +5575,26 @@ protected java.lang.Object newInstance( } public static final com.google.protobuf.Descriptors.Descriptor getDescriptor() { - return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ThreadingOptions_descriptor; + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ServiceOptions_descriptor; } @java.lang.Override protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable() { - return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ServiceOptions_fieldAccessorTable .ensureFieldAccessorsInitialized( - org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.class, org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.Builder.class); - } - - private int optionalMaxIntraOpParallelismCase_ = 0; - private java.lang.Object optionalMaxIntraOpParallelism_; - public enum OptionalMaxIntraOpParallelismCase - implements com.google.protobuf.Internal.EnumLite, - com.google.protobuf.AbstractMessage.InternalOneOfEnum { - MAX_INTRA_OP_PARALLELISM(1), - OPTIONALMAXINTRAOPPARALLELISM_NOT_SET(0); - private final int value; - private OptionalMaxIntraOpParallelismCase(int value) { - this.value = value; - } - /** - * @param value The number of the enum to look for. - * @return The enum associated with the given number. - * @deprecated Use {@link #forNumber(int)} instead. - */ - @java.lang.Deprecated - public static OptionalMaxIntraOpParallelismCase valueOf(int value) { - return forNumber(value); - } - - public static OptionalMaxIntraOpParallelismCase forNumber(int value) { - switch (value) { - case 1: return MAX_INTRA_OP_PARALLELISM; - case 0: return OPTIONALMAXINTRAOPPARALLELISM_NOT_SET; - default: return null; - } - } - public int getNumber() { - return this.value; - } - }; - - public OptionalMaxIntraOpParallelismCase - getOptionalMaxIntraOpParallelismCase() { - return OptionalMaxIntraOpParallelismCase.forNumber( - optionalMaxIntraOpParallelismCase_); + org.tensorflow.proto.data.DatasetOptions.ServiceOptions.class, org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder.class); } - private int optionalPrivateThreadpoolSizeCase_ = 0; - private java.lang.Object optionalPrivateThreadpoolSize_; - public enum OptionalPrivateThreadpoolSizeCase + private int optionalPinnedCase_ = 0; + private java.lang.Object optionalPinned_; + public enum OptionalPinnedCase implements com.google.protobuf.Internal.EnumLite, com.google.protobuf.AbstractMessage.InternalOneOfEnum { - PRIVATE_THREADPOOL_SIZE(2), - OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET(0); + PINNED(1), + OPTIONALPINNED_NOT_SET(0); private final int value; - private OptionalPrivateThreadpoolSizeCase(int value) { + private OptionalPinnedCase(int value) { this.value = value; } /** @@ -5479,14 +5603,14 @@ private OptionalPrivateThreadpoolSizeCase(int value) { * @deprecated Use {@link #forNumber(int)} instead. */ @java.lang.Deprecated - public static OptionalPrivateThreadpoolSizeCase valueOf(int value) { + public static OptionalPinnedCase valueOf(int value) { return forNumber(value); } - public static OptionalPrivateThreadpoolSizeCase forNumber(int value) { + public static OptionalPinnedCase forNumber(int value) { switch (value) { - case 2: return PRIVATE_THREADPOOL_SIZE; - case 0: return OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET; + case 1: return PINNED; + case 0: return OPTIONALPINNED_NOT_SET; default: return null; } } @@ -5495,52 +5619,31 @@ public int getNumber() { } }; - public OptionalPrivateThreadpoolSizeCase - getOptionalPrivateThreadpoolSizeCase() { - return OptionalPrivateThreadpoolSizeCase.forNumber( - optionalPrivateThreadpoolSizeCase_); - } - - public static final int MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER = 1; - /** - * int32 max_intra_op_parallelism = 1; - * @return Whether the maxIntraOpParallelism field is set. - */ - @java.lang.Override - public boolean hasMaxIntraOpParallelism() { - return optionalMaxIntraOpParallelismCase_ == 1; - } - /** - * int32 max_intra_op_parallelism = 1; - * @return The maxIntraOpParallelism. - */ - @java.lang.Override - public int getMaxIntraOpParallelism() { - if (optionalMaxIntraOpParallelismCase_ == 1) { - return (java.lang.Integer) optionalMaxIntraOpParallelism_; - } - return 0; + public OptionalPinnedCase + getOptionalPinnedCase() { + return OptionalPinnedCase.forNumber( + optionalPinnedCase_); } - public static final int PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER = 2; + public static final int PINNED_FIELD_NUMBER = 1; /** - * int32 private_threadpool_size = 2; - * @return Whether the privateThreadpoolSize field is set. + * bool pinned = 1; + * @return Whether the pinned field is set. */ @java.lang.Override - public boolean hasPrivateThreadpoolSize() { - return optionalPrivateThreadpoolSizeCase_ == 2; + public boolean hasPinned() { + return optionalPinnedCase_ == 1; } /** - * int32 private_threadpool_size = 2; - * @return The privateThreadpoolSize. + * bool pinned = 1; + * @return The pinned. */ @java.lang.Override - public int getPrivateThreadpoolSize() { - if (optionalPrivateThreadpoolSizeCase_ == 2) { - return (java.lang.Integer) optionalPrivateThreadpoolSize_; + public boolean getPinned() { + if (optionalPinnedCase_ == 1) { + return (java.lang.Boolean) optionalPinned_; } - return 0; + return false; } private byte memoizedIsInitialized = -1; @@ -5557,13 +5660,9 @@ public final boolean isInitialized() { @java.lang.Override public void writeTo(com.google.protobuf.CodedOutputStream output) throws java.io.IOException { - if (optionalMaxIntraOpParallelismCase_ == 1) { - output.writeInt32( - 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); - } - if (optionalPrivateThreadpoolSizeCase_ == 2) { - output.writeInt32( - 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + if (optionalPinnedCase_ == 1) { + output.writeBool( + 1, (boolean)((java.lang.Boolean) optionalPinned_)); } getUnknownFields().writeTo(output); } @@ -5574,15 +5673,10 @@ public int getSerializedSize() { if (size != -1) return size; size = 0; - if (optionalMaxIntraOpParallelismCase_ == 1) { - size += com.google.protobuf.CodedOutputStream - .computeInt32Size( - 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); - } - if (optionalPrivateThreadpoolSizeCase_ == 2) { + if (optionalPinnedCase_ == 1) { size += com.google.protobuf.CodedOutputStream - .computeInt32Size( - 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + .computeBoolSize( + 1, (boolean)((java.lang.Boolean) optionalPinned_)); } size += getUnknownFields().getSerializedSize(); memoizedSize = size; @@ -5594,25 +5688,16 @@ public boolean equals(final java.lang.Object obj) { if (obj == this) { return true; } - if (!(obj instanceof org.tensorflow.proto.data.DatasetOptions.ThreadingOptions)) { + if (!(obj instanceof org.tensorflow.proto.data.DatasetOptions.ServiceOptions)) { return super.equals(obj); } - org.tensorflow.proto.data.DatasetOptions.ThreadingOptions other = (org.tensorflow.proto.data.DatasetOptions.ThreadingOptions) obj; + org.tensorflow.proto.data.DatasetOptions.ServiceOptions other = (org.tensorflow.proto.data.DatasetOptions.ServiceOptions) obj; - if (!getOptionalMaxIntraOpParallelismCase().equals(other.getOptionalMaxIntraOpParallelismCase())) return false; - switch (optionalMaxIntraOpParallelismCase_) { + if (!getOptionalPinnedCase().equals(other.getOptionalPinnedCase())) return false; + switch (optionalPinnedCase_) { case 1: - if (getMaxIntraOpParallelism() - != other.getMaxIntraOpParallelism()) return false; - break; - case 0: - default: - } - if (!getOptionalPrivateThreadpoolSizeCase().equals(other.getOptionalPrivateThreadpoolSizeCase())) return false; - switch (optionalPrivateThreadpoolSizeCase_) { - case 2: - if (getPrivateThreadpoolSize() - != other.getPrivateThreadpoolSize()) return false; + if (getPinned() + != other.getPinned()) return false; break; case 0: default: @@ -5628,18 +5713,693 @@ public int hashCode() { } int hash = 41; hash = (19 * hash) + getDescriptor().hashCode(); - switch (optionalMaxIntraOpParallelismCase_) { + switch (optionalPinnedCase_) { case 1: - hash = (37 * hash) + MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER; - hash = (53 * hash) + getMaxIntraOpParallelism(); - break; - case 0: - default: - } - switch (optionalPrivateThreadpoolSizeCase_) { - case 2: - hash = (37 * hash) + PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER; - hash = (53 * hash) + getPrivateThreadpoolSize(); + hash = (37 * hash) + PINNED_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashBoolean( + getPinned()); + break; + case 0: + default: + } + hash = (29 * hash) + getUnknownFields().hashCode(); + memoizedHashCode = hash; + return hash; + } + + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + java.nio.ByteBuffer data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + java.nio.ByteBuffer data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + com.google.protobuf.ByteString data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + com.google.protobuf.ByteString data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom(byte[] data) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + byte[] data, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + return PARSER.parseFrom(data, extensionRegistry); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseDelimitedFrom(java.io.InputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseDelimitedFrom( + java.io.InputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseDelimitedWithIOException(PARSER, input, extensionRegistry); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + com.google.protobuf.CodedInputStream input) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input); + } + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions parseFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + return com.google.protobuf.GeneratedMessageV3 + .parseWithIOException(PARSER, input, extensionRegistry); + } + + @java.lang.Override + public Builder newBuilderForType() { return newBuilder(); } + public static Builder newBuilder() { + return DEFAULT_INSTANCE.toBuilder(); + } + public static Builder newBuilder(org.tensorflow.proto.data.DatasetOptions.ServiceOptions prototype) { + return DEFAULT_INSTANCE.toBuilder().mergeFrom(prototype); + } + @java.lang.Override + public Builder toBuilder() { + return this == DEFAULT_INSTANCE + ? new Builder() : new Builder().mergeFrom(this); + } + + @java.lang.Override + protected Builder newBuilderForType( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + Builder builder = new Builder(parent); + return builder; + } + /** + *
