8000 CI Failures · Issue #427 · dask/dask-ml · GitHub
[go: up one dir, main page]

Skip to content
CI Failures #427
@TomAugspurger

Description

@TomAugspurger

https://circleci.com/gh/dask/dask-ml/2992?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link

https://circleci.com/gh/dask/dask-ml/2992?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link

[flake8]
./dask_ml/linear_model/glm.py:94:-1624: W605 invalid escape sequence '\l'
./dask_ml/model_selection/_search.py:1148:17: W504 line break after binary operator
./tests/test_pca.py:376:30: W605 invalid escape sequence '\('
./tests/test_pca.py:378:25: W605 invalid escape sequence '\)'
./tests/test_pca.py:390:21: W605 invalid escape sequence '\('
./tests/test_pca.py:391:28: W605 invalid escape sequence '\)'
Exited with code 1

https://circleci.com/gh/dask/dask-ml/2993?utm_campaign=vcs-integration-link&utm_medium=referral&utm_source=github-build-link

=================================== FAILURES ===================================
_________________________ test_pipeline_feature_union __________________________

    def test_pipeline_feature_union():
        iris = load_iris()
        X, y = iris.data, iris.target
    
        pca = PCA(random_state=0)
        kbest = SelectKBest()
        empty_union = FeatureUnion([("first", None), ("second", None)])
        empty_pipeline = Pipeline([("first", None), ("second", None)])
        scaling = Pipeline([("transform", ScalingTransformer())])
        svc = SVC(kernel="linear", random_state=0)
    
        pipe = Pipeline(
            [
                ("empty_pipeline", empty_pipeline),
                ("scaling", scaling),
                ("missing", None),
                (
                    "union",
                    FeatureUnion(
                        [
                            ("pca", pca),
                            ("missing", None),
                            ("kbest", kbest),
                            ("empty_union", empty_union),
                        ],
                        transformer_weights={"pca": 0.5},
                    ),
                ),
                ("svc", svc),
            ]
        )
    
        param_grid = dict(
            scaling__transform__factor=[1, 2],
            union__pca__n_components=[1, 2, 3],
            union__kbest__k=[1, 2],
            svc__C=[0.1, 1, 10],
        )
    
        gs = GridSearchCV(pipe, param_grid=param_grid, cv=3, iid=True)
>       gs.fit(X, y)

tests/model_selection/dask_searchcv/test_model_selection.py:367: 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_search.py:686: in fit
    self._run_search(evaluate_candidates)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_search.py:1130: in _run_search
    evaluate_candidates(ParameterGrid(self.param_grid))
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_search.py:675: in evaluate_candidates
    cv.split(X, y, groups)))
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:983: in __call__
    if self.dispatch_one_batch(iterator):
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:825: in dispatch_one_batch
    self._dispatch(tasks)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:782: in _dispatch
    job = self._backend.apply_async(batch, callback=cb)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py:182: in apply_async
    result = ImmediateResult(func)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py:545: in __init__
    self.results = batch()
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:261: in __call__
    for func, args, kwargs in self.items]
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:261: in <listcomp>
    for func, args, kwargs in self.items]
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_validation.py:552: in _fit_and_score
    test_scores = _score(estimator, X_test, y_test, scorer, is_multimetric)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_validation.py:589: in _score
    return _multimetric_score(estimator, X_test, y_test, scorer)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/model_selection/_validation.py:619: in _multimetric_score
    score = scorer(estimator, X_test, y_test)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/metrics/scorer.py:228: in _passthrough_scorer
    return estimator.score(*args, **kwargs)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/utils/metaestimators.py:118: in <lambda>
    out = lambda *args, **kwargs: self.fn(obj, *args, **kwargs)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/pipeline.py:519: in score
    Xt = transform.transform(Xt)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/pipeline.py:834: in transform
    for name, trans, weight in self._iter())
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:983: in __call__
    if self.dispatch_one_batch(iterator):
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:825: in dispatch_one_batch
    self._dispatch(tasks)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:782: in _dispatch
    job = self._backend.apply_async(batch, callback=cb)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py:182: in apply_async
    result = ImmediateResult(func)
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/_parallel_backends.py:545: in __init__
    self.results = batch()
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:261: in __call__
    for func, args, kwargs in self.items]
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/externals/joblib/parallel.py:261: in <listcomp>
    for func, args, kwargs in self.items]
/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/pipeline.py:617: in _transform_one
    res = transformer.transform(X)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

self = PCA(copy=True, iterated_power='auto', n_components=1, random_state=0,
  svd_solver='auto', tol=0.0, whiten=False)
X = array([[-1.34536609,  1.4       ],
       [-1.36108599,  1.4       ],
       [-1.44888676,  1.3       ],
       [-1.37... 5.        ],
       [ 0.78648496,  5.1       ],
       [ 0.94745888,  5.3       ],
       [ 0.97076437,  5.5       ]])

    def transform(self, X):
        """Apply dimensionality reduction to X.
    
        X is projected on the first principal components previously extracted
        from a training set.
    
        Parameters
        ----------
        X : array-like, shape (n_samples, n_features)
            New data, where n_samples is the number of samples
            and n_features is the number of features.
    
        Returns
        -------
        X_new : array-like, shape (n_samples, n_components)
    
        Examples
        --------
    
        >>> import numpy as np
        >>> from sklearn.decomposition import IncrementalPCA
        >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
        >>> ipca = IncrementalPCA(n_components=2, batch_size=3)
        >>> ipca.fit(X)
        IncrementalPCA(batch_size=3, copy=True, n_components=2, whiten=False)
        >>> ipca.transform(X) # doctest: +SKIP
        """
        check_is_fitted(self, ['mean_', 'components_'], all_or_any=all)
    
        X = check_array(X)
        if self.mean_ is not None:
>           X = X - self.mean_
E           ValueError: operands could not be broadcast together with shapes (51,2) (4,)

/opt/conda/envs/dask-ml-test/lib/python3.6/site-packages/sklearn/decomposition/base.py:130: ValueError
--------------------------- Captured stderr teardown ---------------------------

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions

      0