
SAX-VSM: Interpretable Time Series Classification

Using SAX and Vector Space Model

Pavel Senin

Information and Computer Sciences Department,

University of Hawaii at Manoa, Honolulu, HI, 96822

senin@hawaii.edu

Sergey Malinchik

Lockheed Martin Advanced Technology Laboratories,

3 Executive Campus, Suite 600, Cherry Hill, NJ, 08002

sergey.b.malinchik@lmco.com

Abstract—In this paper, we propose a novel method for
discovering characteristic patterns in a time series called SAX-
VSM. This method is based on two existing techniques - Symbolic
Aggregate approXimation and Vector Space Model. SAX-VSM
automatically discovers and ranks time series patterns by their
importance to the class, which not only facilitates well-performing
classification procedure, but also provides an interpretable class
generalization. The accuracy of the method, as shown through
experimental evaluation, is at the level of the current state
of the art. While being relatively computationally expensive
within a learning phase, our method provides fast, precise, and
interpretable classification.

Index Terms—time series analysis, classification algorithms

I. INTRODUCTION

Time series classification is an increasingly popular area

of research, providing solutions to a wide range of fields,

including data mining, image and motion recognition, environ-

mental sciences, health care, and chemometrics. Within the last

decade, many time series representations, similarity measures,

and classification algorithms were proposed following the

rapid progress in data collection and storage technologies [1].

Nevertheless, to date, the best overall performing classifier in

the field is the nearest-neighbor algorithm (1NN), that can

be easily tuned for a particular problem by choosing either a

distance measure, an approximation technique, or smoothing

[1]. The 1NN classifier is simple, accurate and robust, depends

on a very few parameters and requires no training [1], [2], [3].

However, the 1NN technique has a number of significant disad-

vantages, where the major shortcoming is the inability to offer

any insight into the classification results. Another limitation

is its need for a significantly large training set representing

a within-class variance in order to achieve desired accuracy.

Finally, while having trivial initialization, 1NN classification is

computationally expensive. Thus, the demand for an efficient

and interpretable classification technique capable of processing

of large data volumes remains.

In this work, we propose an alternative to 1NN algorithm

that addresses aforementioned limitations - it provides a supe-

rior interpretability, learns efficiently from a small training set,

and has a low classification computational complexity.

The paper is structured as follows: Section II discusses

relevant work, Section III provides background for a proposed

algorithm, in Section IV we describe our algorithm, and in

Section V we evaluate its performance. We conclude and

discuss future work in Section VI.

II. PRIOR AND RELATED WORK

Almost all of the existing techniques for time series classi-

fication can be divided in two major categories [4]. The first

category includes techniques based on shape-based similarity

metrics where distance is measured directly between time

series points. Classical examples from this category is 1NN

classifier built upon Euclidean distance [5] and DTW [6]. The

second category consists of classification techniques based

on structural similarity metrics, which employ a high-level

representations of time series based on their global or local

features. Examples from this category include classifiers based

on time series representation obtained with DFT [7] or Bag-

Of-Patterns [8]. The development of these distinct categories

can be explained by the difference in their performance: while

shape-based similarity methods are virtually unbeatable on

short pre-processed time series [2], they usually fail on long

and noisy data, where structure-based solutions demonstrate a

superior performance [8].

Two techniques, relevant to our work, were recently pro-

posed as possible alternatives to these two categories. The

first is the Time Series Shapelet technique which features

a superior interpretability and a compactness of delivered

solution [9]. A Shapelet is a short time series “snippet”

that is a representative of class membership and is used for

a decision tree construction facilitating class identification

and interpretability. In order to find a branching shapelet,

the algorithm exhaustively searches for a best discriminatory

shapelet on data split via an information gain measure. The

algorithm’s classification is built upon the similarity measure

between a branching shapelet and a full time series, defined

as a distance between the shapelet and a closest subsequence

in the series when measured by the normalized Euclidean

distance. This exact technique, potentially, combines the su-

perior precision of exact shape-based similarity methods, and

the high-throughput classification capacity of feature-based

approximate techniques. However, while demonstrating a supe-

rior interpretability, robustness, and similar to 1NN algorithm

performance, shapelets-based technique is computationally ex-

pensive, O(n2m3), where n is a number of objects and m is the

length of a longest time series, making its adoption for many-

class classification problems difficult [10]. While the better

solution was recently proposed (O(nm2)), it is an approximate

solution based on indexing [11].