    +     * next: 2
    +     * 
    + * + * Protobuf type {@code tensorflow.data.ServiceOptions} + */ + public static final class Builder extends + com.google.protobuf.GeneratedMessageV3.Builder implements + // @@protoc_insertion_point(builder_implements:tensorflow.data.ServiceOptions) + org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder { + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ServiceOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ServiceOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.DatasetOptions.ServiceOptions.class, org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder.class); + } + + // Construct using org.tensorflow.proto.data.DatasetOptions.ServiceOptions.newBuilder() + private Builder() { + + } + + private Builder( + com.google.protobuf.GeneratedMessageV3.BuilderParent parent) { + super(parent); + + } + @java.lang.Override + public Builder clear() { + super.clear(); + optionalPinnedCase_ = 0; + optionalPinned_ = null; + return this; + } + + @java.lang.Override + public com.google.protobuf.Descriptors.Descriptor + getDescriptorForType() { + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ServiceOptions_descriptor; + } + + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions getDefaultInstanceForType() { + return org.tensorflow.proto.data.DatasetOptions.ServiceOptions.getDefaultInstance(); + } + + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions build() { + org.tensorflow.proto.data.DatasetOptions.ServiceOptions result = buildPartial(); + if (!result.isInitialized()) { + throw newUninitializedMessageException(result); + } + return result; + } + + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions buildPartial() { + org.tensorflow.proto.data.DatasetOptions.ServiceOptions result = new org.tensorflow.proto.data.DatasetOptions.ServiceOptions(this); + if (optionalPinnedCase_ == 1) { + result.optionalPinned_ = optionalPinned_; + } + result.optionalPinnedCase_ = optionalPinnedCase_; + onBuilt(); + return result; + } + + @java.lang.Override + public Builder clone() { + return super.clone(); + } + @java.lang.Override + public Builder setField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.setField(field, value); + } + @java.lang.Override + public Builder clearField( + com.google.protobuf.Descriptors.FieldDescriptor field) { + return super.clearField(field); + } + @java.lang.Override + public Builder clearOneof( + com.google.protobuf.Descriptors.OneofDescriptor oneof) { + return super.clearOneof(oneof); + } + @java.lang.Override + public Builder setRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + int index, java.lang.Object value) { + return super.setRepeatedField(field, index, value); + } + @java.lang.Override + public Builder addRepeatedField( + com.google.protobuf.Descriptors.FieldDescriptor field, + java.lang.Object value) { + return super.addRepeatedField(field, value); + } + @java.lang.Override + public Builder mergeFrom(com.google.protobuf.Message other) { + if (other instanceof org.tensorflow.proto.data.DatasetOptions.ServiceOptions) { + return mergeFrom((org.tensorflow.proto.data.DatasetOptions.ServiceOptions)other); + } else { + super.mergeFrom(other); + return this; + } + } + + public Builder mergeFrom(org.tensorflow.proto.data.DatasetOptions.ServiceOptions other) { + if (other == org.tensorflow.proto.data.DatasetOptions.ServiceOptions.getDefaultInstance()) return this; + switch (other.getOptionalPinnedCase()) { + case PINNED: { + setPinned(other.getPinned()); + break; + } + case OPTIONALPINNED_NOT_SET: { + break; + } + } + this.mergeUnknownFields(other.getUnknownFields()); + onChanged(); + return this; + } + + @java.lang.Override + public final boolean isInitialized() { + return true; + } + + @java.lang.Override + public Builder mergeFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws java.io.IOException { + if (extensionRegistry == null) { + throw new java.lang.NullPointerException(); + } + try { + boolean done = false; + while (!done) { + int tag = input.readTag(); + switch (tag) { + case 0: + done = true; + break; + case 8: { + optionalPinned_ = input.readBool(); + optionalPinnedCase_ = 1; + break; + } // case 8 + default: { + if (!super.parseUnknownField(input, extensionRegistry, tag)) { + done = true; // was an endgroup tag + } + break; + } // default: + } // switch (tag) + } // while (!done) + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.unwrapIOException(); + } finally { + onChanged(); + } // finally + return this; + } + private int optionalPinnedCase_ = 0; + private java.lang.Object optionalPinned_; + public OptionalPinnedCase + getOptionalPinnedCase() { + return OptionalPinnedCase.forNumber( + optionalPinnedCase_); + } + + public Builder clearOptionalPinned() { + optionalPinnedCase_ = 0; + optionalPinned_ = null; + onChanged(); + return this; + } + + + /** + * bool pinned = 1; + * @return Whether the pinned field is set. + */ + public boolean hasPinned() { + return optionalPinnedCase_ == 1; + } + /** + * bool pinned = 1; + * @return The pinned. + */ + public boolean getPinned() { + if (optionalPinnedCase_ == 1) { + return (java.lang.Boolean) optionalPinned_; + } + return false; + } + /** + * bool pinned = 1; + * @param value The pinned to set. + * @return This builder for chaining. + */ + public Builder setPinned(boolean value) { + optionalPinnedCase_ = 1; + optionalPinned_ = value; + onChanged(); + return this; + } + /** + * bool pinned = 1; + * @return This builder for chaining. + */ + public Builder clearPinned() { + if (optionalPinnedCase_ == 1) { + optionalPinnedCase_ = 0; + optionalPinned_ = null; + onChanged(); + } + return this; + } + @java.lang.Override + public final Builder setUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.setUnknownFields(unknownFields); + } + + @java.lang.Override + public final Builder mergeUnknownFields( + final com.google.protobuf.UnknownFieldSet unknownFields) { + return super.mergeUnknownFields(unknownFields); + } + + + // @@protoc_insertion_point(builder_scope:tensorflow.data.ServiceOptions) + } + + // @@protoc_insertion_point(class_scope:tensorflow.data.ServiceOptions) + private static final org.tensorflow.proto.data.DatasetOptions.ServiceOptions DEFAULT_INSTANCE; + static { + DEFAULT_INSTANCE = new org.tensorflow.proto.data.DatasetOptions.ServiceOptions(); + } + + public static org.tensorflow.proto.data.DatasetOptions.ServiceOptions getDefaultInstance() { + return DEFAULT_INSTANCE; + } + + private static final com.google.protobuf.Parser + PARSER = new com.google.protobuf.AbstractParser() { + @java.lang.Override + public ServiceOptions parsePartialFrom( + com.google.protobuf.CodedInputStream input, + com.google.protobuf.ExtensionRegistryLite extensionRegistry) + throws com.google.protobuf.InvalidProtocolBufferException { + Builder builder = newBuilder(); + try { + builder.mergeFrom(input, extensionRegistry); + } catch (com.google.protobuf.InvalidProtocolBufferException e) { + throw e.setUnfinishedMessage(builder.buildPartial()); + } catch (com.google.protobuf.UninitializedMessageException e) { + throw e.asInvalidProtocolBufferException().setUnfinishedMessage(builder.buildPartial()); + } catch (java.io.IOException e) { + throw new com.google.protobuf.InvalidProtocolBufferException(e) + .setUnfinishedMessage(builder.buildPartial()); + } + return builder.buildPartial(); + } + }; + + public static com.google.protobuf.Parser parser() { + return PARSER; + } + + @java.lang.Override + public com.google.protobuf.Parser getParserForType() { + return PARSER; + } + + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions getDefaultInstanceForType() { + return DEFAULT_INSTANCE; + } + + } + + public interface ThreadingOptionsOrBuilder extends + // @@protoc_insertion_point(interface_extends:tensorflow.data.ThreadingOptions) + com.google.protobuf.MessageOrBuilder { + + /** + * int32 max_intra_op_parallelism = 1; + * @return Whether the maxIntraOpParallelism field is set. + */ + boolean hasMaxIntraOpParallelism(); + /** + * int32 max_intra_op_parallelism = 1; + * @return The maxIntraOpParallelism. + */ + int getMaxIntraOpParallelism(); + + /** + * int32 private_threadpool_size = 2; + * @return Whether the privateThreadpoolSize field is set. + */ + boolean hasPrivateThreadpoolSize(); + /** + * int32 private_threadpool_size = 2; + * @return The privateThreadpoolSize. + */ + int getPrivateThreadpoolSize(); + + public org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.OptionalMaxIntraOpParallelismCase getOptionalMaxIntraOpParallelismCase(); + + public org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.OptionalPrivateThreadpoolSizeCase getOptionalPrivateThreadpoolSizeCase(); + } + /** + *
