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This guide is a collection of user instructions, system documentation, and
software interfaces intended for researchers interested in interacting with the au-
tonomy stack of NASA’s Astrobee Flight Software (not Astrobee Android—for
that interface, please see here). The guide is mainly intended for those inter-
ested in motion planning, estimation, and control, i.e., Guidance, Navigation,
and Control (GNC) research and is inspired by the SPHERES Guest Scien-
tist Program Guide, originally published in 2009 to document the SPHERES
free-flyer experiment. The flow is chronological, roughly following the steps a
new user would follow from initial setup to adding research code for a hard-
ware test. However, do not rely solely on this guide for testing on-orbit; the
guide is intended as a reference to find information and get working experiments
without drowning in reading source code. There are also numerous Astrobee
papers written by NASA Ames folks which are good references but note that
some are out-of-date from current Astrobee specifications [1] [2] [3] [4] [5] [6]
[7] [8]. Section 1 is a general introduction to Astrobee and its software; Section
2 details some configuration information important for GNC and simulation;
Section 3 shows how to set up the simulation and flight software; Section 4
overviews using the simulation and Gazebo; Section 5 contains key autonomy
pipeline interfaces and modification information; Section 6 covers the perching
arm; Section 7 shows how to add new code; Section 8 discusses preparation for
hardware testing and some considerations for ISS testing.

Edits to this guide are ongoing and future revisions can be expected—
contributions are welcome!1 Thanks to Brian Coltin, In Won Park, Marina
Moreira, the Astrobee Ops Team, and others at NASA Ames IRG for their help
in answering many questions.

Version 1.1 Updates: An appendix on FAM’s structure has been added;
additional details on commanding and hardware integration have been added
to Section 8; small typo fixes and wording changes have been made throughout.
A significantly expanded Section 8 and updates for the latest FSW version are
expected in Version 1.2.

1https://github.com/albee/a-brief-guide-to-astrobee
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1 Introduction

Astrobee is an autonomous micrgravity free-flyer, currently operating on-
board the International Space Station (ISS) with the dual goal of helping astro-
nauts with everyday activities while also serving as a microgravity autonomy re-
search testbed. Astrobee uses an impeller-based propulsion system to direct air
through multiple controllable vents in order to move around the interior of the
ISS. Astrobee is also a capable modern robotics platform, operating with three
processors networked together using the Robotic Operation System (ROS). As-
trobee has three planned ISS units, an ISS docking port, and an accompanying
ground facility with multiple prototype Astrobees and a ground station.

Fortunately, Astrobee’s core flight software is entirely open source and in-
cludes a dedicated simulation environment, ready-to-go. That is where this
guide comes in—to fill the gap between receiving access to these wonderful
resources and getting new code integrated with Astrobee’s flight software for
simulation, ground, and eventual ISS experimentation. A high-level overview of
these resources is provided in this section, and the remainder of this guide flows
from initial setup to advanced ISS hardware preparation.

1.1 Astrobee

Astrobee is an autonomous free-flying robot designed to operate in micro-
gravity, as shown in Figure 1. As stated in the introduction, Astrobee has
ground and ISS facilities and a simulation environment designed to mimic both
of these environments as closely as possible. The Astrobee units on the ISS are
named honey, bumble, and queen, and also use these names in simulation to
differentiate between units. The many papers mentioned in the front matter
are excellent resources for more detailed specifics on Astrobee’s hardware capa-
bilities and design intent—some key details for GNC purposes are provided in
Section 2.

1.2 Astrobee Flight Software, Astrobee Android

Each Astrobee has three processors onboard:

• a high-level processor (HLP) running Android Nougat

• a mid-level processor (MLP) running Ubuntu 16.04 with ROS Kinetic

• a low-level processor (LLP) running Ubuntu 16.04 with ROS Kinetic

Specifics on the processors may be found in Fluckiger et al. [4]. The HLP
differs from the MLP and LLP in that it is not Ubuntu-based and is meant
to host Guest Science applications written as Android APKs. The software
running on the HLP is called Astrobee Android and its code is also available
publicly here.
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Figure 1: The Astrobee free-flyer, at its docking port on the International Space
Station. Three Astrobees are ultimately planned for use on-orbit. Image credit:
NASA.

Astrobee Android is fundamentally different from the Astrobee Flight Soft-
ware and is mainly intended as a driver manager for some human-robot inter-
action hardware and as an interface for Guest Science APKs to the lower-level
autonomy capability. There is a separate guide for this interface to Astrobee,
which can be found in the Astrobee Guest Science Program guide [9].