The second technique with interpretable results is 1NN

classifier built upon the Bag-Of-Patterns (BOP) representation

of time series [8], which is equated to an Information Retrieval

(IR) “bag of words” concept and is obtained by extrac-

tion, transformation with Symbolic Aggregate approXimation

(SAX) [12], and counting the frequencies of short overlapping

subsequences (patterns) along the time series. By applying

this procedure to a training set, the algorithm converts the

data into the vector space, where the original time series are

represented by a pattern (SAX word) occurrence frequency

vector. These vectors are classified with 1NN classifier built

with Euclidean distance or Cosine similarity applied to raw

frequencies or their tf∗idf weighting. It was shown that BOP

has several advantages: its complexity is linear (O(nm)), it

is rotation-invariant and considers local and global structures

simultaneously, and it provides an insight into patterns distri-

bution through frequency histograms. The authors concluded,

that the best classification accuracy of BOP-represented time

series is achieved by using 1NN classifier based on Euclidean

distance.

Our algorithm has similarities to the aforementioned tech-

niques. Similar to shapelets-based approaches, our algorithm

looks for time series subsequences which are characteris-

tic representatives of a class, that enables a superior inter-

pretability. However, instead of recursive search for class-

discriminating shapelet, our algorithm ranks by importance

all potential candidate subsequences at once with a linear

computational complexity of O(nm). To achieve this, similarly

to BOP, SAX-VSM converts all training time series into bags

of SAX words and uses tf∗idf weighting and Cosine similarity.

Nonetheless, instead of building n bags for each of the training

time series, our algorithm builds a single bag of words for each

of the classes, that effectively provides a compact solution

of N weight vectors (N is the number of classes, typically

N << n), and a fast classification time of O(m).

We will show these distinct features - the generalization

of the class’ patterns with a single bag and their weighting -

allow SAX-VSM to achieve a high classification accuracy and

to provide an exceptional interpretability.

III. BACKGROUND

SAX-VSM is based on two well-known techniques. The

first technique is Symbolic Aggregate approXimation, which

is a high-level symbolic representation of time series [12].

The second technique is the classic Vector Space Model

based on tf∗idf weighting scheme [13]. Using SAX, our

algorithm transforms real-valued time series into combined

collections of SAX words. Next, by using tf∗idf weighting,

it transforms these collections into class-characteristic weight

vectors, which, in turn, are used in classification built upon

Cosine similarity.

SAX, however, requires two parameters to be provided as

an input and no efficient solution for their selection exists

to the best of our knowledge. We address this issue by

using an optimization scheme based on the dividing rectangles

(DIRECT) algorithm that does not require any input [14].

A. Symbolic Aggregate approXimation (SAX)

Symbolic representation of time series, once introduced, has

attracted much attention by enabling the application of numer-

ous string-processing algorithms, bioinformatics tools, and text

mining techniques to time series [12]. The method provides a

significant reduction of the time series dimensionality and a

low-bounding to Euclidean distance metrics, which guarantees

no false dismissal [15]. These properties are often leveraged by

other techniques that embed SAX representation for indexing

and approximation [11].

Configured by two parameters, a desired word size w and

an alphabet size α, SAX produces a symbolic approximation

of a time series T of a length n by compressing it into a

string of the length w (usually w << n), whose letters are

taken from the alphabet α. At the first step of the algorithm,

T is z-normalized (to unit of standard deviation) [16]. At the

second step, a dimensionality of the normalized time series is

reduced from n to w by obtaining its Piecewise Aggregate

Approximation (PAA) [17]. For this, the normalized time

series is divided into w equal-sized segments and mean values

for points within each segment are computed. The sequence

of these values forms PAA approximation of T . Finally, each

of w PAA coefficients is converted into a letter of an alphabet

α using the lookup table which defines a set of breakpoints

that divide the normalized time series values distribution space

into α equal-sized regions (as in the original SAX work [12],

we assume Gaussian distribution).