    +   * next: 3
    +   * 
    + * + * Protobuf type {@code tensorflow.data.ThreadingOptions} + */ + public static final class ThreadingOptions extends + com.google.protobuf.GeneratedMessageV3 implements + // @@protoc_insertion_point(message_implements:tensorflow.data.ThreadingOptions) + ThreadingOptionsOrBuilder { + private static final long serialVersionUID = 0L; + // Use ThreadingOptions.newBuilder() to construct. + private ThreadingOptions(com.google.protobuf.GeneratedMessageV3.Builder builder) { + super(builder); + } + private ThreadingOptions() { + } + + @java.lang.Override + @SuppressWarnings({"unused"}) + protected java.lang.Object newInstance( + UnusedPrivateParameter unused) { + return new ThreadingOptions(); + } + + @java.lang.Override + public final com.google.protobuf.UnknownFieldSet + getUnknownFields() { + return this.unknownFields; + } + public static final com.google.protobuf.Descriptors.Descriptor + getDescriptor() { + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ThreadingOptions_descriptor; + } + + @java.lang.Override + protected com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internalGetFieldAccessorTable() { + return org.tensorflow.proto.data.DatasetOptions.internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable + .ensureFieldAccessorsInitialized( + org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.class, org.tensorflow.proto.data.DatasetOptions.ThreadingOptions.Builder.class); + } + + private int optionalMaxIntraOpParallelismCase_ = 0; + private java.lang.Object optionalMaxIntraOpParallelism_; + public enum OptionalMaxIntraOpParallelismCase + implements com.google.protobuf.Internal.EnumLite, + com.google.protobuf.AbstractMessage.InternalOneOfEnum { + MAX_INTRA_OP_PARALLELISM(1), + OPTIONALMAXINTRAOPPARALLELISM_NOT_SET(0); + private final int value; + private OptionalMaxIntraOpParallelismCase(int value) { + this.value = value; + } + /** + * @param value The number of the enum to look for. + * @return The enum associated with the given number. + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalMaxIntraOpParallelismCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalMaxIntraOpParallelismCase forNumber(int value) { + switch (value) { + case 1: return MAX_INTRA_OP_PARALLELISM; + case 0: return OPTIONALMAXINTRAOPPARALLELISM_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalMaxIntraOpParallelismCase + getOptionalMaxIntraOpParallelismCase() { + return OptionalMaxIntraOpParallelismCase.forNumber( + optionalMaxIntraOpParallelismCase_); + } + + private int optionalPrivateThreadpoolSizeCase_ = 0; + private java.lang.Object optionalPrivateThreadpoolSize_; + public enum OptionalPrivateThreadpoolSizeCase + implements com.google.protobuf.Internal.EnumLite, + com.google.protobuf.AbstractMessage.InternalOneOfEnum { + PRIVATE_THREADPOOL_SIZE(2), + OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET(0); + private final int value; + private OptionalPrivateThreadpoolSizeCase(int value) { + this.value = value; + } + /** + * @param value The number of the enum to look for. + * @return The enum associated with the given number. + * @deprecated Use {@link #forNumber(int)} instead. + */ + @java.lang.Deprecated + public static OptionalPrivateThreadpoolSizeCase valueOf(int value) { + return forNumber(value); + } + + public static OptionalPrivateThreadpoolSizeCase forNumber(int value) { + switch (value) { + case 2: return PRIVATE_THREADPOOL_SIZE; + case 0: return OPTIONALPRIVATETHREADPOOLSIZE_NOT_SET; + default: return null; + } + } + public int getNumber() { + return this.value; + } + }; + + public OptionalPrivateThreadpoolSizeCase + getOptionalPrivateThreadpoolSizeCase() { + return OptionalPrivateThreadpoolSizeCase.forNumber( + optionalPrivateThreadpoolSizeCase_); + } + + public static final int MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER = 1; + /** + * int32 max_intra_op_parallelism = 1; + * @return Whether the maxIntraOpParallelism field is set. + */ + @java.lang.Override + public boolean hasMaxIntraOpParallelism() { + return optionalMaxIntraOpParallelismCase_ == 1; + } + /** + * int32 max_intra_op_parallelism = 1; + * @return The maxIntraOpParallelism. + */ + @java.lang.Override + public int getMaxIntraOpParallelism() { + if (optionalMaxIntraOpParallelismCase_ == 1) { + return (java.lang.Integer) optionalMaxIntraOpParallelism_; + } + return 0; + } + + public static final int PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER = 2; + /** + * int32 private_threadpool_size = 2; + * @return Whether the privateThreadpoolSize field is set. + */ + @java.lang.Override + public boolean hasPrivateThreadpoolSize() { + return optionalPrivateThreadpoolSizeCase_ == 2; + } + /** + * int32 private_threadpool_size = 2; + * @return The privateThreadpoolSize. + */ + @java.lang.Override + public int getPrivateThreadpoolSize() { + if (optionalPrivateThreadpoolSizeCase_ == 2) { + return (java.lang.Integer) optionalPrivateThreadpoolSize_; + } + return 0; + } + + private byte memoizedIsInitialized = -1; + @java.lang.Override + public final boolean isInitialized() { + byte isInitialized = memoizedIsInitialized; + if (isInitialized == 1) return true; + if (isInitialized == 0) return false; + + memoizedIsInitialized = 1; + return true; + } + + @java.lang.Override + public void writeTo(com.google.protobuf.CodedOutputStream output) + throws java.io.IOException { + if (optionalMaxIntraOpParallelismCase_ == 1) { + output.writeInt32( + 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); + } + if (optionalPrivateThreadpoolSizeCase_ == 2) { + output.writeInt32( + 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + } + getUnknownFields().writeTo(output); + } + + @java.lang.Override + public int getSerializedSize() { + int size = memoizedSize; + if (size != -1) return size; + + size = 0; + if (optionalMaxIntraOpParallelismCase_ == 1) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 1, (int)((java.lang.Integer) optionalMaxIntraOpParallelism_)); + } + if (optionalPrivateThreadpoolSizeCase_ == 2) { + size += com.google.protobuf.CodedOutputStream + .computeInt32Size( + 2, (int)((java.lang.Integer) optionalPrivateThreadpoolSize_)); + } + size += getUnknownFields().getSerializedSize(); + memoizedSize = size; + return size; + } + + @java.lang.Override + public boolean equals(final java.lang.Object obj) { + if (obj == this) { + return true; + } + if (!(obj instanceof org.tensorflow.proto.data.DatasetOptions.ThreadingOptions)) { + return super.equals(obj); + } + org.tensorflow.proto.data.DatasetOptions.ThreadingOptions other = (org.tensorflow.proto.data.DatasetOptions.ThreadingOptions) obj; + + if (!getOptionalMaxIntraOpParallelismCase().equals(other.getOptionalMaxIntraOpParallelismCase())) return false; + switch (optionalMaxIntraOpParallelismCase_) { + case 1: + if (getMaxIntraOpParallelism() + != other.getMaxIntraOpParallelism()) return false; + break; + case 0: + default: + } + if (!getOptionalPrivateThreadpoolSizeCase().equals(other.getOptionalPrivateThreadpoolSizeCase())) return false; + switch (optionalPrivateThreadpoolSizeCase_) { + case 2: + if (getPrivateThreadpoolSize() + != other.getPrivateThreadpoolSize()) return false; + break; + case 0: + default: + } + if (!getUnknownFields().equals(other.getUnknownFields())) return false; + return true; + } + + @java.lang.Override + public int hashCode() { + if (memoizedHashCode != 0) { + return memoizedHashCode; + } + int hash = 41; + hash = (19 * hash) + getDescriptor().hashCode(); + switch (optionalMaxIntraOpParallelismCase_) { + case 1: + hash = (37 * hash) + MAX_INTRA_OP_PARALLELISM_FIELD_NUMBER; + hash = (53 * hash) + getMaxIntraOpParallelism(); + break; + case 0: + default: + } + switch (optionalPrivateThreadpoolSizeCase_) { + case 2: + hash = (37 * hash) + PRIVATE_THREADPOOL_SIZE_FIELD_NUMBER; + hash = (53 * hash) + getPrivateThreadpoolSize(); break; case 0: default: @@ -6261,6 +7021,33 @@ public interface OptionsOrBuilder extends */ org.tensorflow.proto.data.DatasetOptions.OptimizationOptionsOrBuilder getOptimizationOptionsOrBuilder(); + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return Whether the serviceOptions field is set. + */ + boolean hasServiceOptions(); + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return The serviceOptions. + */ + org.tensorflow.proto.data.DatasetOptions.ServiceOptions getServiceOptions(); + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder getServiceOptionsOrBuilder(); + /** * bool slack = 4; * @return Whether the slack field is set. @@ -6353,7 +7140,7 @@ public interface OptionsOrBuilder extends *
        * Message stored with Dataset objects to control how datasets are processed and
        * optimized.