Meanwhile the Astrobee Flight Software (AFS) is primarily coded in C++
and encapsulates key functionality in ROS nodelets. The AFS runs on the MLP
and LLP, with the LLP primarily handling tasks that are closer to the hardware,
e.g., control. AFS source code and some documentation in the form of README
files can be found here. AFS contains the key autonomy functionality including
motion planning, mapping, control, and high-level decision-making and is the
focus of this guide; setup instructions are detailed in Section 3.

1.3 Astrobee Simulation

The Astrobee Flight Software comes with the Astrobee simulator. Single or
multiple Astrobees can be simulated in an ISS or granite table environment. The
robot’s propulsion system, inertial and camera sensors, and perching arm are
simulated, along with all associated drivers. The simulator code is in the form
of Gazebo plugins which recreate input seen on the actual Astrobee hardware.
This allows testing of new code prior to its deployment to hardware, using the
same ROS framework that is actually used on hardware. An example screenshot
of the simulation is shown in Figure 2. Section 4 covers some key simulation
concepts.
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Figure 2: An example of the Astrobee simulation in action, here showing a
single Astrobee producing a voxel map based on depth camera measurements.

1.4 GDS

The Ground Data System (GDS) is a graphical user interface and command
software for Astrobee used from control stations on the ground or the ISS.
Commands are sent over the Data Distribution Service (DDS) protocol. DDS
commands are converted to ROS commands onboard Astrobee by the AFS to
be communicated to the robot by the DDS bridge. It also subscribes to ROS
messages useful for monitoring the robot and sends them to ground as DDS
messages. GDS is discussed briefly in Section 8 in the context of integration for
ISS testing.
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2 Configuration

Astrobee’s physical parameters and environment must be known for con-
trol, estimation and planning. These parameters are approximately known for
the actual hardware, and are also modifiable in the simulation environment.
A set of configuration files can be found in astrobee/config.2 These con-
fig files set many default robot parameters (including physical parameters),
some of which are reset via launch files. There is not much documentation
on these config files, but the inline coding is fairly self-explanatory. Note that
astrobee/config/worlds contains some particularly useful config information.
Finally, configuration information for Gazebo is also specified in URDF files, ex-
plained further below and in Section 4.

2.1 Physical and Mass Properties

In order to control the robot, it is necessary to know the system dynamics and
parameters. Nominally, Astrobee obeys the rigid body dynamics of the Newton-
Euler equations. Astrobee also has a small two degree of freedom robotic arm,
whose use results in robotic free-flying dynamics. These dynamics are discussed
in Chapter 3 of [10] and are not shown here.

2.1.1 Dynamics and State Vector

For use not involving the arm, the Newton-Euler dynamics can be assumed:

r =
[
rx ry rz

]>
q =

[
qx qy qz qθ

]>
v =

[
vx vy vz

]>
ω =

[
ωx ωy ωz

]>
x =


r
q
v
ω



ṙCoM = v

v̇CoM =
F

m

ω̇ = −I−1ω × Iω + I−1τ

I
Bq̇ =

1

2
H̄(IBq)>BωIB

where x is the state vector, r is position, q is orientation (a quaternion, rep-
resenting the body frame orientation with respect to the inertial frame), v is
linear velocity and ω is angular velocity (in the body frame). F is the 3-vector
of applied force (for Astrobee this is defined in the body frame!) and τ is the

2Directories throughout the guide are referred to with respect to the Astrobee source code
directory. A directory listing is shown in Appendix A.
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3-vector of applied torque. I is the inertia tensor, and m is the mass. Finally,
H̄ is a quaternion conversion matrix, defined explicitly in [10]. It is assumed
that the body frame is at the center of mass, CoM .

The state vector estimate, x̂ can be obtained on the topic gnc/ekf, under
the EkfState message. Simulation ground truth of x can be obtained on the
topics loc/truth/pose and loc/truth/twist. Consult Section 5 for further
details.

2.1.2 Inertial Parameters

Gazebo ground truth parameters are set in their respective URDF files,
specified in description/description/urdf. The mass esimates are “fairly
accurate,” the moment of inertia estimates are “somewhat accurate.” Values
for ground air bearings are only “somewhat accurate.” See Section 4 for more
details on the URDF description files.

The current mass estimate is m = 9.58 kg.

The current inertia tensor estimate is:

I =

0.153 0 0
0 0.143 0
0 0 0.162

 kg-m2

Note that in reality these values will differ for each Astrobee and have an inher-
ent uncertainty. These parameters will likely be updated at some point in the
future. These parameters are published to the ROS topic mob/inertia.

