@@ -56,7 +56,7 @@ class BernoulliRBM(TransformerMixin, BaseEstimator):
56
56
verbose : int, default=0
57
57
The verbosity level. The default, zero, means silent mode.
58
58
59
- random_state : integer or RandomState , default=None
59
+ random_state : int, RandomState instance or None , default=None
60
60
Determines random number generation for:
61
61
62
62
- Gibbs sampling from visible and hidden layers.
@@ -70,17 +70,17 @@ class BernoulliRBM(TransformerMixin, BaseEstimator):
70
70
71
71
Attributes
72
72
----------
73
- intercept_hidden_ : array-like, shape (n_components,)
73
+ intercept_hidden_ : array-like of shape (n_components,)
74
74
Biases of the hidden units.
75
75
76
- intercept_visible_ : array-like, shape (n_features,)
76
+ intercept_visible_ : array-like of shape (n_features,)
77
77
Biases of the visible units.
78
78
79
- components_ : array-like, shape (n_components, n_features)
79
+ components_ : array-like of shape (n_components, n_features)
80
80
Weight matrix, where n_features in the number of
81
81
visible units and n_components is the number of hidden units.
82
82
83
- h_samples_ : array-like, shape (batch_size, n_components)
83
+ h_samples_ : array-like of shape (batch_size, n_components)
84
84
Hidden Activation sampled from the model distribution,
85
85
where batch_size in the number of examples per minibatch and
86
86
n_components is the number of hidden units.
@@ -159,7 +159,7 @@ def _sample_hiddens(self, v, rng):
159
159
v : ndarray of shape (n_samples, n_features)
160
160
Values of the visible layer to sample from.
161
161
162
- rng : RandomState
162
+ rng : RandomState instance
163
163
Random number generator to use.
164
164
165
165
Returns
@@ -178,7 +178,7 @@ def _sample_visibles(self, h, rng):
178
178
h : ndarray of shape (n_samples, n_components)
179
179
Values of the hidden layer to sample from.
180
180
181
- rng : RandomState
181
+ rng : RandomState instance
182
182
Random number generator to use.
183
183
184
184
Returns
@@ -274,7 +274,7 @@ def _fit(self, v_pos, rng):
274
274
v_pos : ndarray of shape (n_samples, n_features)
275
275
The data to use for training.
276
276
277
- rng : RandomState
277
+ rng : RandomState instance
278
278
Random number generator to use for sampling.
279
279
"""
280
280
h_pos = self ._mean_hiddens (v_pos )
0 commit comments