    -   * next: 12
    +   * next: 13
        * 
    * * Protobuf type {@code tensorflow.data.Options} @@ -6868,6 +7655,44 @@ public org.tensorflow.proto.data.DatasetOptions.OptimizationOptionsOrBuilder get return getOptimizationOptions(); } + public static final int SERVICE_OPTIONS_FIELD_NUMBER = 12; + private org.tensorflow.proto.data.DatasetOptions.ServiceOptions serviceOptions_; + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return Whether the serviceOptions field is set. + */ + @java.lang.Override + public boolean hasServiceOptions() { + return serviceOptions_ != null; + } + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return The serviceOptions. + */ + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions getServiceOptions() { + return serviceOptions_ == null ? org.tensorflow.proto.data.DatasetOptions.ServiceOptions.getDefaultInstance() : serviceOptions_; + } + /** + *
    +     * The tf.data service options associated with the dataset.
    +     * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + @java.lang.Override + public org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder getServiceOptionsOrBuilder() { + return getServiceOptions(); + } + public static final int SLACK_FIELD_NUMBER = 4; /** * bool slack = 4; @@ -7052,6 +7877,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) for (int i = 0; i < frameworkType_.size(); i++) { com.google.protobuf.GeneratedMessageV3.writeString(output, 11, frameworkType_.getRaw(i)); } + if (serviceOptions_ != null) { + output.writeMessage(12, getServiceOptions()); + } getUnknownFields().writeTo(output); } @@ -7112,6 +7940,10 @@ public int getSerializedSize() { size += dataSize; size += 1 * getFrameworkTypeList().size(); } + if (serviceOptions_ != null) { + size += com.google.protobuf.CodedOutputStream + .computeMessageSize(12, getServiceOptions()); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -7144,6 +7976,11 @@ public boolean equals(final java.lang.Object obj) { if (!getOptimizationOptions() .equals(other.getOptimizationOptions())) return false; } + if (hasServiceOptions() != other.hasServiceOptions()) return false; + if (hasServiceOptions()) { + if (!getServiceOptions() + .equals(other.getServiceOptions())) return false; + } if (hasThreadingOptions() != other.hasThreadingOptions()) return false; if (hasThreadingOptions()) { if (!getThreadingOptions() @@ -7230,6 +8067,10 @@ public int hashCode() { hash = (37 * hash) + OPTIMIZATION_OPTIONS_FIELD_NUMBER; hash = (53 * hash) + getOptimizationOptions().hashCode(); } + if (hasServiceOptions()) { + hash = (37 * hash) + SERVICE_OPTIONS_FIELD_NUMBER; + hash = (53 * hash) + getServiceOptions().hashCode(); + } if (hasThreadingOptions()) { hash = (37 * hash) + THREADING_OPTIONS_FIELD_NUMBER; hash = (53 * hash) + getThreadingOptions().hashCode(); @@ -7385,7 +8226,7 @@ protected Builder newBuilderForType( *
          * Message stored with Dataset objects to control how datasets are processed and
          * optimized.
    -     * next: 12
    +     * next: 13
          * 
    * * Protobuf type {@code tensorflow.data.Options} @@ -7440,6 +8281,12 @@ public Builder clear() { optimizationOptions_ = null; optimizationOptionsBuilder_ = null; } + if (serviceOptionsBuilder_ == null) { + serviceOptions_ = null; + } else { + serviceOptions_ = null; + serviceOptionsBuilder_ = null; + } if (threadingOptionsBuilder_ == null) { threadingOptions_ = null; } else { @@ -7511,6 +8358,11 @@ public org.tensorflow.proto.data.DatasetOptions.Options buildPartial() { } else { result.optimizationOptions_ = optimizationOptionsBuilder_.build(); } + if (serviceOptionsBuilder_ == null) { + result.serviceOptions_ = serviceOptions_; + } else { + result.serviceOptions_ = serviceOptionsBuilder_.build(); + } if (optionalSlackCase_ == 4) { result.optionalSlack_ = optionalSlack_; } @@ -7601,6 +8453,9 @@ public Builder mergeFrom(org.tensorflow.proto.data.DatasetOptions.Options other) if (other.hasOptimizationOptions()) { mergeOptimizationOptions(other.getOptimizationOptions()); } + if (other.hasServiceOptions()) { + mergeServiceOptions(other.getServiceOptions()); + } if (other.hasThreadingOptions()) { mergeThreadingOptions(other.getThreadingOptions()); } @@ -7752,6 +8607,13 @@ public Builder mergeFrom( frameworkType_.add(s); break; } // case 90 + case 98: { + input.readMessage( + getServiceOptionsFieldBuilder().getBuilder(), + extensionRegistry); + + break; + } // case 98 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -8608,6 +9470,161 @@ public org.tensorflow.proto.data.DatasetOptions.OptimizationOptionsOrBuilder get return optimizationOptionsBuilder_; } + private org.tensorflow.proto.data.DatasetOptions.ServiceOptions serviceOptions_; + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DatasetOptions.ServiceOptions, org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder, org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder> serviceOptionsBuilder_; + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return Whether the serviceOptions field is set. + */ + public boolean hasServiceOptions() { + return serviceOptionsBuilder_ != null || serviceOptions_ != null; + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + * @return The serviceOptions. + */ + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions getServiceOptions() { + if (serviceOptionsBuilder_ == null) { + return serviceOptions_ == null ? org.tensorflow.proto.data.DatasetOptions.ServiceOptions.getDefaultInstance() : serviceOptions_; + } else { + return serviceOptionsBuilder_.getMessage(); + } + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public Builder setServiceOptions(org.tensorflow.proto.data.DatasetOptions.ServiceOptions value) { + if (serviceOptionsBuilder_ == null) { + if (value == null) { + throw new NullPointerException(); + } + serviceOptions_ = value; + onChanged(); + } else { + serviceOptionsBuilder_.setMessage(value); + } + + return this; + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public Builder setServiceOptions( + org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder builderForValue) { + if (serviceOptionsBuilder_ == null) { + serviceOptions_ = builderForValue.build(); + onChanged(); + } else { + serviceOptionsBuilder_.setMessage(builderForValue.build()); + } + + return this; + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public Builder mergeServiceOptions(org.tensorflow.proto.data.DatasetOptions.ServiceOptions value) { + if (serviceOptionsBuilder_ == null) { + if (serviceOptions_ != null) { + serviceOptions_ = + org.tensorflow.proto.data.DatasetOptions.ServiceOptions.newBuilder(serviceOptions_).mergeFrom(value).buildPartial(); + } else { + serviceOptions_ = value; + } + onChanged(); + } else { + serviceOptionsBuilder_.mergeFrom(value); + } + + return this; + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public Builder clearServiceOptions() { + if (serviceOptionsBuilder_ == null) { + serviceOptions_ = null; + onChanged(); + } else { + serviceOptions_ = null; + serviceOptionsBuilder_ = null; + } + + return this; + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder getServiceOptionsBuilder() { + + onChanged(); + return getServiceOptionsFieldBuilder().getBuilder(); + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + public org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder getServiceOptionsOrBuilder() { + if (serviceOptionsBuilder_ != null) { + return serviceOptionsBuilder_.getMessageOrBuilder(); + } else { + return serviceOptions_ == null ? + org.tensorflow.proto.data.DatasetOptions.ServiceOptions.getDefaultInstance() : serviceOptions_; + } + } + /** + *
    +       * The tf.data service options associated with the dataset.