B. Bag of words representation of time series

Following its introduction, SAX was shown to be an effi-

cient tool for solving problems of finding time series motifs

and discords [18]. The authors employed a sliding window-

based subsequence extraction technique and augmented data

structures in order to build SAX words “vocabularies”. By

analyzing words frequencies, they were able to capture fre-

quent and rare SAX words representing motif and discord

subsequences. The same technique, based on the combination

of sliding window and SAX, was used in numerous works,

most notably in Shapelet [11] and BOP -based classifiers [8].

We also use this sliding window technique to convert a time

series T of a length n into the set of m SAX words, where

m = (n − ls) + 1 and ls is the sliding window length. By

sliding a window of length ls across time series T , extracting

overlapping subsequences, converting them to SAX words, and

placing these words into an unordered collection, we obtain

the bag of words representation of the original time series T .

C. Vector Space Model (VSM) adaptation

We use the vector space model exactly as it is known in

Information Retrieval [13]. Similarly, we define and use the

following expressions: term - a single SAX word, bag of words

- an unordered collection of SAX words, corpus - a set of bags,

and weight matrix - a matrix defining weights of all words in

a corpus.

Given a training set, SAX-VSM builds a bag of SAX

words for each of the classes by processing each time series

with a sliding window and SAX. Bags are combined into a

corpus, which is built as a term frequency matrix, whose rows

correspond to the set of all SAX words (terms) found in all

classes, whereas each column denotes a class of the training

set. Each element of this matrix is an observed frequency of a

term in a class. Because SAX words extracted from the time

series of one class are often not found in others, as shown in

Section V-B, this matrix is usually sparse.

Next, SAX-VSM applies tf∗idf weighting scheme for each

element of this matrix to transform a frequency value into a

weight coefficient. The tf∗idf weight for a term t is defined

as a product of two factors: term frequency (tf) and inverse

document frequency (idf). For the first factor, we use logarith-

mically scaled term frequency [19]:

tft,d =

{

log(1 + ft,d), if ft,d > 0

0, otherwise
(1)

where t is the term, d is a bag of words (a document in IR

terms), and ft,d is a frequency of the term in a bag.

The inverse document frequency we compute as usual [19]:

idft,D = log
|D|

|d ∈ D : t ∈ d|
= log

N

dft
(2)

where N is the cardinality of a corpus D (the total number of

classes) and the denominator dft is a number of bags where

the term t appears.

Then, tf∗idf weight value for a term t in the bag d of a

corpus D is defined as

tf * idf(t, d,D) = tft,d × idft,D = log(1 + ft,d)× log
N

dft
(3)

for all cases where ft,d > 0 and dft > 0, or zero otherwise.

Once all frequency values are computed, term frequency

matrix becomes the term weight matrix, whose columns used

as class’ term weight vectors that facilitate the classification

using Cosine similarity.

For two vectors a and b Cosine similarity is based on their

inner product and defined as

similarity(a, b) = cos(θ) =
a · b

||a|| · ||b||
(4)

IV. SAX-VSM CLASSIFICATION ALGORITHM

As many other classification techniques, SAX-VSM consists

of two phases - training and classification.

A. Training phase

The training starts by transforming the labeled time series

into SAX representation configured by three parameters: the

sliding window length (W), the number of PAA segments per

window (P), and SAX alphabet size (A). Each of subsequences

extracted with overlapping sliding window is normalized (Sec.

III-A) before being processed with PAA. However, if the

standard deviation value falls below a fixed threshold, the nor-

malization is not applied in order to avoid over-amplification

of a background noise [12].

By applying this procedure to all time series from N training

classes, algorithm builds a corpus of N bags, to which it

applies tf∗idf weighting and outputs N real-valued weight

vectors of equal length representing training classes.

-2

-1

0

1

2

0 10 20 30 40 50 60

-2

-1

0

1

2

0 10 20 30 40 50 60

-2

-1

0

1

2

0 10 20 30 40 50 60

TF*IDF

class1

0.023

0.140

...

0.000

class2

0.000

0.000

...

0.010

TF*IDF

weight

vectors

accbb

cdaaa

...

ddbca

SAX SAX SAX

Class 1 Class 2 Unlabeled time series

}*{maxarg unlabeledfreqtfidf

Class label =

where i (1,2)
i

i

bag of words bag of words bag of words

accbb, cdaaa, cdaaa, ... acabb, cbcdc, ddbca, ... ccbaa, ccbba, cbbba, ...

