8000 Update join data · data-apis/array-api-comparison@0b7f35b · GitHub
[go: up one dir, main page]

Skip to content
Sign in
Appearance settings

Search code, repositories, users, issues, pull requests...

Provide feedback

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly

Appearance settings

Commit 0b7f35b

Browse files
committed
Update join data
1 parent 8662992 commit 0b7f35b

File tree

5 files changed

+116
-116
lines changed

5 files changed

+116
-116
lines changed

data/joins/methods/mxnet_numpy.csv

Lines changed: 112 additions & 112 deletions
Original file line numberDiff line numberDiff line change
@@ -1,146 +1,146 @@
11
name,numpy
22
"mxnet.nd","numpy.ndarray"
3-
"mxnet.nd.__repr__","numpy.ndarray.__repr__"
4-
"mxnet.nd.__reduce__","numpy.ndarray.__reduce__"
53
"mxnet.nd.__abs__","numpy.ndarray.__abs__"
64
"mxnet.nd.__add__","numpy.ndarray.__add__"
5+
"mxnet.nd.__bool__","numpy.ndarray.__bool__"
6+
"mxnet.nd.__div__",""
7+
"mxnet.nd.__eq__","numpy.ndarray.__eq__"
8+
"mxnet.nd.__ge__","numpy.ndarray.__ge__"
9+
"mxnet.nd.__getitem__","numpy.ndarray.__getitem__"
10+
"mxnet.nd.__getstate__",""
11+
"mxnet.nd.__gt__","numpy.ndarray.__gt__"
12+
"mxnet.nd.__hash__",""
713
"mxnet.nd.__iadd__","numpy.ndarray.__iadd__"
8-
"mxnet.nd.__radd__","numpy.ndarray.__radd__"
9-
"mxnet.nd.__sub__","numpy.ndarray.__sub__"
14+
"mxnet.nd.__idiv__",""
15+
"mxnet.nd.__imod__","numpy.ndarray.__imod__"
16+
"mxnet.nd.__imul__","numpy.ndarray.__imul__"
1017
"mxnet.nd.__isub__","numpy.ndarray.__isub__"
11-
"mxnet.nd.__rsub__","numpy.ndarray.__rsub__"
18+
"mxnet.nd.__itruediv__","numpy.ndarray.__itruediv__"
19+
"mxnet.nd.__le__","numpy.ndarray.__le__"
20+
"mxnet.nd.__len__","numpy.ndarray.__len__"
21+
"mxnet.nd.__lt__","numpy.ndarray.__lt__"
22+
"mxnet.nd.__mod__","numpy.ndarray.__mod__"
1223
"mxnet.nd.__mul__","numpy.ndarray.__mul__"
24+
"mxnet.nd.__ne__","numpy.ndarray.__ne__"
1325
"mxnet.nd.__neg__","numpy.ndarray.__neg__"
14-
"mxnet.nd.__imul__","numpy.ndarray.__imul__"
15-
"mxnet.nd.__rmul__","numpy.ndarray.__rmul__"
16-
"mxnet.nd.__div__",""
26+
"mxnet.nd.__pow__","numpy.ndarray.__pow__"
27+
"mxnet.nd.__radd__","numpy.ndarray.__radd__"
1728
"mxnet.nd.__rdiv__",""
18-
"mxnet.nd.__idiv__",""
19-
"mxnet.nd.__truediv__","numpy.ndarray.__truediv__"
20-
"mxnet.nd.__rtruediv__","numpy.ndarray.__rtruediv__"
21-
"mxnet.nd.__itruediv__","numpy.ndarray.__itruediv__"
22-