    +       * 
    + * + * .tensorflow.data.ServiceOptions service_options = 12; + */ + private com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DatasetOptions.ServiceOptions, org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder, org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder> + getServiceOptionsFieldBuilder() { + if (serviceOptionsBuilder_ == null) { + serviceOptionsBuilder_ = new com.google.protobuf.SingleFieldBuilderV3< + org.tensorflow.proto.data.DatasetOptions.ServiceOptions, org.tensorflow.proto.data.DatasetOptions.ServiceOptions.Builder, org.tensorflow.proto.data.DatasetOptions.ServiceOptionsOrBuilder>( + getServiceOptions(), + getParentForChildren(), + isClean()); + serviceOptions_ = null; + } + return serviceOptionsBuilder_; + } + /** * bool slack = 4; * @return Whether the slack field is set. @@ -9040,6 +10057,11 @@ public org.tensorflow.proto.data.DatasetOptions.Options getDefaultInstanceForTyp private static final com.google.protobuf.GeneratedMessageV3.FieldAccessorTable internal_static_tensorflow_data_OptimizationOptions_fieldAccessorTable; + private static final com.google.protobuf.Descriptors.Descriptor + internal_static_tensorflow_data_ServiceOptions_descriptor; + private static final + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable + internal_static_tensorflow_data_ServiceOptions_fieldAccessorTable; private static final com.google.protobuf.Descriptors.Descriptor internal_static_tensorflow_data_ThreadingOptions_descriptor; private static final @@ -9061,70 +10083,74 @@ public org.tensorflow.proto.data.DatasetOptions.Options getDefaultInstanceForTyp java.lang.String[] descriptorData = { "\n/tensorflow/core/framework/dataset_opti" + "ons.proto\022\017tensorflow.data\032%tensorflow/c" + - "ore/framework/model.proto\"\371\001\n\017AutotuneOp" + + "ore/framework/model.proto\"\270\002\n\017AutotuneOp" + "tions\022\021\n\007enabled\030\001 \001(\010H\000\022\024\n\ncpu_budget\030\002" + " \001(\005H\001\022\024\n\nram_budget\030\003 \001(\003H\002\022F\n\022autotune" + "_algorithm\030\004 \001(\0162(.tensorflow.data.model" + - ".AutotuneAlgorithmH\003B\022\n\020optional_enabled" + - "B\025\n\023optional_cpu_budgetB\025\n\023optional_ram_" + - "budgetB\035\n\033optional_autotune_algorithm\"\321\001" + - "\n\022CardinalityOptions\022G\n\rcompute_level\030\001 " + - "\001(\01620.tensorflow.data.CardinalityOptions" + - ".ComputeLevel\"r\n\014ComputeLevel\022#\n\037CARDINA" + - "LITY_COMPUTE_UNSPECIFIED\020\000\022\033\n\027CARDINALIT" + - "Y_COMPUTE_LOW\020\001\022 \n\034CARDINALITY_COMPUTE_M" + - "ODERATE\020\002\"\177\n\021DistributeOptions\022;\n\021auto_s" + - "hard_policy\030\001 \001(\0162 .tensorflow.data.Auto" + - "ShardPolicy\022\025\n\013num_devices\030\002 \001(\005H\000B\026\n\024op" + - "tional_num_devices\"\271\006\n\023OptimizationOptio" + - "ns\022%\n\033apply_default_optimizations\030\001 \001(\010H" + - "\000\022\027\n\rfilter_fusion\030\006 \001(\010H\001\022\036\n\024map_and_ba" + - "tch_fusion\030\t \001(\010H\002\022\037\n\025map_and_filter_fus" + - "ion\030\n \001(\010H\003\022\024\n\nmap_fusion\030\013 \001(\010H\004\022\035\n\023map" + - "_parallelization\030\014 \001(\010H\005\022\032\n\020noop_elimina" + - "tion\030\016 \001(\010H\006\022\030\n\016parallel_batch\030\017 \001(\010H\007\022#" + - "\n\031shuffle_and_repeat_fusion\030\021 \001(\010H\010\022 \n\026f" + - "ilter_parallelization\030\022 \001(\010H\t\022\031\n\017inject_" + - "prefetch\030\023 \001(\010H\n\022!\n\027seq_interleave_prefe" + - "tch\030\025 \001(\010H\013B&\n$optional_apply_default_op" + - "timizationsB\030\n\026optional_filter_fusionB\037\n" + - "\035optional_map_and_batch_fusionB \n\036option" + - "al_map_and_filter_fusionB\025\n\023optional_map" + - "_fusionB\036\n\034optional_map_parallelizationB" + - "\033\n\031optional_noop_eliminationB\031\n\027optional" + - "_parallel_batchB$\n\"optional_shuffle_and_" + - "repeat_fusionB!\n\037optional_filter_paralle" + - "lizationB\032\n\030optional_inject_prefetchB\"\n " + - "optional_seq_interleave_prefetchJ\004\010\002\020\003J\004" + - "\010\003\020\004J\004\010\004\020\005J\004\010\005\020\006J\004\010\007\020\010J\004\010\010\020\tJ\004\010\r\020\016J\004\010\020\020\021" + - "J\004\010\024\020\025\"\242\001\n\020ThreadingOptions\022\"\n\030max_intra" + - "_op_parallelism\030\001 \001(\005H\000\022!\n\027private_threa" + - "dpool_size\030\002 \001(\005H\001B#\n!optional_max_intra" + - "_op_parallelismB\"\n optional_private_thre" + - "adpool_size\"\373\004\n\007Options\022\026\n\014dataset_name\030" + - "\n \001(\tH\000\022\026\n\016framework_type\030\013 \003(\t\022\027\n\rdeter" + - "ministic\030\001 \001(\010H\001\022:\n\020autotune_options\030\007 \001" + - "(\0132 .tensorflow.data.AutotuneOptions\022>\n\022" + - "distribute_options\030\002 \001(\0132\".tensorflow.da" + - "ta.DistributeOptions\022B\n\024optimization_opt" + - "ions\030\003 \001(\0132$.tensorflow.data.Optimizatio" + - "nOptions\022\017\n\005slack\030\004 \001(\010H\002\022<\n\021threading_o" + - "ptions\030\005 \001(\0132!.tensorflow.data.Threading" + - "Options\022E\n\025external_state_policy\030\006 \001(\0162$" + - ".tensorflow.data.ExternalStatePolicyH\003\022\035" + - "\n\023symbolic_checkpoint\030\010 \001(\010H\004\022\024\n\nwarm_st" + - "art\030\t \001(\010H\005B\027\n\025optional_dataset_nameB\030\n\026" + - "optional_deterministicB\020\n\016optional_slack" + - "B \n\036optional_external_state_policyB\036\n\034op" + - "tional_symbolic_checkpointB\025\n\023optional_w" + - "arm_start*K\n\017AutoShardPolicy\022\010\n\004AUTO\020\000\022\010" + - "\n\004FILE\020\001\022\010\n\004DATA\020\002\022\010\n\004HINT\020\003\022\020\n\003OFF\020\377\377\377\377" + - "\377\377\377\377\377\001*J\n\023ExternalStatePolicy\022\017\n\013POLICY_" + - "WARN\020\000\022\021\n\rPOLICY_IGNORE\020\001\022\017\n\013POLICY_FAIL" + - "\020\002Bs\n\031org.tensorflow.proto.dataZVgithub." + - "com/tensorflow/tensorflow/tensorflow/go/" + - "core/framework/dataset_options_go_protob" + - "\006proto3" + ".AutotuneAlgorithmH\003\022\035\n\023initial_parallel" + + "ism\030\005 \001(\003H\004B\022\n\020optional_enabledB\025\n\023optio" + + "nal_cpu_budgetB\025\n\023optional_ram_budgetB\035\n" + + "\033optional_autotune_algorithmB\036\n\034optional" + + "_initial_parallelism\"\321\001\n\022CardinalityOpti" + + "ons\022G\n\rcompute_level\030\001 \001(\01620.tensorflow." + + "data.CardinalityOptions.ComputeLevel\"r\n\014" + + "ComputeLevel\022#\n\037CARDINALITY_COMPUTE_UNSP" + + "ECIFIED\020\000\022\033\n\027CARDINALITY_COMPUTE_LOW\020\001\022 " + + "\n\034CARDINALITY_COMPUTE_MODERATE\020\002\"\177\n\021Dist" + + "ributeOptions\022;\n\021auto_shard_policy\030\001 \001(\016" + + "2 .tensorflow.data.AutoShardPolicy\022\025\n\013nu" + + "m_devices\030\002 \001(\005H\000B\026\n\024optional_num_device" + + "s\"\271\006\n\023OptimizationOptions\022%\n\033apply_defau" + + "lt_optimizations\030\001 \001(\010H\000\022\027\n\rfilter_fusio" + + "n\030\006 \001(\010H\001\022\036\n\024map_and_batch_fusion\030\t \001(\010H" + + "\002\022\037\n\025map_and_filter_fusion\030\n \001(\010H\003\022\024\n\nma" + + "p_fusion\030\013 \001(\010H\004\022\035\n\023map_parallelization\030" + + "\014 \001(\010H\005\022\032\n\020noop_elimination\030\016 \001(\010H\006\022\030\n\016p" + + "arallel_batch\030\017 \001(\010H\007\022#\n\031shuffle_and_rep" + + "eat_fusion\030\021 \001(\010H\010\022 \n\026filter_paralleliza" + + "tion\030\022 \001(\010H\t\022\031\n\017inject_prefetch\030\023 \001(\010H\n\022" + + "!\n\027seq_interleave_prefetch\030\025 \001(\010H\013B&\n$op" + + "tional_apply_default_optimizationsB\030\n\026op" + + "tional_filter_fusionB\037\n\035optional_map_and" + + "_batch_fusionB \n\036optional_map_and_filter" + + "_fusionB\025\n\023optional_map_fusionB\036\n\034option" + + "al_map_parallelizationB\033\n\031optional_noop_" + + "eliminationB\031\n\027optional_parallel_batchB$" + + "\n\"optional_shuffle_and_repeat_fusionB!\n\037" + + "optional_filter_parallelizationB\032\n\030optio" + + "nal_inject_prefetchB\"\n optional_seq_inte" + + "rleave_prefetchJ\004\010\002\020\003J\004\010\003\020\004J\004\010\004\020\005J\004\010\005\020\006J" + + "\004\010\007\020\010J\004\010\010\020\tJ\004\010\r\020\016J\004\010\020\020\021J\004\010\024\020\025\"5\n\016Service" + + "Options\022\020\n\006pinned\030\001 \001(\010H\000B\021\n\017optional_pi" + + "nned\"\242\001\n\020ThreadingOptions\022\"\n\030max_intra_o" + + "p_parallelism\030\001 \001(\005H\000\022!