Fig. 1: An overview of SAX-VSM algorithm: at first, labeled time series
are converted into bags of words using SAX; secondly, tf∗idf statistics
is computed resulting in a single weight vector per training class. For
classification, an unlabeled time series is converted into a term frequency
vector and assigned a label of a weight vector which yields a maximal cosine
similarity value. This is ltc.nnn weighting schema in SMART notation [19].

Because the whole training set must be processed, training

of SAX-VSM classifier is computationally expensive (O(nm)).

However, there is no need to maintain an index of training

time series, or to keep any of them in the memory at the

runtime; the algorithm simply iterates over all training time

series incrementally building bags of SAX words. Once built

and weighted with tf∗idf, the corpus is discarded - only a

resulting set of N real-valued weight vectors is retained for

classification.

B. Classification

In order to classify an unlabeled time series, SAX-VSM

transforms it into a terms frequency vector using exactly the

same sliding window technique and SAX parameters that

were used for training. It computes cosine similarity values

between this term frequency vector and N tf∗idf weight

vectors representing the training classes. The unlabeled time

series is assigned to the class whose vector yields the maximal

cosine similarity value.

C. Sliding window size and SAX parameters selection

As shown, SAX-VSM requires three parameters to be

specified upfront. In order to optimize their selection using

only a training data set, we propose a solution based on a

common cross-validation and DIRECT optimization scheme

[20]. Since DIRECT is designed to search for global minima

of a real valued function over a bound constrained domain, we

use the rounding of a reported solution values to the nearest

integer.

DIRECT iteratively performs two procedures - partitioning

the search domain and identifying potentially optimal hyper-

rectangles. In our case, it begins by scaling the search domain

to a 3-dimensional unit hypercube which is considered as

potentially optimal. The error function is then evaluated at the

center of this hypercube. Next, other points are created at one-

third of the distance from the center in all coordinate directions.

The hypercube is then divided into smaller rectangles that are

identified by their center point and their error function value.

This procedure continues interactively until the error function

converges. For brevity, we omit the detailed explanation of the

5

10

15

10 20 30

PAA

A
lp

h
a
b

e
t

5

10

15

10 20 30

PAA

A
lp

h
a
b

e
t

4
6

8
10

12
14

20
30

40
50

5

10

15

20

25

Alphabet

Window

PAA

Fig. 2: Parameters optimization with DIRECT for SyntheticControl

dataset. Left panel shows all points sampled by DIRECT in the space
PAA ∗Window ∗Alphabet; red points correspond to high error values
while green points correspond to low error values in cross-validation experi-
ments. Note the green points concentration at W=42. Middle panel shows the
classification error heat map obtained by a complete scan of all 432 points of
the hypercube slice when W=42. Right panel shows the classification error
heat map of the same slice when the parameters search optimized by DIRECT,
the optimal solution (P=8,A=4) was found by sampling of 43 points.

algorithm, and refer the to [14] for additional details. Figure 2

illustrates the application of leave-one-out cross-validation and

DIRECT to SyntheticControl data set, in this case, algorithm

converged after sampling just 130 out of 13’860 possible

parameters combinations (>100x speedup).

D. Intuition behind SAX-VSM

First, by combining all SAX words extracted from all time

series of single class into a single bag of words, SAX-VSM

manages to capture and to “generalize” with PAA and SAX

observed intraclass variability from a small training set.

Secondly, by normalizing time series subsequences and

by discarding their original ordering, SAX-VSM is capable

to capture and to recognize characteristic subsequences in

distorted and corrupted by noise or signal loss time series.

Thirdly, tf∗idf statistics naturally highlights terms unique

to a class by assigning them higher weights whereas terms

observed in multiple classes are assigned weights inversely

proportional to their interclass presence. This improves the

selectivity of classification by lowering a contribution of

“confusive” multi-class terms, while increasing a contribution

of class’ “defining” terms to the final similarity measure.

