|
| 1 | +from typing import Callable, Iterator, Optional, Any, Union, cast, AsyncIterator |
| 2 | + |
| 3 | +import litellm |
| 4 | +from httpx import Timeout |
| 5 | +from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler |
| 6 | +from litellm.llms.custom_llm import CustomLLM |
| 7 | +from litellm.types.utils import ModelResponse, GenericStreamingChunk |
| 8 | +from litellm.litellm_core_utils.streaming_handler import CustomStreamWrapper |
| 9 | + |
| 10 | +from anaconda_models.core import ( |
| 11 | + AnacondaQuantizedModelCache, |
| 12 | + AnacondaQuantizedModelService, |
| 13 | +) |
| 14 | + |
| 15 | + |
| 16 | +class AnacondaLLM(CustomLLM): |
| 17 | + _model: Optional[AnacondaQuantizedModelCache] = None |
| 18 | + _service: Optional[AnacondaQuantizedModelService] = None |
| 19 | + |
| 20 | + def _prepare_inference_kwargs(self, optional_params: dict) -> dict: |
| 21 | + inference_kwargs = optional_params.copy() |
| 22 | + _ = inference_kwargs.pop("stream", None) |
| 23 | + _ = inference_kwargs.pop("stream_options", None) |
| 24 | + return inference_kwargs |
| 25 | + |
| 26 | + def completion( |
| 27 | + self, |
| 28 | + model: str, |
| 29 | + messages: list, |
| 30 | + api_base: str, |
| 31 | + custom_prompt_dict: dict, |
| 32 | + model_response: ModelResponse, |
| 33 | + print_verbose: Callable, |
| 34 | + encoding: Any, |
| 35 | + api_key: Any, |
| 36 | + logging_obj: Any, |
| 37 | + optional_params: dict, |
| 38 | + acompletion: Optional[AsyncHTTPHandler] = None, |
| 39 | + litellm_params: Optional[Any] = None, |
| 40 | + logger_fn: Optional[Any] = None, |
| 41 | + headers: Optional[dict] = None, |
| 42 | + timeout: Optional[Union[float, Timeout]] = None, |
| 43 | + client: Optional[HTTPHandler] = None, |
| 44 | + ) -> ModelResponse: |
| 45 | + _model = AnacondaQuantizedModelCache(name=model) |
| 46 | + _service = _model.start(**optional_params.pop("llama_cpp_kwargs", {})) |
| 47 | + _client = _service.openai_client |
| 48 | + |
| 49 | + inference_kwargs = self._prepare_inference_kwargs(optional_params) |
| 50 | + response = _client.chat.completions.create( |
| 51 | + messages=messages, model=model, **inference_kwargs |
| 52 | + ) |
| 53 | + mresponse = ModelResponse(**response.model_dump()) |
| 54 | + _service.options["Process"].terminate() |
| 55 | + return mresponse |
| 56 | + |
| 57 | + def streaming( |
| 58 | + self, |
| 59 | + model: str, |
| 60 | + messages: list, |
| 61 | + api_base: str, |
| 62 | + custom_prompt_dict: dict, |
| 63 | + model_response: ModelResponse, |
| 64 | + print_verbose: Callable, |
| 65 | + encoding: Any, |
| 66 | + api_key: Any, |
| 67 | + logging_obj: Any, |
| 68 | + optional_params: dict, |
| 69 | + acompletion: Optional[AsyncHTTPHandler] = None, |
| 70 | + litellm_params: Optional[Any] = None, |
| 71 | + logger_fn: Optional[Any] = None, |
| 72 | + headers: Optional[dict] = None, |
| 73 | + timeout: Optional[Union[float, Timeout]] = None, |
| 74 | + client: Optional[HTTPHandler] = None, |
| 75 | + ) -> Iterator[GenericStreamingChunk]: |
| 76 | + _model = AnacondaQuantizedModelCache(name=model) |
| 77 | + _service = _model.start(**optional_params.pop("llama_cpp_kwargs", {})) |
| 78 | + _client = _service.openai_client |
| 79 | + |
| 80 | + inference_kwargs = self._prepare_inference_kwargs(optional_params) |
| 81 | + response = _client.chat.completions.create( |
| 82 | + messages=messages, model=model, stream=True, **inference_kwargs |
| 83 | + ) |
| 84 | + wrapped = CustomStreamWrapper( |
| 85 | + custom_llm_provider="openai", |
| 86 | + completion_stream=response, |
| 87 | + model=model, |