\n\027private_threadp" + + "ool_size\030\002 \001(\005H\001B#\n!optional_max_intra_o" + + "p_parallelismB\"\n optional_private_thread" + + "pool_size\"\265\005\n\007Options\022\026\n\014dataset_name\030\n " + + "\001(\tH\000\022\026\n\016framework_type\030\013 \003(\t\022\027\n\rdetermi" + + "nistic\030\001 \001(\010H\001\022:\n\020autotune_options\030\007 \001(\013" + + "2 .tensorflow.data.AutotuneOptions\022>\n\022di" + + "stribute_options\030\002 \001(\0132\".tensorflow.data" + + ".DistributeOptions\022B\n\024optimization_optio" + + "ns\030\003 \001(\0132$.tensorflow.data.OptimizationO" + + "ptions\0228\n\017service_options\030\014 \001(\0132\037.tensor" + + "flow.data.ServiceOptions\022\017\n\005slack\030\004 \001(\010H" + + "\002\022<\n\021threading_options\030\005 \001(\0132!.tensorflo" + + "w.data.ThreadingOptions\022E\n\025external_stat" + + "e_policy\030\006 \001(\0162$.tensorflow.data.Externa" + + "lStatePolicyH\003\022\035\n\023symbolic_checkpoint\030\010 " + + "\001(\010H\004\022\024\n\nwarm_start\030\t \001(\010H\005B\027\n\025optional_" + + "dataset_nameB\030\n\026optional_deterministicB\020" + + "\n\016optional_slackB \n\036optional_external_st" + + "ate_policyB\036\n\034optional_symbolic_checkpoi" + + "ntB\025\n\023optional_warm_start*K\n\017AutoShardPo" + + "licy\022\010\n\004AUTO\020\000\022\010\n\004FILE\020\001\022\010\n\004DATA\020\002\022\010\n\004HI" + + "NT\020\003\022\020\n\003OFF\020\377\377\377\377\377\377\377\377\377\001*J\n\023ExternalStateP" + + "olicy\022\017\n\013POLICY_WARN\020\000\022\021\n\rPOLICY_IGNORE\020" + + "\001\022\017\n\013POLICY_FAIL\020\002Bs\n\031org.tensorflow.pro" + + "to.dataZVgithub.com/tensorflow/tensorflo" + + "w/tensorflow/go/core/framework/dataset_o" + + "ptions_go_protob\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -9136,7 +10162,7 @@ public org.tensorflow.proto.data.DatasetOptions.Options getDefaultInstanceForTyp internal_static_tensorflow_data_AutotuneOptions_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_AutotuneOptions_descriptor, - new java.lang.String[] { "Enabled", "CpuBudget", "RamBudget", "AutotuneAlgorithm", "OptionalEnabled", "OptionalCpuBudget", "OptionalRamBudget", "OptionalAutotuneAlgorithm", }); + new java.lang.String[] { "Enabled", "CpuBudget", "RamBudget", "AutotuneAlgorithm", "InitialParallelism", "OptionalEnabled", "OptionalCpuBudget", "OptionalRamBudget", "OptionalAutotuneAlgorithm", "OptionalInitialParallelism", }); internal_static_tensorflow_data_CardinalityOptions_descriptor = getDescriptor().getMessageTypes().get(1); internal_static_tensorflow_data_CardinalityOptions_fieldAccessorTable = new @@ -9155,18 +10181,24 @@ public org.tensorflow.proto.data.DatasetOptions.Options getDefaultInstanceForTyp com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_OptimizationOptions_descriptor, new java.lang.String[] { "ApplyDefaultOptimizations", "FilterFusion", "MapAndBatchFusion", "MapAndFilterFusion", "MapFusion", "MapParallelization", "NoopElimination", "ParallelBatch", "ShuffleAndRepeatFusion", "FilterParallelization", "InjectPrefetch", "SeqInterleavePrefetch", "OptionalApplyDefaultOptimizations", "OptionalFilterFusion", "OptionalMapAndBatchFusion", "OptionalMapAndFilterFusion", "OptionalMapFusion", "OptionalMapParallelization", "OptionalNoopElimination", "OptionalParallelBatch", "OptionalShuffleAndRepeatFusion", "OptionalFilterParallelization", "OptionalInjectPrefetch", "OptionalSeqInterleavePrefetch", }); - internal_static_tensorflow_data_ThreadingOptions_descriptor = + internal_static_tensorflow_data_ServiceOptions_descriptor = getDescriptor().getMessageTypes().get(4); + internal_static_tensorflow_data_ServiceOptions_fieldAccessorTable = new + com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( + internal_static_tensorflow_data_ServiceOptions_descriptor, + new java.lang.String[] { "Pinned", "OptionalPinned", }); + internal_static_tensorflow_data_ThreadingOptions_descriptor = + getDescriptor().getMessageTypes().get(5); internal_static_tensorflow_data_ThreadingOptions_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_ThreadingOptions_descriptor, new java.lang.String[] { "MaxIntraOpParallelism", "PrivateThreadpoolSize", "OptionalMaxIntraOpParallelism", "OptionalPrivateThreadpoolSize", }); internal_static_tensorflow_data_Options_descriptor = - getDescriptor().getMessageTypes().get(5); + getDescriptor().getMessageTypes().get(6); internal_static_tensorflow_data_Options_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_Options_descriptor, - new java.lang.String[] { "DatasetName", "FrameworkType", "Deterministic", "AutotuneOptions", "DistributeOptions", "OptimizationOptions", "Slack", "ThreadingOptions", "ExternalStatePolicy", "SymbolicCheckpoint", "WarmStart", "OptionalDatasetName", "OptionalDeterministic", "OptionalSlack", "OptionalExternalStatePolicy", "OptionalSymbolicCheckpoint", "OptionalWarmStart", }); + new java.lang.String[] { "DatasetName", "FrameworkType", "Deterministic", "AutotuneOptions", "DistributeOptions", "OptimizationOptions", "ServiceOptions", "Slack", "ThreadingOptions", "ExternalStatePolicy", "SymbolicCheckpoint", "WarmStart", "OptionalDatasetName", "OptionalDeterministic", "OptionalSlack", "OptionalExternalStatePolicy", "OptionalSymbolicCheckpoint", "OptionalWarmStart", }); org.tensorflow.proto.data.model.Model.getDescriptor(); } diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java index 5d143f7c9f8..de029b2baa5 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/data/experimental/ServiceConfig.java @@ -2261,7 +2261,11 @@ public interface WorkerConfigOrBuilder extends /** *
    -     * The protocol for the worker to use when transferring data to clients.
    +     * If set, the name of an alternative data transfer protocol for which the
    +     * worker starts an additional server ("data transfer server"); the trainer
    +     * can then get data from this server. If not set, no such server is started,
    +     * and the trainer can only get data from the regular worker server over
    +     * `protocol`.
          * 
    * * string data_transfer_protocol = 7; @@ -2270,7 +2274,11 @@ public interface WorkerConfigOrBuilder extends java.lang.String getDataTransferProtocol(); /** *
    -     * The protocol for the worker to use when transferring data to clients.
    +     * If set, the name of an alternative data transfer protocol for which the
    +     * worker starts an additional server ("data transfer server"); the trainer
    +     * can then get data from this server. If not set, no such server is started,
    +     * and the trainer can only get data from the regular worker server over
    +     * `protocol`.
          * 
    * * string data_transfer_protocol = 7; @@ -2281,9 +2289,21 @@ public interface WorkerConfigOrBuilder extends /** *
    -     * The data transfer address of the worker server. The substring "%port%", if
    -     * specified, will be replaced with the worker's bound port. This is useful
    -     * when the port is set to `0`.
    +     * If `data_transfer_protocol` is set, the port to which the data transfer
    +     * server binds. If set to `0`, the server binds to any available port.
    +     * 
    + * + * int64 data_transfer_port = 13; + * @return The dataTransferPort. + */ + long getDataTransferPort(); + + /** + *
    +     * If `data_transfer_protocol` is set, the address of the data transfer
    +     * server. The substring "%dts_port%" can be used to represent -- and is
    +     * replaced with -- the bound port of the data transfer server; this is useful
    +     * when `data_transfer_port` is set to `0`.
          * 
    * * string data_transfer_address = 8; @@ -2292,9 +2312,10 @@ public interface WorkerConfigOrBuilder extends java.lang.String getDataTransferAddress(); /** *
    -     * The data transfer address of the worker server. The substring "%port%", if
    -     * specified, will be replaced with the worker's bound port. This is useful
    -     * when the port is set to `0`.
    +     * If `data_transfer_protocol` is set, the address of the data transfer
    +     * server. The substring "%dts_port%" can be used to represent -- and is
    +     * replaced with -- the bound port of the data transfer server; this is useful
    +     * when `data_transfer_port` is set to `0`.
          * 
    * * string data_transfer_address = 8; @@ -2340,7 +2361,7 @@ public interface WorkerConfigOrBuilder extends /** *
        * Configuration for a tf.data service WorkerServer.
    -   * Next id: 13
    +   * Next id: 14
        * 
    * * Protobuf type {@code tensorflow.data.experimental.WorkerConfig} @@ -2646,7 +2667,11 @@ public long getDispatcherTimeoutMs() { private volatile java.lang.Object dataTransferProtocol_; /** *
    -     * The protocol for the worker to use when transferring data to clients.
    +     * If set, the name of an alternative data transfer protocol for which the
    +     * worker starts an additional server ("data transfer server"); the trainer
    +     * can then get data from this server. If not set, no such server is started,
    +     * and the trainer can only get data from the regular worker server over
    +     * `protocol`.
          * 
    * * string data_transfer_protocol = 7; @@ -2667,7 +2692,11 @@ public java.lang.String getDataTransferProtocol() { } /** *
    -     * The protocol for the worker to use when transferring data to clients.