Ultimately, the algorithm compares a set of subsequences

extracted from an unlabeled time series with a weighted set

of all characteristic subsequences representing the whole of

a training class. Thus, an unknown time series is classified

by its similarity not to a given number of “neighbors” (as in

kNN or BOP classifiers), or to a fixed number of characteristic

features (as in shapelet-based classifiers), but by the combined

similarity of its subsequences to all known discriminative

patterns found in a whole class.

V. RESULTS

We have proposed a novel algorithm for time series clas-

sification based on SAX approximation of time series and

Vector Space Model called SAX-VSM. We present a range of

experiments assessing its performance and showing its ability

to provide an insight into classification results.

A. Analysis of the classification accuracy

We evaluated our approach on 45 datasets whose majority

was taken from benchmark data disseminated through UCR

repository [21]. While all the details are available at the

TABLE I: Classifiers error rates comparison.

Dataset Num. of
classes

1NN-
Euclidean

1NN-
DTW

Fast
Shapelets

Bag Of
Patterns

SAX-
VSM

Adiac 37 0.389 0.391 0.514 0.432 0.381
Beef 5 0.467 0.467 0.447 0.433 0.033

CBF 3 0.148 0.003 0.053 0.013 0.002

Coffee 2 0.250 0.180 0.067 0.036 0.0
ECG200 2 0.120 0.230 0.227 0.140 0.140
FaceAll 14 0.286 0.192 0.402 0.219 0.207
FaceFour 4 0.216 0.170 0.089 0.011 0.0

Fish 7 0.217 0.167 0.197 0.074 0.017
Gun-Point 2 0.087 0.093 0.060 0.027 0.007

Lightning2 2 0.246 0.131 0.295 0.164 0.196
Lightning7 7 0.425 0.274 0.403 0.466 0.301
Olive Oil 4 0.133 0.133 0.213 0.133 0.100
OSU Leaf 6 0.483 0.409 0.359 0.236 0.107

Syn.Control 6 0.120 0.007 0.081 0.037 0.010
Swed.Leaf 15 0.213 0.210 0.270 0.198 0.251
Trace 4 0.240 0.0 0.002 0.0 0.0

Two patterns 4 0.090 0.0 0.113 0.129 0.004
Wafer 2 0.005 0.020 0.004 0.003 0.0006

Yoga 2 0.170 0.164 0.249 0.170 0.164

project’s homepage [22], Table I compares the classification

accuracy of SAX-VSM with previously published performance

results of four competing classifiers: two state-of-the-art 1NN

classifiers based on Euclidean distance and DTW, the classifier

based on recently proposed Fast-Shapelets technique [11], and

the classifier based on BOP [8]. We selected these particular

techniques in order to position SAX-VSM in terms of classi-

fication accuracy and interpretability.

In our evaluation, we followed a train/test data split as

provided by UCR. Train data were used in cross-validation ex-

periments for optimization of SAX parameters using DIRECT.

Once selected, optimal parameters were used to assess SAX-

VSM classification accuracy on test data which is reported in

the last column of Table I.

B. Scalability analysis

For synthetic datasets, it is possible to create as many time

series instances as one needs for experimentation. We used the

CBF [23] domain to investigate and assess the performance of

SAX-VSM on increasingly large datasets.

In one series of experiments, we varied a training set size

from 10 to 103, while the test set size remained fixed to 104

instances. For small training sets, SAX-VSM was found to be

significantly more accurate than 1NN Euclidean classifier, but

by the time we had more than 500 time series in a training set,

there was no significant difference in accuracy (Fig. 3, left). As

per the runtime cost, due to the comprehensive training, SAX-

VSM was found to be more expensive than 1NN Euclidean

classifier on small training sets, but outperformed 1NN on

large training sets. Note that SAX-VSM allows to perform

training off-line and load weight vectors when needed - in

this scenario, it performs classification significantly faster than

1NN Euclidean classifier (Fig. 3, center).

In another series of experiments we investigated the scal-

ability of our algorithm with unrealistic training set sizes -

up to 109 of instances for each of CBF classes. As expected,

with the growth of a training set size, the growth curve of a

total number of distinct SAX words for each class’ dictionary

showed significant saturation (similar to logarithmic curve)

0.1

1.0

10

0 250 500 750 1000

Train dataset size

E
rr

o
r,

 %

Classi!cation error

1

10

100

0 250 500 750 1000

Train dataset size

T
im

e
,
s
e
c
.

