51
51
def lyap (A ,Q ,C = None ,E = None ):
52
52
""" X = lyap(A,Q) solves the continuous-time Lyapunov equation
53
53
54
- A X + X A^T + Q = 0
54
+ :math:` A X + X A^T + Q = 0`
55
55
56
56
where A and Q are square matrices of the same dimension.
57
57
Further, Q must be symmetric.
58
58
59
59
X = lyap(A,Q,C) solves the Sylvester equation
60
60
61
- A X + X Q + C = 0
61
+ :math:` A X + X Q + C = 0`
62
62
63
63
where A and Q are square matrices.
64
64
65
65
X = lyap(A,Q,None,E) solves the generalized continuous-time
66
66
Lyapunov equation
67
67
68
- A X E^T + E X A^T + Q = 0
68
+ :math:` A X E^T + E X A^T + Q = 0`
69
69
70
70
where Q is a symmetric matrix and A, Q and E are square matrices
71
71
of the same dimension. """
@@ -233,21 +233,21 @@ def lyap(A,Q,C=None,E=None):
233
233
def dlyap (A ,Q ,C = None ,E = None ):
234
234
""" dlyap(A,Q) solves the discrete-time Lyapunov equation
235
235
236
- A X A^T - X + Q = 0
236
+ :math:` A X A^T - X + Q = 0`
237
237
238
238
where A and Q are square matrices of the same dimension. Further
239
239
Q must be symmetric.
240
240
241
241
dlyap(A,Q,C) solves the Sylvester equation
242
242
243
- A X Q^T - X + C = 0
243
+ :math:` A X Q^T - X + C = 0`
244
244
245
245
where A and Q are square matrices.
246
246
247
247
dlyap(A,Q,None,E) solves the generalized discrete-time Lyapunov
248
248
equation
249
249
250
- A X A^T - E X E^T + Q = 0
250
+ :math:` A X A^T - E X E^T + Q = 0`
251
251
252
252
where Q is a symmetric matrix and A, Q and E are square matrices
253
253
of the same dimension. """
@@ -414,7 +414,7 @@ def care(A,B,Q,R=None,S=None,E=None):
414
414
""" (X,L,G) = care(A,B,Q) solves the continuous-time algebraic Riccati
415
415
equation
416
416
417
- A^T X + X A - X B B^T X + Q = 0
417
+ :math:` A^T X + X A - X B B^T X + Q = 0`
418
418
419
419
where A and Q are square matrices of the same dimension. Further, Q
420
420
is a symmetric matrix. The function returns the solution X, the gain
@@ -424,7 +424,7 @@ def care(A,B,Q,R=None,S=None,E=None):
424
424
(X,L,G) = care(A,B,Q,R,S,E) solves the generalized continuous-time
425
425
algebraic Riccati equation
426
426
427
- A^T X E + E^T X A - (E^T X B + S) R^-1 (B^T X E + S^T) + Q = 0
427
+ :math:` A^T X E + E^T X A - (E^T X B + S) R^{-1} (B^T X E + S^T) + Q = 0`
428
428
429
429
where A, Q and E are square matrices of the same dimension. Further, Q and
430
430
R are symmetric matrices. The function returns the solution X, the gain
@@ -672,7 +672,7 @@ def dare(A,B,Q,R,S=None,E=None):
672
672
""" (X,L,G) = dare(A,B,Q,R) solves the discrete-time algebraic Riccati
673
673
equation
674
674
675
- A^T X A - X - A^T X B (B^T X B + R)^-1 B^T X A + Q = 0
675
+ :math:` A^T X A - X - A^T X B (B^T X B + R)^{-1} B^T X A + Q = 0`
676
676
677
677
where A and Q are square matrices of the same dimension. Further, Q
678
678
is a symmetric matrix. The function returns the solution X, the gain
@@ -682,12 +682,11 @@ def dare(A,B,Q,R,S=None,E=None):
682
682
(X,L,G) = dare(A,B,Q,R,S,E) solves the generalized discrete-time algebraic
683
683
Riccati equation
684
684
685
- A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^-1 (B^T X A + S^T) +
686
- + Q = 0
685
+ :math:`A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^{-1} (B^T X A + S^T) + Q = 0`
687
686
688
687
where A, Q and E are square matrices of the same dimension. Further, Q and
689
688
R are symmetric matrices. The function returns the solution X, the gain
690
- matrix G = (B^T X B + R)^-1 (B^T X A + S^T) and the closed loop
689
+ matrix :math:` G = (B^T X B + R)^{-1} (B^T X A + S^T)` and the closed loop
691
690
eigenvalues L, i.e., the eigenvalues of A - B G , E.
692
691
"""
693
692
if S is not None or E is not None :
0 commit comments