    +     * If set, the name of an alternative data transfer protocol for which the
    +     * worker starts an additional server ("data transfer server"); the trainer
    +     * can then get data from this server. If not set, no such server is started,
    +     * and the trainer can only get data from the regular worker server over
    +     * `protocol`.
          * 
    * * string data_transfer_protocol = 7; @@ -2688,13 +2717,30 @@ public java.lang.String getDataTransferProtocol() { } } + public static final int DATA_TRANSFER_PORT_FIELD_NUMBER = 13; + private long dataTransferPort_; + /** + *
    +     * If `data_transfer_protocol` is set, the port to which the data transfer
    +     * server binds. If set to `0`, the server binds to any available port.
    +     * 
    + * + * int64 data_transfer_port = 13; + * @return The dataTransferPort. + */ + @java.lang.Override + public long getDataTransferPort() { + return dataTransferPort_; + } + public static final int DATA_TRANSFER_ADDRESS_FIELD_NUMBER = 8; private volatile java.lang.Object dataTransferAddress_; /** *
    -     * The data transfer address of the worker server. The substring "%port%", if
    -     * specified, will be replaced with the worker's bound port. This is useful
    -     * when the port is set to `0`.
    +     * If `data_transfer_protocol` is set, the address of the data transfer
    +     * server. The substring "%dts_port%" can be used to represent -- and is
    +     * replaced with -- the bound port of the data transfer server; this is useful
    +     * when `data_transfer_port` is set to `0`.
          * 
    * * string data_transfer_address = 8; @@ -2715,9 +2761,10 @@ public java.lang.String getDataTransferAddress() { } /** *
    -     * The data transfer address of the worker server. The substring "%port%", if
    -     * specified, will be replaced with the worker's bound port. This is useful
    -     * when the port is set to `0`.
    +     * If `data_transfer_protocol` is set, the address of the data transfer
    +     * server. The substring "%dts_port%" can be used to represent -- and is
    +     * replaced with -- the bound port of the data transfer server; this is useful
    +     * when `data_transfer_port` is set to `0`.
          * 
    * * string data_transfer_address = 8; @@ -2837,6 +2884,9 @@ public void writeTo(com.google.protobuf.CodedOutputStream output) if (snapshotMaxChunkSizeBytes_ != 0L) { output.writeInt64(12, snapshotMaxChunkSizeBytes_); } + if (dataTransferPort_ != 0L) { + output.writeInt64(13, dataTransferPort_); + } getUnknownFields().writeTo(output); } @@ -2893,6 +2943,10 @@ public int getSerializedSize() { size += com.google.protobuf.CodedOutputStream .computeInt64Size(12, snapshotMaxChunkSizeBytes_); } + if (dataTransferPort_ != 0L) { + size += com.google.protobuf.CodedOutputStream + .computeInt64Size(13, dataTransferPort_); + } size += getUnknownFields().getSerializedSize(); memoizedSize = size; return size; @@ -2924,6 +2978,8 @@ public boolean equals(final java.lang.Object obj) { != other.getDispatcherTimeoutMs()) return false; if (!getDataTransferProtocol() .equals(other.getDataTransferProtocol())) return false; + if (getDataTransferPort() + != other.getDataTransferPort()) return false; if (!getDataTransferAddress() .equals(other.getDataTransferAddress())) return false; if (getCrossTrainerCacheSizeBytes() @@ -2964,6 +3020,9 @@ public int hashCode() { getDispatcherTimeoutMs()); hash = (37 * hash) + DATA_TRANSFER_PROTOCOL_FIELD_NUMBER; hash = (53 * hash) + getDataTransferProtocol().hashCode(); + hash = (37 * hash) + DATA_TRANSFER_PORT_FIELD_NUMBER; + hash = (53 * hash) + com.google.protobuf.Internal.hashLong( + getDataTransferPort()); hash = (37 * hash) + DATA_TRANSFER_ADDRESS_FIELD_NUMBER; hash = (53 * hash) + getDataTransferAddress().hashCode(); hash = (37 * hash) + CROSS_TRAINER_CACHE_SIZE_BYTES_FIELD_NUMBER; @@ -3073,7 +3132,7 @@ protected Builder newBuilderForType( /** *
          * Configuration for a tf.data service WorkerServer.
    -     * Next id: 13
    +     * Next id: 14
          * 
    * * Protobuf type {@code tensorflow.data.experimental.WorkerConfig} @@ -3124,6 +3183,8 @@ public Builder clear() { dataTransferProtocol_ = ""; + dataTransferPort_ = 0L; + dataTransferAddress_ = ""; crossTrainerCacheSizeBytes_ = 0L; @@ -3171,6 +3232,7 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig buildPa result.heartbeatIntervalMs_ = heartbeatIntervalMs_; result.dispatcherTimeoutMs_ = dispatcherTimeoutMs_; result.dataTransferProtocol_ = dataTransferProtocol_; + result.dataTransferPort_ = dataTransferPort_; result.dataTransferAddress_ = dataTransferAddress_; result.crossTrainerCacheSizeBytes_ = crossTrainerCacheSizeBytes_; result.snapshotMaxChunkSizeBytes_ = snapshotMaxChunkSizeBytes_; @@ -3258,6 +3320,9 @@ public Builder mergeFrom(org.tensorflow.proto.data.experimental.ServiceConfig.Wo dataTransferProtocol_ = other.dataTransferProtocol_; onChanged(); } + if (other.getDataTransferPort() != 0L) { + setDataTransferPort(other.getDataTransferPort()); + } if (!other.getDataTransferAddress().isEmpty()) { dataTransferAddress_ = other.dataTransferAddress_; onChanged(); @@ -3358,6 +3423,11 @@ public Builder mergeFrom( break; } // case 96 + case 104: { + dataTransferPort_ = input.readInt64(); + + break; + } // case 104 default: { if (!super.parseUnknownField(input, extensionRegistry, tag)) { done = true; // was an endgroup tag @@ -3990,7 +4060,11 @@ public Builder clearDispatcherTimeoutMs() { private java.lang.Object dataTransferProtocol_ = ""; /** *
    -       * The protocol for the worker to use when transferring data to clients.
    +       * If set, the name of an alternative data transfer protocol for which the
    +       * worker starts an additional server ("data transfer server"); the trainer
    +       * can then get data from this server. If not set, no such server is started,
    +       * and the trainer can only get data from the regular worker server over
    +       * `protocol`.
            * 
    * * string data_transfer_protocol = 7; @@ -4010,7 +4084,11 @@ public java.lang.String getDataTransferProtocol() { } /** *
    -       * The protocol for the worker to use when transferring data to clients.
    +       * If set, the name of an alternative data transfer protocol for which the
    +       * worker starts an additional server ("data transfer server"); the trainer
    +       * can then get data from this server. If not set, no such server is started,
    +       * and the trainer can only get data from the regular worker server over
    +       * `protocol`.
            * 
    * * string data_transfer_protocol = 7; @@ -4031,7 +4109,11 @@ public java.lang.String getDataTransferProtocol() { } /** *
    -       * The protocol for the worker to use when transferring data to clients.
    +       * If set, the name of an alternative data transfer protocol for which the
    +       * worker starts an additional server ("data transfer server"); the trainer
    +       * can then get data from this server. If not set, no such server is started,
    +       * and the trainer can only get data from the regular worker server over
    +       * `protocol`.
            * 
    * * string data_transfer_protocol = 7; @@ -4050,7 +4132,11 @@ public Builder setDataTransferProtocol( } /** *
    -       * The protocol for the worker to use when transferring data to clients.
    +       * If set, the name of an alternative data transfer protocol for which the
    +       * worker starts an additional server ("data transfer server"); the trainer
    +       * can then get data from this server. If not set, no such server is started,
    +       * and the trainer can only get data from the regular worker server over
    +       * `protocol`.
            * 
    * * string data_transfer_protocol = 7; @@ -4064,7 +4150,11 @@ public Builder clearDataTransferProtocol() { } /** *
    -       * The protocol for the worker to use when transferring data to clients.
    +       * If set, the name of an alternative data transfer protocol for which the
    +       * worker starts an additional server ("data transfer server"); the trainer
    +       * can then get data from this server. If not set, no such server is started,
    +       * and the trainer can only get data from the regular worker server over
    +       * `protocol`.
            * 
    * * string data_transfer_protocol = 7; @@ -4083,12 +4173,59 @@ public Builder setDataTransferProtocolBytes( return this; } + private long dataTransferPort_ ; + /** + *
    +       * If `data_transfer_protocol` is set, the port to which the data transfer
    +       * server binds. If set to `0`, the server binds to any available port.
    +       * 
    + * + * int64 data_transfer_port = 13; + * @return The dataTransferPort. + */ + @java.lang.Override + public long getDataTransferPort() { + return dataTransferPort_; + } + /** + *
    +       * If `data_transfer_protocol` is set, the port to which the data transfer
    +       * server binds. If set to `0`, the server binds to any available port.
    +       * 
    + * + * int64 data_transfer_port = 13; + * @param value The dataTransferPort to set. + * @return This builder for chaining. + */ + public Builder setDataTransferPort(long value) { + + dataTransferPort_ = value; + onChanged(); + return this; + } + /** + *
    +       * If `data_transfer_protocol` is set, the port to which the data transfer
    +       * server binds. If set to `0`, the server binds to any available port.
