|
14 | 14 | },
|
15 | 15 | {
|
16 | 16 | "cell_type": "code",
|
17 |
| - "execution_count": null, |
| 17 | + "execution_count": 41, |
18 | 18 | "metadata": {
|
19 | 19 | "dotnet_interactive": {
|
20 | 20 | "language": "csharp"
|
|
26 | 26 | "languageId": "polyglot-notebook"
|
27 | 27 | }
|
28 | 28 | },
|
29 |
| - "outputs": [], |
| 29 | + "outputs": [ |
| 30 | + { |
| 31 | + "data": { |
| 32 | + "text/html": [ |
| 33 | + "<div><div></div><div></div><div><strong>Installed Packages</strong><ul><li><span>TorchSharp-cpu, 0.100.3</span></li></ul></div></div>" |
| 34 | + ] |
| 35 | + }, |
| 36 | + "metadata": {}, |
| 37 | + "output_type": "display_data" |
| 38 | + } |
| 39 | + ], |
30 | 40 | "source": [
|
31 | 41 | "#r \"nuget: TorchSharp-cpu\"\n",
|
32 | 42 | "\n",
|
|
46 | 56 | },
|
47 | 57 | {
|
48 | 58 | "cell_type": "code",
|
49 |
| - "execution_count": null, |
| 59 | + "execution_count": 42, |
50 | 60 | "metadata": {
|
51 | 61 | "vscode": {
|
52 | 62 | "languageId": "polyglot-notebook"
|
|
78 | 88 | " public override torch.Tensor forward(torch.Tensor input)\n",
|
79 | 89 | " {\n",
|
80 | 90 | " using var _ = torch.NewDisposeScope();\n",
|
81 |
| - " var z = torch.tanh(hid1.call(input));\n", |
82 |
| - " z = torch.sigmoid(oupt.call(z));\n", |
| 91 | + " var z = hid1.call(input).tanh_();\n", |
| 92 | + " z = oupt.call(z).sigmoid_();\n", |
83 | 93 | " return z.MoveToOuterDisposeScope();\n",
|
84 | 94 | " }\n",
|
85 | 95 | "}"
|
|
95 | 105 | },
|
96 | 106 | {
|
97 | 107 | "cell_type": "code",
|
98 |
| - "execution_count": 32, |
| 108 | + "execution_count": 43, |
99 | 109 | "metadata": {
|
100 | 110 | "dotnet_interactive": {
|
101 | 111 | "language": "csharp"
|
|
142 | 152 | },
|
143 | 153 | {
|
144 | 154 | "cell_type": "code",
|
145 |
| - "execution_count": null, |
| 155 | + "execution_count": 44, |
146 | 156 | "metadata": {
|
147 | 157 | "dotnet_interactive": {
|
148 | 158 | "language": "csharp"
|
|
169 | 179 | },
|
170 | 180 | {
|
171 | 181 | "cell_type": "code",
|
172 |
| - "execution_count": null, |
| 182 | + "execution_count": 45, |
173 | 183 | "metadata": {
|
174 | 184 | "dotnet_interactive": {
|
175 | 185 | "language": "csharp"
|
|
197 | 207 | },
|
198 | 208 | {
|
199 | 209 | "cell_type": "code",
|
200 |
| - "execution_count": null, |
| 210 | + "execution_count": 46, |
201 | 211 | "metadata": {
|
202 | 212 | "dotnet_interactive": {
|
203 | 213 | "language": "csharp"
|
|
225 | 235 | },
|
226 | 236 | {
|
227 | 237 | "cell_type": "code",
|
228 |
| - "execution_count": null, |
| 238 | + "execution_count": 47, |
229 | 239 | "metadata": {
|
230 | 240 | "dotnet_interactive": {
|
231 | 241 | "language": "csharp"
|
|
254 | 264 | " public override torch.Tensor forward(torch.Tensor input)\n",
|
255 | 265 | " {\n",
|
256 | 266 | " using var _ = torch.NewDisposeScope();\n",
|
257 |
| - " var z = torch.nn.functional.relu(hid1.call(input));\n", |
258 |
| - " z = torch.sigmoid(oupt.call(z));\n", |
| 267 | + " var z = hid1.call(input).relu_();\n", |
| 268 | + " z = oupt.call(z).sigmoid_();\n", |
259 | 269 | " return z.MoveToOuterDisposeScope();\n",
|
260 | 270 | " }\n",
|
261 | 271 | "}"
|
|
271 | 281 | },
|
272 | 282 | {
|
273 | 283 | "cell_type": "code",
|
274 |
| - "execution_count": null, |
| 284 | + "execution_count": 48, |
275 | 285 | "metadata": {
|
276 | 286 | "dotnet_interactive": {
|
277 | 287 | "language": "csharp"
|
|
295 | 305 | "cell_type": "markdown",
|
296 | 306 | "metadata": {},
|
297 | 307 | "source": [
|
298 |
| - "A standard training loop. It ends with evaluating the trained model on the training set." |
| 308 | + "We need an optimizer." |
299 | 309 | ]
|
300 | 310 | },
|
301 | 311 | {
|
302 | 312 | "cell_type": "code",
|
303 |
| - "execution_count": null, |
| 313 | + "execution_count": 52, |
