@@ -749,58 +749,119 @@ Plotting
749
749
750
750
.. _linear_model_ref :
751
751
752
- :mod: `sklearn.linear_model `: Generalized Linear Models
753
- ======================================================
752
+ :mod: `sklearn.linear_model `: Linear Models
753
+ ==========================================
754
754
755
755
.. automodule :: sklearn.linear_model
756
756
:no-members:
757
757
:no-inherited-members:
758
758
759
759
**User guide: ** See the :ref: `linear_model ` section for further details.
760
760
761
+ The following subsections are only rough guidelines: the same estimator can
762
+ fall into multiple categories, depending on its parameters.
763
+
761
764
.. currentmodule :: sklearn
762
765
766
+ Linear classifiers
767
+ ------------------
768
+ .. autosummary ::
769
+ :toctree: generated/
770
+ :template: class.rst
771
+
772
+ linear_model.LogisticRegression
773
+ linear_model.LogisticRegressionCV
774
+ linear_model.PassiveAggressiveClassifier
775
+ linear_model.Perceptron
776
+ linear_model.RidgeClassifier
777
+ linear_model.RidgeClassifierCV
778
+ linear_model.SGDClassifier
779
+
780
+ Classical linear regressors
781
+ ---------------------------
782
+
783
+ .. autosummary ::
784
+ :toctree: generated/
785
+ :template: class.rst
786
+
787
+ linear_model.LinearRegression
788
+ linear_model.Ridge
789
+ linear_model.RidgeCV
790
+ linear_model.SGDRegressor
791
+
792
+ Regressors with variable selection
793
+ ----------------------------------
794
+
795
+ The following estimators have built-in variable selection fitting
796
+ procedures, but any estimator using a L1 or elastic-net penalty also
797
+ performs variable selection: typically :class: `~linear_model.SGDRegressor `
798
+ or :class: `~sklearn.linear_model.SGDClassifier ` with an appropriate penalty.
799
+
763
800
.. autosummary ::
764
801
:toctree: generated/
765
802
:template: class.rst
766
803
767
- linear_model.ARDRegression
768
- linear_model.BayesianRidge
769
804
linear_model.ElasticNet
770
805
linear_model.ElasticNetCV
771
- linear_model.HuberRegressor
772
806
linear_model.Lars
773
807
linear_model.LarsCV
774
808
linear_model.Lasso
775
809
linear_model.LassoCV
<
10000
code>776 810
linear_model.LassoLars
777
811
linear_model.LassoLarsCV
778
812
linear_model.LassoLarsIC
779
- linear_model.LinearRegression
780
- linear_model.LogisticRegression
781
- linear_model.LogisticRegressionCV
782
- linear_model.MultiTaskLasso
783
- linear_model.MultiTaskElasticNet
784
- linear_model.MultiTaskLassoCV
785
- linear_model.MultiTaskElasticNetCV
786
813
linear_model.OrthogonalMatchingPursuit
787
814
linear_model.OrthogonalMatchingPursuitCV
788
- linear_model.PassiveAggressiveClassifier
789
- linear_model.PassiveAggressiveRegressor
790
- linear_model.Perceptron
815
+
816
+ Bayesian regressors
817
+ -------------------
818
+
819
+ .. autosummary ::
820
+ :toctree: generated/
821
+ :template: class.rst
822
+
823
+ linear_model.ARDRegression
824
+ linear_model.BayesianRidge
825
+
826
+ Multi-task linear regressors with variable selection
827
+ ----------------------------------------------------
828
+
829
+ These estimators fit multiple regression problems (or tasks) jointly, while
830
+ inducing sparse coefficients. While the inferred coefficients may differ
831
+ between the tasks, they are constrained to agree on the features that are
832
+ selected (non-zero coefficients).
833
+
834
+ .. autosummary ::
835
+ :toctree: generated/
836
+ :template: class.rst
837
+
838
+ linear_model.MultiTaskElasticNet
839
+ linear_model.MultiTaskElasticNetCV
840
+ linear_model.MultiTaskLasso
841
+ linear_model.MultiTaskLassoCV
842
+
843
+ Outlier-robust regressors
844
+ -------------------------
845
+
846
+ Any estimator using the Huber loss would also be robust to outliers, e.g.
847
+ :class: `~linear_model.SGDRegressor ` with ``loss='huber' ``.
848
+
849
+ .. autosummary ::
850
+ :toctree: generated/
851
+ :template: class.rst
852
+
853
+ linear_model.HuberRegressor
791
854
linear_model.RANSACRegressor
792
- linear_model.Ridge
793
- linear_model.RidgeClassifier
794
- linear_model.RidgeClassifierCV
795
- linear_model.RidgeCV
796
- linear_model.SGDClassifier
797
- linear_model.SGDRegressor
798
855
linear_model.TheilSenRegressor
799
856
857
+ Miscellaneous
858
+ -------------
859
+
800
860
.. autosummary ::
801
861
:toctree: generated/
802
862
:template: function.rst
803
863
864
+ linear_model.PassiveAggressiveRegressor
804
865
linear_model.enet_path
805
866
linear_model.lars_path
806
867
linear_model.lars_path_gram
0 commit comments