8000 Add files via upload · alexgorin/GeneticAlgorithmPython@9cc8eaa · GitHub
[go: up one dir, main page]

Skip to content

Commit 9cc8eaa

Browse files
authored
Add files via upload
1 parent 7427c0d commit 9cc8eaa

8 files changed

+1840
-178
lines changed

docs/source/Footer.rst

Lines changed: 108 additions & 22 deletions
Original file line numberDiff line numberDiff line change
@@ -127,21 +127,46 @@ Release Date: 18 May 2020
127127
fixed range and its value must not go out of this range. Here are
128128
some examples:
129129

130-
Assume there is a gene with the value 0.5.
130+
Assume there is a gene with the value 0.5.
131131

132-
If ``mutation_type="random"`` and ``mutation_by_replacement=False``,
133-
then the generated random value (e.g. 0.1) will be added to the gene
134-
value. The new gene value is **0.5+0.1=0.6**.
132+
If ``mutation_type="random"`` and ``mutation_by_replacement=False``,
133+
then the generated random value (e.g. 0.1) will be added to the gene
134+
value. The new gene value is **0.5+0.1=0.6**.
135135

136-
If ``mutation_type="random"`` and ``mutation_by_replacement=True``,
137-
then the generated random value (e.g. 0.1) will replace the gene
138-
value. The new gene value is **0.1**.
136+
If ``mutation_type="random"`` and ``mutation_by_replacement=True``,
137+
then the generated random value (e.g. 0.1) will replace the gene value.
138+
The new gene value is **0.1**.
139139

140-
3. ``None`` value could be assigned to the ``mutation_type`` and
140+
1. ``None`` value could be assigned to the ``mutation_type`` and
141141
``crossover_type`` parameters of the pygad.GA class constructor. When
142142
``None``, this means the step is bypassed and has no action.
143143

144-
.. _header-n155:
144+
.. _header-n62:
145+
146+
PyGAD 2.3.0
147+
-----------
148+
149+
Release date: 1 June 2020
150+
151+
1. A new module named ``pygad.cnn`` is supported for building
152+
convolutional neural networks.
153+
154+
2. A new module named ``pygad.gacnn`` is supported for training
155+
convolutional neural networks using the genetic algorithm.
156+
157+
3. The ``pygad.plot_result()`` method has 3 optional parameters named
158+
``title``, ``xlabel``, and ``ylabel`` to customize the plot title,
159+
x-axis label, and y-axis label, respectively.
160+
161+
4. The ``pygad.nn`` module supports the softmax activation function.
162+
163+
5. The name of the ``pygad.nn.predict_outputs()`` function is changed to
164+
``pygad.nn.predict()``.
165+
166+
6. The name of the ``pygad.nn.train_network()`` function is changed to
167+
``pygad.nn.train()``.
168+
169+
.. _header-n77:
145170

146171
PyGAD Projects at GitHub
147172
========================
@@ -151,7 +176,7 @@ https://pypi.org/project/pygad. PyGAD is built out of a number of
151176
open-source GitHub projects. A brief note about these projects is given
152177
in the next subsections.
153178

154-
.. _header-n51:
179+
.. _header-n79:
155180

156181
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
157182
--------------------------------------------------------------------------------
@@ -162,7 +187,7 @@ GitHub Link: https://github.com/ahmedfgad/GeneticAlgorithmPython
162187
is the first project which is an open-source Python 3 project for
163188
implementing the genetic algorithm based on NumPy.
164189

165-
.. _header-n54:
190+
.. _header-n82:
166191

167192
`NumPyANN <https://github.com/ahmedfgad/NumPyANN>`__
168193
----------------------------------------------------
@@ -176,7 +201,7 @@ neural network without using a training algorithm. Currently, it only
176201
supports classification and later regression will be also supported.
177202
Moreover, only one class is supported per sample.
178203

179-
.. _header-n57:
204+
.. _header-n85:
180205

181206
`NeuralGenetic <https://github.com/ahmedfgad/NeuralGenetic>`__
182207
--------------------------------------------------------------
@@ -189,7 +214,19 @@ projects
189214
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
190215
and `NumPyANN <https://github.com/ahmedfgad/NumPyANN>`__.
191216

192-
.. _header-n60:
< 629A code>217+
.. _header-n88:
218+
219+
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN>`__
220+
----------------------------------------------------
221+
222+
GitHub Link: https://github.com/ahmedfgad/NumPyCNN
223+
224+
`NumPyCNN <https://github.com/ahmedfgad/NumPyCNN>`__ builds and trains
225+
convolutional neural networks using the genetic algorithm. It uses the
226+
`GeneticAlgorithmPython <https://github.com/ahmedfgad/GeneticAlgorithmPython>`__
227+
project for building the genetic algorithm.
228+
229+
.. _header-n91:
193230

194231
Submitting Issues
195232
=================
@@ -206,7 +243,7 @@ is not working properly or to ask for questions.
206243
If this is not a proper option for you, then check the **Contact Us**
207244
section for more contact details.
208245

209-
.. _header-n64:
246+
.. _header-n95:
210247

211248
Ask for Feature
212249
===============
@@ -223,7 +260,7 @@ to ahmed.f.gad@gmail.com.
223260

224261
Also check the **Contact Us** section for more contact details.
225262

226-
.. _header-n68:
263+
.. _header-n99:
227264

228265
Projects Built using PyGAD
229266
==========================
@@ -242,15 +279,15 @@ Within your message, please send the following details:
242279