304 | 314 | "metadata": {
|
305 | 315 | "dotnet_interactive": {
|
306 | 316 | "language": "csharp"
|
|
315 | 325 | "outputs": [],
|
316 | 326 | "source": [
|
317 | 327 | "var learning_rate = 0.01f;\n",
|
318 |
| - "\n", |
| 328 | + "var optimizer = torch.optim.SGD(model.parameters(), learning_rate);" |
| 329 | + ] |
| 330 | + }, |
| 331 | + { |
| 332 | + "attachments": {}, |
| 333 | + "cell_type": "markdown", |
| 334 | + "metadata": {}, |
| 335 | + "source": [ |
| 336 | + "A standard training loop. It ends with evaluating the trained model on the training set." |
| 337 | + ] |
| 338 | + }, |
| 339 | + { |
| 340 | + "cell_type": "code", |
| 341 | + "execution_count": 59, |
| 342 | + "metadata": { |
| 343 | + "dotnet_interactive": { |
| 344 | + "language": "csharp" |
| 345 | + }, |
| 346 | + "polyglot_notebook": { |
| 347 | + "kernelName": "csharp" |
| 348 | + }, |
| 349 | + "vscode": { |
| 350 | + "languageId": "polyglot-notebook" |
| 351 | + } |
| 352 | + }, |
| 353 | + "outputs": [ |
| 354 | + { |
| 355 | + "name": "stdout", |
| 356 | + "output_type": "stream", |
| 357 | + "text": [ |
| 358 | + " initial loss = 0.023704259\n", |
| 359 | + " final loss = 0.023490703\n" |
| 360 | + ] |
| 361 | + } |
| 362 | + ], |
| 363 | + "source": [ |
319 | 364 | "Console.WriteLine(\" initial loss = \" + loss.forward(model.forward(X_train), y_train).item<float>().ToString());\n",
|
320 | 365 | "\n",
|
321 |
| - "var optimizer = torch.optim.SGD(model.parameters(), learning_rate);\n", |
322 |
| - "\n", |
323 | 366 | "for (int i = 0; i < 10000; i++) {\n",
|
324 | 367 | " // Compute the loss\n",
|
325 | 368 | " using var output = loss.forward(model.forward(X_train), y_train);\n",
|
|
346 | 389 | },
|
347 | 390 | {
|
348 | 391 | "cell_type": "code",
|
349 |
| - "execution_count": null, |
| 392 | + "execution_count": 60, |
350 | 393 | "metadata": {
|
351 | 394 | "dotnet_interactive": {
|
352 | 395 | "language": "csharp"
|
|
358 | 401 | "languageId": "polyglot-notebook"
|
359 | 402 | }
|
360 | 403 | },
|
361 |
| - "outputs": [], |
| 404 | + "outputs": [ |
| 405 | + { |
| 406 | + "data": { |
| 407 | + "text/html": [ |
| 408 | + "<div class=\"dni-plaintext\"><pre>0.021710658</pre></div><style>\r\n", |
| 409 | + ".dni-code-hint {\r\n", |
| 410 | + " font-style: italic;\r\n", |
| 411 | + " overflow: hidden;\r\n", |
| 412 | + " white-space: nowrap;\r\n", |
| 413 | + "}\r\n", |
| 414 | + ".dni-treeview {\r\n", |
| 415 | + " white-space: nowrap;\r\n", |
<
10000
/td> | 416 | + "}\r\n", |
| 417 | + ".dni-treeview td {\r\n", |
| 418 | + " vertical-align: top;\r\n", |
| 419 | + " text-align: start;\r\n", |
| 420 | + "}\r\n", |
| 421 | + "details.dni-treeview {\r\n", |
| 422 | + " padding-left: 1em;\r\n", |
| 423 | + "}\r\n", |
| 424 | + "table td {\r\n", |
| 425 | + " text-align: start;\r\n", |
| 426 | + "}\r\n", |
| 427 | + "table tr { \r\n", |
| 428 | + " vertical-align: top; \r\n", |
| 429 | + " margin: 0em 0px;\r\n", |
| 430 | + "}\r\n", |
| 431 | + "table tr td pre \r\n", |
| 432 | + "{ \r\n", |
| 433 | + " vertical-align: top !important; \r\n", |
| 434 | + " margin: 0em 0px !important;\r\n", |
| 435 | + "} \r\n", |
| 436 | + "table th {\r\n", |
| 437 | + " text-align: start;\r\n", |
| 438 | + "}\r\n", |
| 439 | + "</style>" |
| 440 | + ] |
| 441 | + }, |
| 442 | + "metadata": {}, |
| 443 | + "output_type": "display_data" |
| 444 | + } |
| 445 | + ], |
362 | 446 | "source": [
|
363 | 447 | "loss.forward(model.forward(X_test), y_test).item<float>()"
|
364 | 448 | ]
|
365 | 449 | },
|
366 | 450 | {
|
367 | 451 | "cell_type": "code",
|
368 |
| - "execution_count": null, |
| 452 | + "execution_count": 51, |
369 | 453 | "metadata": {
|
370 | 454 | "dotnet_interactive": {
|
371 | 455 | "language": "csharp"
|
|
0 commit comments