| 88 | + logging_obj=logging_obj, |
| 89 | + ) |
| 90 | + |
| 91 | + for chunk in wrapped: |
| 92 | + handled = cast( |
| 93 | + GenericStreamingChunk, |
| 94 | + wrapped.handle_openai_chat_completion_chunk(chunk), |
| 95 | + ) |
| 96 | + yield handled |
| 97 | + |
| 98 | + _service.options["Process"].terminate() |
| 99 | + |
| 100 | + async def acompletion( |
| 101 | + self, |
| 102 | + model: str, |
| 103 | + messages: list, |
| 104 | + api_base: str, |
| 105 | + custom_prompt_dict: dict, |
| 106 | + model_response: ModelResponse, |
| 107 | + print_verbose: Callable, |
| 108 | + encoding: Any, |
| 109 | + api_key: Any, |
| 110 | + logging_obj: Any, |
| 111 | + optional_params: dict, |
| 112 | + acompletion: Optional[AsyncHTTPHandler] = None, |
| 113 | + litellm_params: Optional[Any] = None, |
| 114 | + logger_fn: Optional[Any] = None, |
| 115 | + headers: Optional[dict] = None, |
| 116 | + timeout: Optional[Union[float, Timeout]] = None, |
| 117 | + client: Optional[AsyncHTTPHandler] = None, |
| 118 | + ) -> ModelResponse: |
| 119 | + _model = AnacondaQuantizedModelCache(name=model) |
| 120 | + _service = _model.start(**optional_params.pop("llama_cpp_kwargs", {})) |
| 121 | + _client = _service.openai_async_client |
| 122 | + |
| 123 | + inference_kwargs = self._prepare_inference_kwargs(optional_params) |
| 124 | + response = await _client.chat.completions.create( |
| 125 | + messages=messages, model=model, **inference_kwargs |
| 126 | + ) |
| 127 | + mresponse = ModelResponse(**response.model_dump()) |
| 128 | + _service.options["Process"].terminate() |
| 129 | + return mresponse |
| 130 | + |
| 131 | + async def astreaming( # type: ignore |
| 132 | + self, |
| 133 | + model: str, |
| 134 | + messages: list, |
| 135 | + api_base: str, |
| 136 | + custom_prompt_dict: dict, |
| 137 | + model_response: ModelResponse, |
| 138 | + print_verbose: Callable, |
| 139 | + encoding: Any, |
| 140 | + api_key: Any, |
| 141 | + logging_obj: Any, |
| 142 | + optional_params: dict, |
| 143 | + acompletion: Optional[AsyncHTTPHandler] = None, |
| 144 | + litellm_params: Optional[Any] = None, |
| 145 | + logger_fn: Optional[Any] = None, |
| 146 | + headers: Optional[dict] = None, |
| 147 | + timeout: Optional[Union[float, Timeout]] = None, |
| 148 | + client: Optional[AsyncHTTPHandler] = None, |
| 149 | + ) -> AsyncIterator[GenericStreamingChunk]: |
| 150 | + _model = AnacondaQuantizedModelCache(name=model) |
| 151 | + _service = _model.start(**optional_params.pop("llama_cpp_kwargs", {})) |
| 152 | + _client = _service.openai_async_client |
| 153 | + |
| 154 | + inference_kwargs = self._prepare_inference_kwargs(optional_params) |
| 155 | + response = await _client.chat.completions.create( |
| 156 | + messages=messages, model=model, stream=True, **inference_kwargs |
| 157 | + ) |
| 158 | + wrapped = CustomStreamWrapper( |
| 159 | + custom_llm_provider="openai", |
| 160 | + completion_stream=response, |
| 161 | + model=model, |
| 162 | + logging_obj=logging_obj, |
| 163 | + ) |
| 164 | + |
| 165 | + async for chunk in wrapped: |
| 166 | + handled = cast( |
| 167 | + GenericStreamingChunk, |
| 168 | + wrapped.handle_openai_chat_completion_chunk(chunk), |
| 169 | + ) |
| 170 | + yield handled |
| 171 | + |
| 172 | + _service.options["Process"].terminate() |
| 173 | + |
| 174 | + |
| 175 | +# This should be moved to an entrypoint if implemented |
| 176 | +# https://github.com/BerriAI/litellm/issues/7733 |
| 177 | +anaconda_llm = AnacondaLLM() |
| 178 | +litellm.custom_provider_map.append( |
| 179 | + {"provider": "anaconda", "custom_handler": anaconda_llm} |
| 180 | +) |
0 commit comments