    +       * 
    + * + * int64 data_transfer_port = 13; + * @return This builder for chaining. + */ + public Builder clearDataTransferPort() { + + dataTransferPort_ = 0L; + onChanged(); + return this; + } + private java.lang.Object dataTransferAddress_ = ""; /** *
    -       * The data transfer address of the worker server. The substring "%port%", if
    -       * specified, will be replaced with the worker's bound port. This is useful
    -       * when the port is set to `0`.
    +       * If `data_transfer_protocol` is set, the address of the data transfer
    +       * server. The substring "%dts_port%" can be used to represent -- and is
    +       * replaced with -- the bound port of the data transfer server; this is useful
    +       * when `data_transfer_port` is set to `0`.
            * 
    * * string data_transfer_address = 8; @@ -4108,9 +4245,10 @@ public java.lang.String getDataTransferAddress() { } /** *
    -       * The data transfer address of the worker server. The substring "%port%", if
    -       * specified, will be replaced with the worker's bound port. This is useful
    -       * when the port is set to `0`.
    +       * If `data_transfer_protocol` is set, the address of the data transfer
    +       * server. The substring "%dts_port%" can be used to represent -- and is
    +       * replaced with -- the bound port of the data transfer server; this is useful
    +       * when `data_transfer_port` is set to `0`.
            * 
    * * string data_transfer_address = 8; @@ -4131,9 +4269,10 @@ public java.lang.String getDataTransferAddress() { } /** *
    -       * The data transfer address of the worker server. The substring "%port%", if
    -       * specified, will be replaced with the worker's bound port. This is useful
    -       * when the port is set to `0`.
    +       * If `data_transfer_protocol` is set, the address of the data transfer
    +       * server. The substring "%dts_port%" can be used to represent -- and is
    +       * replaced with -- the bound port of the data transfer server; this is useful
    +       * when `data_transfer_port` is set to `0`.
            * 
    * * string data_transfer_address = 8; @@ -4152,9 +4291,10 @@ public Builder setDataTransferAddress( } /** *
    -       * The data transfer address of the worker server. The substring "%port%", if
    -       * specified, will be replaced with the worker's bound port. This is useful
    -       * when the port is set to `0`.
    +       * If `data_transfer_protocol` is set, the address of the data transfer
    +       * server. The substring "%dts_port%" can be used to represent -- and is
    +       * replaced with -- the bound port of the data transfer server; this is useful
    +       * when `data_transfer_port` is set to `0`.
            * 
    * * string data_transfer_address = 8; @@ -4168,9 +4308,10 @@ public Builder clearDataTransferAddress() { } /** *
    -       * The data transfer address of the worker server. The substring "%port%", if
    -       * specified, will be replaced with the worker's bound port. This is useful
    -       * when the port is set to `0`.
    +       * If `data_transfer_protocol` is set, the address of the data transfer
    +       * server. The substring "%dts_port%" can be used to represent -- and is
    +       * replaced with -- the bound port of the data transfer server; this is useful
    +       * when `data_transfer_port` is set to `0`.
            * 
    * * string data_transfer_address = 8; @@ -4424,19 +4565,20 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig getDefa "s\030\006 \001(\003\022 \n\030gc_dynamic_sharding_jobs\030\013 \001(" + "\010\022\031\n\021client_timeout_ms\030\010 \001(\003\022\031\n\021worker_t" + "imeout_ms\030\n \001(\003\022\'\n\037worker_max_concurrent" + - "_snapshots\030\014 \001(\003\"\345\002\n\014WorkerConfig\022\014\n\004por" + + "_snapshots\030\014 \001(\003\"\201\003\n\014WorkerConfig\022\014\n\004por" + "t\030\001 \001(\003\022\020\n\010protocol\030\002 \001(\t\022\032\n\022dispatcher_" + "address\030\003 \001(\t\022\026\n\016worker_address\030\004 \001(\t\022\023\n" + "\013worker_tags\030\n \003(\t\022\035\n\025heartbeat_interval" + "_ms\030\005 \001(\003\022\035\n\025dispatcher_timeout_ms\030\006 \001(\003" + - "\022\036\n\026data_transfer_protocol\030\007 \001(\t\022\035\n\025data" + - "_transfer_address\030\010 \001(\t\022&\n\036cross_trainer" + - "_cache_size_bytes\030\013 \001(\003\022%\n\035snapshot_max_" + - "chunk_size_bytes\030\014 \001(\003\022 \n\030shutdown_quiet" + - "_period_ms\030\t \001(\003B\177\n&org.tensorflow.proto" + - ".data.experimentalZUgithub.com/tensorflo" + - "w/tensorflow/tensorflow/go/core/protobuf" + - "/for_core_protos_go_protob\006proto3" + "\022\036\n\026data_transfer_protocol\030\007 \001(\t\022\032\n\022data" + + "_transfer_port\030\r \001(\003\022\035\n\025data_transfer_ad" + + "dress\030\010 \001(\t\022&\n\036cross_trainer_cache_size_" + + "bytes\030\013 \001(\003\022%\n\035snapshot_max_chunk_size_b" + + "ytes\030\014 \001(\003\022 \n\030shutdown_quiet_period_ms\030\t" + + " \001(\003B\177\n&org.tensorflow.proto.data.experi" + + "mentalZUgithub.com/tensorflow/tensorflow" + + "/tensorflow/go/core/protobuf/for_core_pr" + + "otos_go_protob\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, @@ -4454,7 +4596,7 @@ public org.tensorflow.proto.data.experimental.ServiceConfig.WorkerConfig getDefa internal_static_tensorflow_data_experimental_WorkerConfig_fieldAccessorTable = new com.google.protobuf.GeneratedMessageV3.FieldAccessorTable( internal_static_tensorflow_data_experimental_WorkerConfig_descriptor, - new java.lang.String[] { "Port", "Protocol", "DispatcherAddress", "WorkerAddress", "WorkerTags", "HeartbeatIntervalMs", "DispatcherTimeoutMs", "DataTransferProtocol", "DataTransferAddress", "CrossTrainerCacheSizeBytes", "SnapshotMaxChunkSizeBytes", "ShutdownQuietPeriodMs", }); + new java.lang.String[] { "Port", "Protocol", "DispatcherAddress", "WorkerAddress", "WorkerTags", "HeartbeatIntervalMs", "DispatcherTimeoutMs", "DataTransferProtocol", "DataTransferPort", "DataTransferAddress", "CrossTrainerCacheSizeBytes", "SnapshotMaxChunkSizeBytes", "ShutdownQuietPeriodMs", }); org.tensorflow.proto.data.DataService.getDescriptor(); } diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/BfcMemoryMap.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/BfcMemoryMap.java index 9ddd1a3d74f..38f0ce96ef4 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/BfcMemoryMap.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/BfcMemoryMap.java @@ -24,11 +24,11 @@ public static void registerAllExtensions( static { java.lang.String[] descriptorData = { "\n-tensorflow/core/protobuf/bfc_memory_ma" + - "p.proto\022\020tensorflow.dummy\032!tsl/protobuf/" + - "bfc_memory_map.protoBs\n\032org.tensorflow.p" + - "roto.dummyZUgithub.com/tensorflow/tensor" + - "flow/tensorflow/go/core/protobuf/for_cor" + - "e_protos_go_protoP\000b\006proto3" + "p.proto\022\020tensorflow.dummy\032%xla/tsl/proto" + + "buf/bfc_memory_map.protoBs\n\032org.tensorfl" + + "ow.proto.dummyZUgithub.com/tensorflow/te" + + "nsorflow/tensorflow/go/core/protobuf/for" + + "_core_protos_go_protoP\000b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/TestLog.java b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/TestLog.java index 7f4925fa6b5..95f0ab4c9c2 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/TestLog.java +++ b/tensorflow-core/tensorflow-core-native/src/gen/java/org/tensorflow/proto/dummy/TestLog.java @@ -24,9 +24,9 @@ public static void registerAllExtensions( static { java.lang.String[] descriptorData = { "\n#tensorflow/core/util/test_log.proto\022\020t" + - "ensorflow.dummy\032\033tsl/protobuf/test_log.p" + - "rotoB\034\n\032org.tensorflow.proto.dummyP\000b\006pr" + - "oto3" + "ensorflow.dummy\032\037xla/tsl/protobuf/test_l" + + "og.protoB\034\n\032org.tensorflow.proto.dummyP\000" + + "b\006proto3" }; descriptor = com.google.protobuf.Descriptors.FileDescriptor .internalBuildGeneratedFileFrom(descriptorData, diff --git a/tensorflow-core/tensorflow-core-native/src/gen/resources/org/tensorflow/base_api/api_def_AssignVariableXlaConcatND.pbtxt b/tensorflow-core/tensorflow-core-native/src/gen/resources/org/tensorflow/base_api/api_def_AssignVariableXlaConcatND.pbtxt index 646f602af22..6bd6bcd8d05 100644 --- a/tensorflow-core/tensorflow-core-native/src/gen/resources/org/tensorflow/base_api/api_def_AssignVariableXlaConcatND.pbtxt +++ b/tensorflow-core/tensorflow-core-native/src/gen/resources/org/tensorflow/base_api/api_def_AssignVariableXlaConcatND.pbtxt @@ -5,17 +5,13 @@ op { name: "resource" description: <