Classi!cation runtime

0

10

20

30

40

50

0 10 20 30 40 50 60 70 80 90 100

CBF noise level, %

E
rr

o
r,

 %

Classi!cation error vs noise

SAX-VSM1NN Eucl. SAX-VSM with Train1NN Euclidean SAX-VSM SAX-VSM1NN Eucl. SAX-VSM Opt

Fig. 3: Comparison of classification precision and run time of SAX-VSM and
1NN Euclidean classifier on CBF data. Left: SAX-VSM performs significantly
better with limited amount of training samples. Center: while SAX-VSM is
faster in time series classification, its performance is comparable to 1NN
Euclidean when training time is accounted for. Right: SAX-VSM increasingly
outperforms 1NN Euclidean with noise level growth (the random noise level
grows up to 100% of CBF signal value)

peaking at about 10% of all possible words for selected PAA

and alphabet sizes. This result reflects SAX-VSM ability to

learn efficiently from large datasets: while SAX smoothing

limits the generation of new words corresponding to relatively

similar sub-sequences, the idf factor of the weighting schema

(Equation 2) efficiently prunes SAX words (patterns) that are

losing their discriminative power, i.e. those which appear in

all classes.

C. Robustness to noise

Since the weight of each of the overlapping SAX words is

contributing only a small fraction to a final similarity value, we

hypothesized that SAX-VSM classifier might be robust to the

noise and to the partial loss of a signal in test time series.

Intuitively, in this case the cosine similarity between high

dimensional weight vectors might not degrade significantly

enough to cause a misclassification.

We investigated this hypothesis using CBF data. By fixing

a training set size to 250 time series, we varied the stan-

dard deviation of Gaussian noise in CBF model. SAX-VSM

outperformed 1NN Euclidean classifier with the growth of a

noise level confirming our hypothesis (Fig.3, right). Further

improvement of SAX-VSM performance was achieved by fine

tuning of smoothing through a gradual increase of the SAX

sliding window size proportionally to the growth of the noise

level (SAX-VSM Opt curve, Fig.3 right).

D. Interpretable classification

While the classification performance evaluation results show

that SAX-VSM classifier has potential, its major strength is in

the level of allowed interpretability of classification results.

Shapelet-based decision trees provide interpretable classifi-

cation and offer insight into underlying data features [9]. Later,

it was shown that the discovery of multiple shapelets provides

even better resolution and intuition into the interpretability of

classification [10]. However, as the authors noted, the time cost

of multiple shapelets discovery in many class problems could

be significant. In contrast, SAX-VSM extracts and weights all

patterns at once without any added cost. Thus, it could be

the only choice for interpretable classification in many class

problems. Here, we show a few examples in which we exploit

the subsequence weighting provided by our technique.

0 50 100

N
o

rm
a
li
z
e
d

 v
a
lu

e

Cylinder

0 50 100

N
o

rm
a
li
z
e
d

 v
a
lu

e

negative neutral
Class speci!city:

Bell

0 50 100

N
o

rm
a
li
z
e
d

 v
a
lu

e

Funnel

high

Fig. 4: An example of the heat map-like visualization of subsequence
“importance” to a class identification. Color value of each point was obtained
by combining tf∗idf weights of all patterns which cover the point. Highlighted
by the visualization features correspond to a sudden rise, a plateau, and a
sudden drop in Cylinder; to a gradual increase in Bell; and to a sudden rise
followed by a gradual decline in Funnel, align exactly with CBF design [23].

1) Heatmap-like visualization: Since SAX-VSM outputs

tf∗idf weight vectors of all subsequences extracted from a

class, it is possible to find the weight of any arbitrary selected

subsequence. This feature enables a novel heat map-like vi-

sualization technique that provides an immediate insight into

the layout of “important” class-characterizing subsequences as

shown in Figure 4.

2) Gun Point dataset: Following previous shapelet-based

work [9] [10], we used a well-studied GunPoint dataset [24]

to explore the interpretability of classification results. The class

Gun of this dataset corresponds to the actors’ hands motion

when drawing a replicate gun from a hip-mounted holster,

pointing it at a target for a second, and returning the gun to

the holster; class Point correspond to the actors hands motion

when pretending of drawing a gun - the actors point their

index fingers to a target for about a second, and then return

their hands to their sides.

