@@ -127,21 +127,46 @@ Release Date: 18 May 2020
127
127
fixed range and its value must not go out of this range. Here are
128
128
some examples:
129
129
130
- Assume there is a gene with the value 0.5.
130
+ Assume there is a gene with the value 0.5.
131
131
132
- If ``mutation_type="random" `` and ``mutation_by_replacement=False ``,
133
- then the generated random value (e.g. 0.1) will be added to the gene
134
- value. The new gene value is **0.5+0.1=0.6 **.
132
+ If ``mutation_type="random" `` and ``mutation_by_replacement=False ``,
133
+ then the generated random value (e.g. 0.1) will be added to the gene
134
+ value. The new gene value is **0.5+0.1=0.6 **.
135
135
136
- If ``mutation_type="random" `` and ``mutation_by_replacement=True ``,
137
- then the generated random value (e.g. 0.1) will replace the gene
138
- value. The new gene value is **0.1 **.
136
+ If ``mutation_type="random" `` and ``mutation_by_replacement=True ``,
137
+ then the generated random value (e.g. 0.1) will replace the gene value.
138
+ The new gene value is **0.1 **.
139
139
140
- 3 . ``None `` value could be assigned to the ``mutation_type `` and
140
+ 1 . ``None `` value could be assigned to the ``mutation_type `` and
141
141
``crossover_type `` parameters of the pygad.GA class constructor. When
142
142
``None ``, this means the step is bypassed and has no action.
143
143
144
- .. _header-n155 :
144
+ .. _header-n62 :
145
+
146
+ PyGAD 2.3.0
147
+ -----------
148
+
149
+ Release date: 1 June 2020
150
+
151
+ 1. A new module named ``pygad.cnn `` is supported for building
152
+ convolutional neural networks.
153
+
154
+ 2. A new module named ``pygad.gacnn `` is supported for training
155
+ convolutional neural networks using the genetic algorithm.
156
+
157
+ 3. The ``pygad.plot_result() `` method has 3 optional parameters named
158
+ ``title ``, ``xlabel ``, and ``ylabel `` to customize the plot title,
159
+ x-axis label, and y-axis label, respectively.
160
+
161
+ 4. The ``pygad.nn `` module supports the softmax activation function.
162
+
163
+ 5. The name of the ``pygad.nn.predict_outputs() `` function is changed to
164
+ ``pygad.nn.predict() ``.
165
+
166
+ 6. The name of the ``pygad.nn.train_network() `` function is changed to
167
+ ``pygad.nn.train() ``.
168
+
169
+ .. _header-n77 :
145
170
146
171
PyGAD Projects at GitHub
147
172
========================
@@ -151,7 +176,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
151
176
open-source GitHub projects. A brief note about these projects is given
152
177
in the next subsections.
153
178
154
- .. _header-n51 :
179
+ .. _header-n79 :
155
180
156
181
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
157
182
--------------------------------------------------------------------------------
@@ -162,7 +187,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
162
187
is the first project which is an open-source Python 3 project for
163
188
implementing the genetic algorithm based on NumPy.
164
189
165
- .. _header-n54 :
190
+ .. _header-n82 :
166
191
167
192
`NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__
168
193
----------------------------------------------------
@@ -176,7 +201,7 @@ neural network without using a training algorithm. Currently, it only
176
201
supports classification and later regression will be also supported.
177
202
Moreover, only one class is supported per sample.
178
203
179
- .. _header-n57 :
204
+ .. _header-n85 :
180
205
181
206
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic >`__
182
207
--------------------------------------------------------------
@@ -189,7 +214,19 @@ projects
189
214
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
190
215
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN >`__.
191
216
192
- .. _header-n60 :
<
629A
code> 217
+ .. _header-n88 :
218
+
219
+ `NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__
220
+ ----------------------------------------------------
221
+
222
+ GitHub Link: https://github.com/ahmedfgad/NumPyCNN
223
+
224
+ `NumPyCNN <https://github.com/ahmedfgad/NumPyCNN >`__ builds and trains
225
+ convolutional neural networks using the genetic algorithm. It uses the
226
+ `GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython >`__
227
+ project for building the genetic algorithm.
228
+
229
+ .. _header-n91 :
193
230
194
231
Submitting Issues
195
232
=================
@@ -206,7 +243,7 @@ is not working properly or to ask for questions.
206
243
If this is not a proper option for you, then check the **Contact Us **
207
244
section for more contact details.