"mxnet.nd.__mod__","numpy.ndarray.__mod__"
29+
"mxnet.nd.__reduce__","numpy.ndarray.__reduce__"
30+
"mxnet.nd.__repr__","numpy.ndarray.__repr__"
2331
"mxnet.nd.__rmod__","numpy.ndarray.__rmod__"
24-
"mxnet.nd.__imod__","numpy.ndarray.__imod__"
25-
"mxnet.nd.__pow__","numpy.ndarray.__pow__"
32+
"mxnet.nd.__rmul__","numpy.ndarray.__rmul__"
2633
"mxnet.nd.__rpow__","numpy.ndarray.__rpow__"
27-
"mxnet.nd.__eq__","numpy.ndarray.__eq__"
28-
"mxnet.nd.__hash__",""
29-
"mxnet.nd.__ne__","numpy.ndarray.__ne__"
30-
"mxnet.nd.__gt__","numpy.ndarray.__gt__"
31-
"mxnet.nd.__ge__","numpy.ndarray.__ge__"
32-
"mxnet.nd.__lt__","numpy.ndarray.__lt__"
33-
"mxnet.nd.__le__","numpy.ndarray.__le__"
34-
"mxnet.nd.__bool__","numpy.ndarray.__bool__"
35-
"mxnet.nd.__len__","numpy.ndarray.__len__"
36-
"mxnet.nd.__getstate__",""
37-
"mxnet.nd.__setstate__","numpy.ndarray.__setstate__"
34+
"mxnet.nd.__rsub__","numpy.ndarray.__rsub__"
35+
"mxnet.nd.__rtruediv__","numpy.ndarray.__rtruediv__"
3836
"mxnet.nd.__setitem__","numpy.ndarray.__setitem__"
39-
"mxnet.nd.__getitem__","numpy.ndarray.__getitem__"
40-
"mxnet.nd.reshape","numpy.ndarray.reshape"
41-
"mxnet.nd.reshape_like",""
42-
"mxnet.nd.zeros_like",""
43-
"mxnet.nd.ones_like",""
44-
"mxnet.nd.broadcast_axes",""
45-
"mxnet.nd.repeat","numpy.ndarray.repeat"
46-
"mxnet.nd.pad",""
47-
"mxnet.nd.swapaxes","numpy.ndarray.swapaxes"
48-
"mxnet.nd.split",""
49-
"mxnet.nd.split_v2",""
50-
"mxnet.nd.slice",""
51-
"mxnet.nd.slice_axis",""
52-
"mxnet.nd.slice_like",""
53-
"mxnet.nd.take","numpy.ndarray.take"
54-
"mxnet.nd.one_hot",""
55-
"mxnet.nd.pick",""
56-
"mxnet.nd.sort","numpy.ndarray.sort"
57-
"mxnet.nd.topk",""
58-
"mxnet.nd.argsort","numpy.ndarray.argsort"
37+
"mxnet.nd.__setstate__","numpy.ndarray.__setstate__"
38+
"mxnet.nd.__sub__","numpy.ndarray.__sub__"
39+
"mxnet.nd.__truediv__","numpy.ndarray.__truediv__"
40+
"mxnet.nd.abs",""
41+
"mxnet.nd.arccos",""
42+
"mxnet.nd.arccosh",""
43+
"mxnet.nd.arcsin",""
44+
"mxnet.nd.arcsinh",""
45+
"mxnet.nd.arctan",""
46+
"mxnet.nd.arctanh",""
5947
"mxnet.nd.argmax","numpy.ndarray.argmax"
6048
"mxnet.nd.argmax_channel",""
6149
"mxnet.nd.argmin","numpy.ndarray.argmin"
62-
"mxnet.nd.clip","numpy.ndarray.clip"
63-
"mxnet.nd.abs",""
64-
"mxnet.nd.sign",""
65-
"mxnet.nd.flatten","numpy.ndarray.flatten"
66-
"mxnet.nd.shape_array",""
67-
"mxnet.nd.size_array",""
68-
"mxnet.nd.expand_dims",""
69-
"mxnet.nd.tile",""