Similarly to previously reported results, SAX-VSM was

able to capture all distinguishing features as shown in Figure

5. The top weighted by SAX-VSM patterns in Gun class

corresponds to fine movements required to lift and aim the

prop. The top weighted SAX pattern in Point class corresponds

to the “overshoot” phenomena, causing the dip in the time

series [24], while the second to best pattern captures the lack

of movements required for lifting a hand above a holster and

reaching down for the prop.

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving

above holster

Hand moving
down to grasp gun

shoulder level

Steady

pointing

Hand moving to

Best pattern, Gun Second best pattern, Gun

Best pattern, Point

Gun time series annotation

Point time series annotation Second best pattern, Point

0 10 20 30 40 50 60 70 80 90

Hand at rest

Hand moving to

shoulder level

Steady

pointing

Fig. 5: Best characteristic subsequences (right panels, bold lines) discovered
by SAX-VSM in Gun/Point dataset. Left panels show actor’s stills and
time series annotations made by an expert, right panels show locations of
characteristic subsequences. Discovered patterns align exactly with previous
work [9] [10]. (Stills and annotation used with a permission from E.Keogh)

Acer GlabrumAcer Circunatum Quercus Garryana

Fig. 6: Example of best characteristic subsequences (top panels, bold lines)
discovered by SAX-VSM in OSULeaf dataset. Corresponding patterns: the
slightly lobed shape and acute leaf tips of Acer Circinatum, the coarsely
serrated leaf margins of Acer Glabrum, and the pinnately lobed leaf structure
of Quercus Garryana align exactly with known in botany discrimination
techniques [26].

3) OSU Leaf dataset: The OSULeaf dataset consist of

curves obtained by color image segmentation and boundary

extraction from digitized leaf images of six classes [25]. The

author was able to solve the problem of leaf boundary curves

classification with DTW, achieving 61% of classification accu-

racy. However, DTW provided little information about why it

succeeded or failed, whereas SAX-VSM application yielded a

set of class-specific characteristic patterns for each of the six

classes which match known techniques for leaves classification

based on their shape [26]. Figure 6 shows examples of best

characteristic patterns of three classes. Our algorithm achieved

an accuracy of 89%.

4) Coffee dataset: Similarly to the original work based on

PCA [27], SAX-VSM highlighted intervals corresponding to

Chlorogenic acid (best) and Caffeine (second to best) in both

classes of Coffee spectrograms. Both chemical compounds are

not only known to be responsible for the flavor differences in

Arabica and Robusta coffees, but were previously proposed

for industrial quality analysis of instant coffees [27].

VI. CONCLUSION AND FUTURE WORK

We propose a novel interpretable technique for time series

classification based on characteristic patterns discovery. We

demonstrated that our approach is competitive with, or superior

to, other techniques on a set of classic data mining problems.

In addition, we described several advantages of SAX-VSM

over existing structure-based similarity measures, emphasizing

its capacity to discover and rank short subsequences by their

class characterization power. Finally, we outlined an efficient

solution for SAX parameters selection.

For our future work, inspired by recently reported superior

performance of multi-shapelet based classifiers [10], we pri-

oritize modification of our algorithm for words of variable

length. In addition, we explore SAX-VSM applicability for

multidimensional time series.

REFERENCES

[1] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., Keogh,
E.: Experimental comparison of representation methods and distance
measures for time series data. DMKD, 26, 2, 275–309 (2013)

[2] Keogh, E., Kasetty, S.: On the need for time series data mining bench-
marks: a survey and empirical demonstration. DMKD, 7, 4, (2003)

Best class-characteristic pattern - Chlorogenic acid Arabica

Robusta

800 1000 1200 1400 1600 1800

Arabica

Robusta

Second to best class-characteristic pattern - Caffeine

800 1000 1200 1400 1600 1800

Wavenumbers

Fig. 7: Best characteristic subsequences (left panels, bold lines) discovered
by SAX-VSM in Coffee dataset. Right panels show zoom-in view on
these subsequences in Arabica and Robusta spectrograms. These patterns
correspond to chlorogenic acid (best subsequence) and to caffeine (second
to best) regions of spectra. This result aligns with the original work based on
PCA [27] exactly.