243280
- Preferably, a link that directs the readers to your project
244281

245-
.. _header-n79:
282+
.. _header-n110:
246283

247284
For More Information
248285
====================
249286

250287
There are different resources that can be used to get started with the
251288
genetic algorithm and building it in Python.
252289

253-
.. _header-n81:
290+
.. _header-n112:
254291

255292
Tutorial: Implementing Genetic Algorithm in Python
256293
--------------------------------------------------
@@ -274,7 +311,7 @@ good resource to start with coding the genetic algorithm.
274311

275312
|image0|
276313

277-
.. _header-n92:
314+
.. _header-n123:
278315

279316
Tutorial: Introduction to Genetic Algorithm
280317
-------------------------------------------
@@ -293,7 +330,7 @@ which is available at these links:
293330

294331
|image1|
295332

296-
.. _header-n102:
333+
.. _header-n133:
297334

298335
Tutorial: Build Neural Networks in Python
299336
-----------------------------------------
@@ -313,7 +350,7 @@ available at these links:
313350

314351
|image2|
315352

316-
.. _header-n112:
353+
.. _header-n143:
317354

318355
Tutorial: Optimize Neural Networks with Genetic Algorithm
319356
---------------------------------------------------------
@@ -333,7 +370,52 @@ available at these links:
333370

334371
|image3|
335372

336-
.. _header-n122:
373+
.. _header-n153:
374+
375+
Tutorial: Building CNN in Python
376+
--------------------------------
377+
378+
To start with coding the genetic algorithm, you can check the tutorial
379+
titled `Building Convolutional Neural Network using NumPy from
380+
Scratch <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad>`__
381+
available at these links:
382+
383+
- `LinkedIn <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad>`__
384+
385+
- `Towards Data
386+
Science <https://towardsdatascience.com/building-convolutional-neural-network-using-numpy-from-scratch-b30aac50e50a>`__
387+
388+
- `KDnuggets <https://www.kdnuggets.com/2018/04/building-convolutional-neural-network-numpy-scratch.html>`__
389+
390+
- `Chinese Translation <http://m.aliyun.com/yunqi/articles/585741>`__
391+
392+
`This
393+
tutorial <https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad>`__)
394+
is prepared based on a previous version of the project but it still a
395+
good resource to start with coding CNNs.
396+
397+
|image4|
398+
399+
.. _header-n166:
400+
401+
Tutorial: Derivation of CNN from FCNN
402+
-------------------------------------
403+
404+
Get started with the genetic algorithm by reading the tutorial titled
405+
`Derivation of Convolutional Neural Network from Fully Connected Network
406+
Step-By-Step <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad>`__
407+
which is available at these links:
408+
409+
- `LinkedIn <https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad>`__
410+
411+
- `Towards Data
412+
Science <https://towardsdatascience.com/derivation-of-convolutional-neural-network-from-fully-connected-network-step-by-step-b42ebafa5275>`__
413+
414+
- `KDnuggets <https://www.kdnuggets.com/2018/04/derivation-convolutional-neural-network-fully-connected-step-by-step.html>`__
415+
416+
|image5|
417+
418+
.. _header-n176:
337419

338420
Book: Practical Computer Vision Applications Using Deep Learning with CNNs
339421
--------------------------------------------------------------------------
@@ -359,7 +441,7 @@ Find the book at these links:
359441
.. figure:: https://user-images.githubusercontent.com/16560492/78830077-ae7c2800-79e7-11ea-980b-53b6bd879eeb.jpg
360442
:alt:
361443

362-
.. _header-n137:
444+
.. _header-n191:
363445

364446
Contact Us
365447
==========
@@ -388,3 +470,7 @@ Contact Us
388470
:target: https://www.linkedin.com/pulse/artificial-neural-network-implementation-using-numpy-fruits360-gad
389471
.. |image3| image:: https://user-images.githubusercontent.com/16560492/82078300-376e3980-96e1-11ea-821c-aa6b8ceb44d4.jpg
390472
:target: https://www.linkedin.com/pulse/artificial-neural-networks-optimization-using-genetic-ahmed-gad
473+
.. |image4| image:: https://user-images.githubusercontent.com/16560492/82431022-6c3a1200-9a8e-11ea-8f1b-b055196d76e3.png
474+
:target: https://www.linkedin.com/pulse/building-convolutional-neural-network-using-numpy-from-ahmed-gad
475+
.. |image5| image:: https://user-images.githubusercontent.com/16560492/82431369-db176b00-9a8e-11ea-99bd-e845192873fc.png
476+
:target: https://www.linkedin.com/pulse/derivation-convolutional-neural-network-from-fully-connected-gad

docs/source/README_pygad_ReadTheDocs.rst

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -498,6 +498,14 @@ generation.
498498

499499
If no generation is completed (at least 1), an exception is raised.
500500

501+
In PyGAD 2.3.0 and higher, this function accepts 3 optional parameters:
502+
503+
1. ``title``: Title of the figure.
504+
505+
2. ``xlabel``: X-axis label.
506+
507+
3. ``ylabel``: Y-axis label.
508+
501509
.. _header-n186:
502510

503511
``save()``

0 commit comments

Comments
 (0)
0