1
+ {
2
+ "nbformat" : 4 ,
3
+ "nbformat_minor" : 0 ,
4
+ "metadata" : {
5
+ "colab" : {
6
+ "provenance" : []
7
+ },
8
+ "kernelspec" : {
9
+ "name" : " python3" ,
10
+ "display_name" : " Python 3"
11
+ },
12
+ "language_info" : {
13
+ "name" : " python"
14
+ }
15
+ },
16
+ "cells" : [
17
+ {
18
+ "cell_type" : " code" ,
19
+ "execution_count" : 2 ,
20
+ "metadata" : {
21
+ "colab" : {
22
+ "base_uri" : " https://localhost:8080/"
23
+ },
24
+ "id" : " K6ZifZM98GkT" ,
25
+ "outputId" : " efd22c1c-6ba0-4d1e-94a6-a666f260623b"
26
+ },
27
+ "outputs" : [
28
+ {
29
+ "output_type" : " stream" ,
30
+ "name" : " stdout" ,
31
+ "text" : [
32
+ " Predicted values: [0 1 0 ... 1 1 1]\n " ,
33
+ " Actual values: [0 1 0 ... 1 1 1]\n " ,
34
+ " Accuracy of the model: 87.39%\n " ,
35
+ " Confusion Matrix:\n " ,
36
+ " [[ 39912 19954]\n " ,
37
+ " [ 5261 134873]]\n "
38
+ ]
39
+ }
40
+ ],
41
+ "source" : [
42
+ " import numpy as np\n " ,
43
+ " import pandas as pd\n " ,
44
+ " from sklearn.model_selection import train_test_split\n " ,
45
+ " from sklearn.preprocessing import StandardScaler\n " ,
46
+ " from sklearn.linear_model import LogisticRegression\n " ,
47
+ " from sklearn.metrics import accuracy_score, confusion_matrix\n " ,
48
+ " \n " ,
49
+ " df = pd.read_csv('large_customer_data.csv')\n " ,
50
+ " \n " ,
51
+ " X = df[['Age', 'EstimatedSalary']]\n " ,
52
+ " y = df['Purchased']\n " ,
53
+ " \n " ,
54
+ " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n " ,
55
+ " \n " ,
56
+ " scaler = StandardScaler()\n " ,
57
+ " X_train_scaled = scaler.fit_transform(X_train)\n " ,
58
+ " X_test_scaled = scaler.transform(X_test)\n " ,
59
+ " \n " ,
60
+ " model = LogisticRegression()\n " ,
61
+ " model.fit(X_train_scaled, y_train)\n " ,
62
+ " \n " ,
63
+ " y_pred = model.predict(X_test_scaled)\n " ,
64
+ " \n " ,
65
+ " accuracy = accuracy_score(y_test, y_pred)\n " ,
66
+ " conf_matrix = confusion_matrix(y_test, y_pred)\n " ,
67
+ " \n " ,
68
+ " print(f\" Predicted values: {y_pred}\" )\n " ,
69
+ " print(f\" Actual values: {y_test.values}\" )\n " ,
70
+ " print(f\" Accuracy of the model: {accuracy * 100:.2f}%\" )\n " ,
71
+ " print(f\" Confusion Matrix:\\ n{conf_matrix}\" )\n "
72
+ ]
73
+ },
74
+ {
75
+ "cell_type" : " code" ,
76
+ "source" : [],
77
+ "metadata" : {
78
+ "id" : " BTu91qrS8K9O"
79
+ },
80
+ "execution_count" : null ,
81
+ "outputs" : []
82
+ }
83
+ ]
84
+ }
0 commit comments