[3] Salzberg, S.: On comparing classifiers: Pitfalls to avoid and a recom-
mended approach. DMKD, 1, 317–328 (1997)

[4] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying
and mining of time series data: experimental comparison of representa-
tions and distance measures. In Proc. VLDB, 1542–1552 (2008)

[5] Xi, X., Keogh, E., Shelton, C., Wei, L., Ratanamahatana, C.: Fast time
series classification using numerosity reduction. In Proc. ICML (2006)

[6] Sakoe, H. Chiba, S.: Dynamic programming algorithm optimization for
spoken word recognition. IEEE Trans. on Acoustics, Speech and Signal
Processing, 1, 43–49 (1978)

[7] Agrawal, R., Faloutsos, C., Swami, A.: Efficient Similarity Search In
Sequence Databases. In Proc. FODO, 69–84 (1993)

[8] Lin, J., Khade, R., Li, Y.: Rotation-invariant similarity in time series using
bag-of-patterns representation. J. Intell. Inf. Syst. 39, 2, 287–315 (2012)

[9] Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows
accurate, interpretable and fast classification. DMKD, 22, 149–182 (2011)

[10] Lines, J., Davis, L., Hills, J., Bagnall, A.: A shapelet transform for time
series classification. In Proc. 18th ACM SIGKDD, 289–297 (2012)

[11] Rakthanamanon, T., Keogh, E.: Fast-Shapelets: A Scalable Algorithm
for Discovering Time Series Shapelets. In Proc. SDM (2013)

[12] Patel, P., Keogh, E.,, Lin, J., Lonardi, S.: Mining Motifs in Massive
Time Series Databases. In Proc. ICDM (2002)

[13] Salton, G., Wong, A., Yang., C.: A vector space model for automatic
indexing. Commun. ACM 18, 11, 613–620 (1975)

[14] Björkman, M., Holmström, K.: Global Optimization Using the DIRECT
Algorithm in Matlab. Adv. Modeling and Optimization, 1, 17-37 (1999)

[15] Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel
symbolic representation of time series. DMKD, 15, 2, 107–144 (2007)

[16] Goldin D., Kanellakis, P.: On Similarity Queries for Time-Series Data:
Constraint Specification and Implementation. In Proc CP. 137–153 (1995)

[17] Keogh, E., Pazzani, M.: A Simple Dimensionality Reduction Technique
for Fast Similarity Search in Large Time Series Databases. In Proc.
PAKDD, 122–133 (2000)

[18] Keogh, E., Lin, J., Fu, A.: HOT SAX: Efficiently Finding the Most
Unusual Time Series Subsequence. In Proc. ICDM. 226–233 (2005)

[19] Manning, C., Raghavan, P., Schütze, H.: Introduction to Information
Retrieval, Cambridge University Press (2008)

[20] Jones, D., Perttunen, C., Stuckman, B.: Lipschitzian Optimization with-
out Lipschitz Constant. J. Optim. Theory Appl. 79, 1 (1993)

[21] Keogh, E., Zhu, Q., Hu, B., Hao, Y., Xi, X., Wei, L., Ratanamahatana, C.:
The UCR Time Series Classification/Clustering Homepage: http://www.
cs.ucr.edu/∼eamonn/time series data/

[22] Paper authors. Supporting webpage: https://code.google.com/p/jmotif/
[23] Saito, N: Local feature extraction and its application using a library of

bases. PhD thesis, Yale University (1994)
[24] Ratanamahatana, C., Keogh, E.: Making time-series classification more

accurate using learned constraints. In SDM ’04 (2004)
[25] Gandhi, A.: Content-Based Image Retrieval: Plant Species Identification.

MS thesis, Oregon State University (2002)
[26] Dirr, M.: Manual of Woody Landscape Plants: Their Identification,

Ornamental Characteristics, Culture, Propogation and Uses. Stipes Pub
Llc, ed. 6 Revised (2009)

[27] Briandet, R., Kemsley, E., Wilson, R.: Discrimination of Arabica and
Robusta in Instant Coffee by Fourier Transform Infrared Spectroscopy
and Chemometrics. J. Agric. Food Chem, 44, 170–174 (1996)

