From 497b1e8651352ce5e8a0bb4243957b05b7f8f97d Mon Sep 17 00:00:00 2001 From: Amit Kumar Date: Sun, 25 Aug 2024 09:11:12 +0000 Subject: [PATCH] fix typo --- src/algebra/factorial-modulo.md | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/algebra/factorial-modulo.md b/src/algebra/factorial-modulo.md index 73ff0145b..86961ba33 100644 --- a/src/algebra/factorial-modulo.md +++ b/src/algebra/factorial-modulo.md @@ -14,7 +14,7 @@ Otherwise $p!$ and subsequent terms will reduce to zero. But in fractions the factors of $p$ can cancel, and the resulting expression will be non-zero modulo $p$. Thus, formally the task is: You want to calculate $n! \bmod p$, without taking all the multiple factors of $p$ into account that appear in the factorial. -Imaging you write down the prime factorization of $n!$, remove all factors $p$, and compute the product modulo $p$. +Imagine you write down the prime factorization of $n!$, remove all factors $p$, and compute the product modulo $p$. We will denote this *modified* factorial with $n!_{\%p}$. For instance $7!_{\%p} \equiv 1 \cdot 2 \cdot \underbrace{1}_{3} \cdot 4 \cdot 5 \underbrace{2}_{6} \cdot 7 \equiv 2 \bmod 3$.