8000 Sphinxify equations in mateqn docstrings · basicmachines/python-control@0804203 · GitHub
[go: up one dir, main page]

Skip to content

Commit 0804203

Browse files
committed
Sphinxify equations in mateqn docstrings
1 parent 3b2e614 commit 0804203

File tree

1 file changed

+11
-12
lines changed

1 file changed

+11
-12
lines changed

control/mateqn.py

Lines changed: 11 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -51,21 +51,21 @@
5151
def lyap(A,Q,C=None,E=None):
5252
""" X = lyap(A,Q) solves the continuous-time Lyapunov equation
5353
54-
A X + X A^T + Q = 0
54+
:math:`A X + X A^T + Q = 0`
5555
5656
where A and Q are square matrices of the same dimension.
5757
Further, Q must be symmetric.
5858
5959
X = lyap(A,Q,C) solves the Sylvester equation
6060
61-
A X + X Q + C = 0
61+
:math:`A X + X Q + C = 0`
6262
6363
where A and Q are square matrices.
6464
6565
X = lyap(A,Q,None,E) solves the generalized continuous-time
6666
Lyapunov equation
6767
68-
A X E^T + E X A^T + Q = 0
68+
:math:`A X E^T + E X A^T + Q = 0`
6969
7070
where Q is a symmetric matrix and A, Q and E are square matrices
7171
of the same dimension. """
@@ -233,21 +233,21 @@ def lyap(A,Q,C=None,E=None):
233233
def dlyap(A,Q,C=None,E=None):
234234
""" dlyap(A,Q) solves the discrete-time Lyapunov equation
235235
236-
A X A^T - X + Q = 0
236+
:math:`A X A^T - X + Q = 0`
237237
238238
where A and Q are square matrices of the same dimension. Further
239239
Q must be symmetric.
240240
241241
dlyap(A,Q,C) solves the Sylvester equation
242242
243-
A X Q^T - X + C = 0
243+
:math:`A X Q^T - X + C = 0`
244244
245245
where A and Q are square matrices.
246246
247247
dlyap(A,Q,None,E) solves the generalized discrete-time Lyapunov
248248
equation
249249
250-
A X A^T - E X E^T + Q = 0
250+
:math:`A X A^T - E X E^T + Q = 0`
251251
252252
where Q is a symmetric matrix and A, Q and E are square matrices
253253
of the same dimension. """
@@ -414,7 +414,7 @@ def care(A,B,Q,R=None,S=None,E=None):
414414
""" (X,L,G) = care(A,B,Q) solves the continuous-time algebraic Riccati
415415
equation
416416
417-
A^T X + X A - X B B^T X + Q = 0
417+
:math:`A^T X + X A - X B B^T X + Q = 0`
418418
419419
where A and Q are square matrices of the same dimension. Further, Q
420420
is a symmetric matrix. The function returns the solution X, the gain
@@ -424,7 +424,7 @@ def care(A,B,Q,R=None,S=None,E=None):
424424
(X,L,G) = care(A,B,Q,R,S,E) solves the generalized continuous-time
425425
algebraic Riccati equation
426426
427-
A^T X E + E^T X A - (E^T X B + S) R^-1 (B^T X E + S^T) + Q = 0
427+
:math:`A^T X E + E^T X A - (E^T X B + S) R^{-1} (B^T X E + S^T) + Q = 0`
428428
429429
where A, Q and E are square matrices of the same dimension. Further, Q and
430430
R are symmetric matrices. The function returns the solution X, the gain
@@ -672,7 +672,7 @@ def dare(A,B,Q,R,S=None,E=None):
672672
""" (X,L,G) = dare(A,B,Q,R) solves the discrete-time algebraic Riccati
673673
equation
674674
675-
A^T X A - X - A^T X B (B^T X B + R)^-1 B^T X A + Q = 0
675+
:math:`A^T X A - X - A^T X B (B^T X B + R)^{-1} B^T X A + Q = 0`
676676
677677
where A and Q are square matrices of the same dimension. Further, Q
678678
is a symmetric matrix. The function returns the solution X, the gain
@@ -682,12 +682,11 @@ def dare(A,B,Q,R,S=None,E=None):
682682
(X,L,G) = dare(A,B,Q,R,S,E) solves the generalized discrete-time algebraic
683683
Riccati equation
684684
685-
A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^-1 (B^T X A + S^T) +
686-
+ Q = 0
685+
:math:`A^T X A - E^T X E - (A^T X B + S) (B^T X B + R)^{-1} (B^T X A + S^T) + Q = 0`
687686
688687
where A, Q and E are square matrices of the same dimension. Further, Q and
689688
R are symmetric matrices. The function returns the solution X, the gain
690-
matrix G = (B^T X B + R)^-1 (B^T X A + S^T) and the closed loop
689+
matrix :math:`G = (B^T X B + R)^{-1} (B^T X A + S^T)` and the closed loop
691690
eigenvalues L, i.e., the eigenvalues of A - B G , E.
692691
"""
693692
if S is not None or E is not None:

0 commit comments

Comments
 (0)
0