70-
"mxnet.nd.transpose","numpy.ndarray.transpose"
71-
"mxnet.nd.flip",""
72-
"mxnet.nd.depth_to_space",""
73-
"mxnet.nd.space_to_depth",""
74-
"mxnet.nd.diag",""
75-
"mxnet.nd.sum","numpy.ndarray.sum"
76-
"mxnet.nd.nansum",""
77-
"mxnet.nd.prod","numpy.ndarray.prod"
78-
"mxnet.nd.nanprod",""
79-
"mxnet.nd.mean","numpy.ndarray.mean"
80-
"mxnet.nd.max","numpy.ndarray.max"
81-
"mxnet.nd.min","numpy.ndarray.min"
82-
"mxnet.nd.norm",""
83-
"mxnet.nd.round","numpy.ndarray.round"
84-
"mxnet.nd.rint",""
85-
"mxnet.nd.fix",""
86-
"mxnet.nd.floor",""
50+
"mxnet.nd.argsort","numpy.ndarray.argsort"
51+
"mxnet.nd.as_in_context",""
52+
"mxnet.nd.asnumpy",""
53+
"mxnet.nd.asscalar",""
54+
"mxnet.nd.astype","numpy.ndarray.astype"
55+
"mxnet.nd.attach_grad",""
56+
"mxnet.nd.backward",""
57+
"mxnet.nd.broadcast_axes",""
58+
"mxnet.nd.broadcast_like",""
59+
"mxnet.nd.broadcast_to",""
60+
"mxnet.nd.cbrt",""
8761
"mxnet.nd.ceil",""
88-
"mxnet.nd.trunc",""
89-
"mxnet.nd.sin",""
62+
"mxnet.nd.clip","numpy.ndarray.clip"
63+
"mxnet.nd.context",""
64+
"mxnet.nd.copy","numpy.ndarray.copy"
65+
"mxnet.nd.copyto",""
9066
"mxnet.nd.cos",""
91-
"mxnet.nd.tan",""
92-
"mxnet.nd.arcsin",""
93-
"mxnet.nd.arccos",""
94-
"mxnet.nd.arctan",""
95-
"mxnet.nd.degrees",""
96-
"mxnet.nd.radians",""
97-
"mxnet.nd.sinh",""
9867
"mxnet.nd.cosh",""
99-
"mxnet.nd.tanh",""
100-
"mxnet.nd.arcsinh",""
101-
"mxnet.nd.arccosh",""
102-
"mxnet.nd.arctanh",""
68+
"mxnet.nd.ctx",""
69+
"mxnet.nd.degrees",""
70+
"mxnet.nd.depth_to_space",""
71+
"mxnet.nd.detach",""
72+
"mxnet.nd.diag",""
73+
"mxnet.nd.dtype","numpy.ndarray.dtype"
10374
"mxnet.nd.exp",""
75+
"mxnet.nd.expand_dims",""
10476
"mxnet.nd.expm1",""
77+
"mxnet.nd.fix",""
78+
"mxnet.nd.flatten","numpy.ndarray.flatten"
79+
"mxnet.nd.flip",""
80+
"mxnet.nd.floor",""
81+
"mxnet.nd.grad",""
10582
"mxnet.nd.log",""
10683
"mxnet.nd.log10",""
107-
"mxnet.nd.log2",""
10884
"mxnet.nd.log1p",""
109-
"mxnet.nd.sqrt",""
110-
"mxnet.nd.rsqrt",""
111-
"mxnet.nd.cbrt",""
85+
"mxnet.nd.log2",""
86+
"mxnet.nd.log_softmax",""
87+
"mxnet.nd.max","numpy.ndarray.max"
88+
"mxnet.nd.mean","numpy.ndarray.mean"
89+
"mxnet.nd.min","numpy.ndarray.min"
90+
"mxnet.nd.nanprod",""
91+
"mxnet.nd.nansum",""
92+
"mxnet.nd.ndim","numpy.ndarray.ndim"
93+
"mxnet.nd.norm",""
94+
"mxnet.nd.one_hot",""
95+
"mxnet.nd.ones_like",""
96+
"mxnet.nd.pad",""
97+
"mxnet.nd.pick",""
98+
