10000 Small doc updates (#364) · basicmachines/python-control@319a756 · GitHub
[go: up one dir, main page]

Skip to content

Commit 319a756

Browse files
authored
Small doc updates (python-control#364)
* fix code blocks in iosys.rst
1 parent 45b0915 commit 319a756

File tree

1 file changed

+8
-8
lines changed

1 file changed

+8
-8
lines changed

doc/iosys.rst

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -66,7 +66,7 @@ values in FBS2e.
6666

6767
We begin by defining the dynamics of the system
6868

69-
.. code-block::
69+
.. code-block:: python
7070
7171
import control
7272
import numpy as np
@@ -96,7 +96,7 @@ We begin by defining the dynamics of the system
9696
9797
We now create an input/output system using these dynamics:
9898

99-
.. code-block::
99+
.. code-block:: python
100100
101101
io_predprey = control.NonlinearIOSystem(
102102
predprey_rhs, None, inputs=('u'), outputs=('H', 'L'),
@@ -108,7 +108,7 @@ will be used as the output of the system.
108108
The `io_predprey` system can now be simulated to obtain the open loop dynamics
109109
of the system:
110110

111-
.. code-block::
111+
.. code-block:: python
112112
113113
X0 = [25, 20] # Initial H, L
114114
T = np.linspace(0, 70, 500) # Simulation 70 years of time
@@ -127,7 +127,7 @@ We can also create a feedback controller to stabilize a desired population of
127127
the system. We begin by finding the (unstable) equilibrium point for the
128128
system and computing the linearization about that point.
129129

130-
.. code-block::
130+
.. code-block:: python
131131
132132
eqpt = control.find_eqpt(io_predprey, X0, 0)
133133
xeq = eqpt[0] # choose the nonzero equilibrium point
@@ -137,7 +137,7 @@ We next compute a controller that stabilizes the equilibrium point using
137137
eigenvalue placement and computing the feedforward gain using the number of
138138
lynxes as the desired output (following FBS2e, Example 7.5):
139139

140-
.. code-block::
140+
.. code-block:: python
141141
142142
K = control.place(lin_predprey.A, lin_predprey.B, [-0.1, -0.2])
143143
A, B = lin_predprey.A, lin_predprey.B
@@ -149,7 +149,7 @@ applies a corrective input based on deviations from the equilibrium point.
149149
This system has no dynamics, since it is a static (affine) map, and can
150150
constructed using the `~control.ios.NonlinearIOSystem` class:
151151

152-
.. code-block::
152+
.. code-block:: python
153153
154154
io_controller = control.NonlinearIOSystem(
155155
None,
@@ -162,7 +162,7 @@ populations followed by the desired lynx population.
162162
To connect the controller to the predatory-prey model, we create an
163163
`InterconnectedSystem`:
164164

165-
.. code-block::
165+
.. code-block:: python
166166
167167
io_closed = control.InterconnectedSystem(
168168
(io_predprey, io_controller), # systems
@@ -177,7 +177,7 @@ To connect the controller to the predatory-prey model, we create an
177177
178178
Finally, we simulate the closed loop system:
179179

180-
.. code-block::
180+
.. code-block:: python
181181
182182
# Simulate the system
183183
t, y = control.input_output_response(io_closed, T, 30, [15, 20])

0 commit comments

Comments
 (0)
0