208
245
209
- .. _header-n64 :
246
+ .. _header-n95 :
210
247
211
248
Ask for Feature
212
249
===============
@@ -223,7 +260,7 @@ to ahmed.f.gad@gmail.com.
223
260
224
261
Also check the **Contact Us ** section for more contact details.
225
262
226
- .. _header-n68 :
263
+ .. _header-n99 :
227
264
228
265
Projects Built using PyGAD
229
266
==========================
@@ -242,15 +279,15 @@ Within your message, please send the following details:
242
279
243
280
- Preferably, a link that directs the readers to your project
244
281
245
- .. _header-n79 :
282
+ .. _header-n110 :
246
283
247
284
For More Information
248
285
====================
249
286
250
287
There are different resources that can be used to get started with the
251
288
genetic algorithm and building it in Python.
252
289
253
- .. _header-n81 :
290
+ .. _header-n112 :
254
291
255
292
Tutorial: Implementing Genetic Algorithm in Python
256
293
--------------------------------------------------
@@ -274,7 +311,7 @@ good resource to start with coding the genetic algorithm.
274
311
275
312
|image0 |
276
313
277
- .. _header-n92 :
314
+ .. _header-n123 :
278
315
279
316
Tutorial: Introduction to Genetic Algorithm
280
317
-------------------------------------------
@@ -293,7 +330,7 @@ which is available at these links:
293
330
294
331
|image1 |
295
332
296
- .. _header-n102 :
333
+ .. _header-n133 :
297
334
298
335
Tutorial: Build Neural Networks in Python
299
336
-----------------------------------------
@@ -313,7 +350,7 @@ available at these links:
313
350
314
351
|image2 |
315
352
316
- .. _header-n112 :
353
+ .. _header-n143 :
317
354
318
355
Tutorial: Optimize Neural Networks with Genetic Algorithm
319
356
---------------------------------------------------------
@@ -333,7 +370,52 @@ available at these links:
333
370
334
371
|image3 |
335
372
336
- .. _header-n122 :
373
+ .. _header-n153 :
374
+
375
+ Tutorial: Building CNN in Python
376
+ --------------------------------
377
+
378
+ To start with coding the genetic algorithm, you can check the tutorial
379
+ titled `Building Convolutional Neural Network using NumPy from
380
+ Scratch <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad> `__
381
+ available at these links:
382
+
383
+ - `LinkedIn <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad >`__
384
+
385
+ - `Towards Data
386
+ Science <https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a> `__
387
+
388
+ - `KDnuggets <https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html >`__
389
+
390
+ - `Chinese Translation <http://m.aliyun.com/yunqi/articles/585741 >`__
391
+
392
+ `This
393
+ tutorial <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad> `__)
394
+ is prepared based on a previous version of the project but it still a
395
+ good resource to start with coding CNNs.
396
+
397
+ |image4 |
398
+
399
+ .. _header-n166 :
400
+
401
+ Tutorial: Derivation of CNN from FCNN
402
+ -------------------------------------
403
+
404
+ Get started with the genetic algorithm by reading the tutorial titled
405
+ `Derivation of Convolutional Neural Network from Fully Connected Network
406
+ Step-By-Step <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad> `__
407
+ which is available at these links:
408
+
409
+ - `LinkedIn <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad >`__
410
+
411
+ - `Towards Data
412
+ Science <https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275> `__
413
+
414
+ - `KDnuggets <https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html >`__
415
+
416
+ |image5 |
417
+
418
+ .. _header-n176 :
337
419
338
420
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
339
421
--------------------------------------------------------------------------
@@ -359,7 +441,7 @@ Find the book at these links:
359
441
.. figure :: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
360
442
:alt:
361
443
362
- .. _header-n137 :
444
+ .. _header-n191 :
363
445
364
446
Contact Us
365
447
==========
@@ -388,3 +470,7 @@ Contact Us
388
470
:target: https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad
389
471
.. |image3 | image :: https://user-images.githubusercontent.com/16560492/82078300-376e3980-96e1-11ea-821c-aa6b8ceb44d4.jpg
390
472
:target: https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad
473
+ .. |image4 | image :: https://user-images.githubusercontent.com/16560492/82431022-6c3a1200-9a8e-11ea-8f1b-b055196d76e3.png
474
+ :target: https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad
475
+ .. |image5 | image :: https://user-images.githubusercontent.com/16560492/82431369-db176b00-9a8e-11ea-99bd-e845192873fc.png
476
+ :target: https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad
0 commit comments