"mxnet.nd.prod","numpy.ndarray.prod"
99+
"mxnet.nd.radians",""
112100
"mxnet.nd.rcbrt",""
113-
"mxnet.nd.square",""
114101
"mxnet.nd.reciprocal",""
115102
"mxnet.nd.relu",""
103+
"mxnet.nd.repeat","numpy.ndarray.repeat"
104+
"mxnet.nd.reshape","numpy.ndarray.reshape"
105+
"mxnet.nd.reshape_like",""
106+
"mxnet.nd.rint",""
107+
"mxnet.nd.round","numpy.ndarray.round"
108+
"mxnet.nd.rsqrt",""
109+
"mxnet.nd.shape","numpy.ndarray.shape"
110+
"mxnet.nd.shape_array",""
116111
"mxnet.nd.sigmoid",""
112+
"mxnet.nd.sign",""
113+
"mxnet.nd.sin",""
114+
"mxnet.nd.sinh",""
115+
"mxnet.nd.size","numpy.ndarray.size"
116+
"mxnet.nd.size_array",""
117+
"mxnet.nd.slice",""
118+
"mxnet.nd.slice_assign",""
119+
"mxnet.nd.slice_assign_scalar",""
120+
"mxnet.nd.slice_axis",""
121+
"mxnet.nd.slice_like",""
117122
"mxnet.nd.softmax",""
118-
"mxnet.nd.log_softmax",""
119123
"mxnet.nd.softmin",""
124+
"mxnet.nd.sort","numpy.ndarray.sort"
125+
"mxnet.nd.space_to_depth",""
126+
"mxnet.nd.split",""
127+
"mxnet.nd.split_v2",""
128+
"mxnet.nd.sqrt",""
129+
"mxnet.nd.square",""
120130
"mxnet.nd.squeeze","numpy.ndarray.squeeze"
121-
"mxnet.nd.broadcast_to",""
122-
"mxnet.nd.broadcast_like",""
123-
"mxnet.nd.wait_to_read",""
124-
"mxnet.nd.ndim","numpy.ndarray.ndim"
125-
"mxnet.nd.shape","numpy.ndarray.shape"
126-
"mxnet.nd.size","numpy.ndarray.size"
127-
"mxnet.nd.context",""
128-
"mxnet.nd.ctx",""
129-
"mxnet.nd.dtype","numpy.ndarray.dtype"
130131
"mxnet.nd.stype",""
132+
"mxnet.nd.sum","numpy.ndarray.sum"
133+
"mxnet.nd.swapaxes","numpy.ndarray.swapaxes"
131134
"mxnet.nd.T","numpy.ndarray.T"
132-
"mxnet.nd.asnumpy",""
133-
"mxnet.nd.asscalar",""
134-
"mxnet.nd.astype","numpy.ndarray.astype"
135-
"mxnet.nd.copyto",""
136-
"mxnet.nd.copy","numpy.ndarray.copy"
137-
"mxnet.nd.slice_assign_scalar",""
138-
"mxnet.nd.slice_assign",""
139-
"mxnet.nd.as_in_context",""
140-
"mxnet.nd.attach_grad",""
141-
"mxnet.nd.grad",""
142-
"mxnet.nd.detach",""
143-
"mxnet.nd.backward",""
144-
"mxnet.nd.tostype",""
135+
"mxnet.nd.take","numpy.ndarray.take"
136+
"mxnet.nd.tan",""
137+
"mxnet.nd.tanh",""
138+
"mxnet.nd.tile",""
145139
"mxnet.nd.to_dlpack_for_read",""
146140
"mxnet.nd.to_dlpack_for_write",""
141+
"mxnet.nd.topk",""
142+
"mxnet.nd.tostype",""
143+
"mxnet.nd.transpose","numpy.ndarray.transpose"
144+
"mxnet.nd.trunc",""
145+
"mxnet.nd.wait_to_read",""
146+
"mxnet.nd.zeros_like",""

0 commit comments

Comments
 (0)
0