@@ -293,24 +293,24 @@ It requires ``n_neighbors > n_components * (n_components + 3) / 2``.
293
293
294
294
.. dropdown :: Complexity
295
295
296
- The HLLE algorithm comprises three stages:
296
+ The HLLE algorithm comprises three stages:
297
297
298
- 1. **Nearest Neighbors Search **. Same as standard LLE
298
+ 1. **Nearest Neighbors Search **. Same as standard LLE
299
299
300
- 2. **Weight Matrix Construction **. Approximately
301
- :math: `O[D N k^3 ] + O[N d^6 ]`. The first term reflects a similar
302
- cost to that of standard LLE. The second term comes from a QR
303
- decomposition of the local hessian estimator.
300
+ 2. **Weight Matrix Construction **. Approximately
301
+ :math: `O[D N k^3 ] + O[N d^6 ]`. The first term reflects a similar
302
+ cost to that of standard LLE. The second term comes from a QR
303
+ decomposition of the local hessian estimator.
304
304
305
- 3. **Partial Eigenvalue Decomposition **. Same as standard LLE.
305
+ 3. **Partial Eigenvalue Decomposition **. Same as standard LLE.
306
306
307
- The overall complexity of standard HLLE is
308
- :math: `O[D \log (k) N \log (N)] + O[D N k^3 ] + O[N d^6 ] + O[d N^2 ]`.
307
+ The overall complexity of standard HLLE is
308
+ :math: `O[D \log (k) N \log (N)] + O[D N k^3 ] + O[N d^6 ] + O[d N^2 ]`.
309
309
310
- * :math: `N` : number of training data points
311
- * :math: `D` : input dimension
312
- * :math: `k` : number of nearest neighbors
313
- * :math: `d` : output dimension
310
+ * :math: `N` : number of training data points
311
+ * :math: `D` : input dimension
312
+ * :math: `k` : number of nearest neighbors
313
+ * :math: `d` : output dimension
314
314
315
315
.. rubric :: References
316
316
0 commit comments