2.2 Constraints

2.2.1 Position and Velocity Constraints

Position constraints are not necessarily enforced by any default Astrobee
planner (planner qp, however, does obey keep-in/keep-out zones, but not all of
them.). astrobee/resources/zones has the latest ISS and granite table zones,
written as serialized ROS messages. To obtain nominal position constraints
these zones can be converted to message form and analyzed.

By default, Astrobee uses a ±0.1 m
s velocity constraint.

2.2.2 Force and Torque Constraints

The quoted max thrusts per axis at various impeller fan speeds are given
in Table 1. These maximum forces values are approximate and will likely be
updated at some point in the future.
Astrobee’s thruster offset is about 0.1 m from the CoM , so the torque limit is
very roughly about 1

10 of each of these values (each vent produces approximately
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Motor Speed [RPM] x-axis [N] y-axis [N] z-axis [N]
2000 RPM 0.452 0.216 0.257
2500 RPM 0.680 0.332 0.394
2800 RPM 0.849 0.406 0.486

Table 1: The approximate thruster maximum forces per axis.

half of the max force). These are only approximations for the torque limits, and
will likely be updated at some point in the future.

2.3 Mixing Matrix (Mixer)

Astrobee has a holonomic thruster placement, with 12 independent thrust
vents. Vents on the X-axis have the largest nozzles and have the maximum
acceleration capability, as Table 1 shows. A thruster placement diagram and
explanation is given in [2]. Most of the GNC pipeline, including the force allo-
cation module (FAM) was originally implemented in Simulink for the Astrobee
simulator. The physical properties of the impeller and the nozzles, such as the
nozzles’ minimum/maximum open angles, etc. can be found in this model, lo-
cated at
gnc/matlab/physical props/abp astrobee physical properties init.m. How-
ever, a derivation of the mixing matrix (a mapping from desired inputs to vent
angle) is not currently available and will likely be updated at some point in the
future.

2.4 Worlds and Coordinate Conventions

By default Astrobee has two worlds (simulation environments), granite and
ISS. Each world has an inertial coordinate frame, and ROS’ standard tf2 pack-
age is used for tracking coordinate frames.

Note: If the simulation environment has been changed, the accelerom-
eter bias must be reset. This can be done by running

rosrun executive teleop_tool -reset_bias

2.4.1 Granite

The granite world mimics the granite table in use at the NASA Ames ground
test facility. The Ames table is 2× 2 m, though tighter constraints are in place
at the actual test facility. The coordinate system mimics that of the ISS, where
z+ is toward GND (down), shown in Figure 3.

2.4.2 ISS

The ISS world is a mockup of the US Segment of the International Space Sta-
tion. By default, Astrobee is docked in the Japanese Experiment Module (JEM)
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of this segment. The approximate volume of this segment is 1.5× 6.4× 1.7 m,
in ISS coordinates. The coordinate system is shown in Figure 4.

A good default location within the JEM for the ISS world is:

roslaunch astrobee spawn.launch dds:=false

robot:=sim_pub pose:="11.25 -6.95 4.49 0 0 0 1"

Figure 3: The coordinate convention for granite in use at the actual ground test
facility. RGB corresponds to XYZ for the axes shown, where z+ points down.
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Figure 4: The coordinate convention for ISS. RGB corresponds to XYZ for the
axes shown. JEM is the module in the top left.
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3 Setup, Building, and Running the Flight Soft-
ware

Astrobee’s public-facing, external flight software code is available here. This
code is what is actually run on the robots, minus a few NASA internal direc-
tories. Some guides are available within that repository that will help with
getting the simulation up and running—the instructions in INSTALL.md specif-
ically will help with this. Many README.md files within the code also provide
useful documentation. For completeness, install instructions are also provided
here with some additional guidance to help with some common sticking points.
The Astrobee simulation requires Ubuntu 16.04 (but unofficially supports 18.04
and Linux Mint based on 16.04 and 18.04)—the instructions that follow assume
the user has a clean Ubuntu 16.04 installation and is ready to use the terminal.

3.1 Setup

First, the source code directory, build directory, and install directory must
be placed somewhere. The recommenced structure is shown in Figure 5, where
the source code cloned from NASA’s repository is in freeflyer-shared.3 Note
that it is possible to name this directory as desired: freeflyer-shared is just
a convention.

Figure 5: The recommended folder setup for Astrobee. This is slightly different
from the normal Catkin workspace structure the user might be used to when
working with ROS.

git clone https://github.com/nasa/astrobee.git \$SOURCE_PATH

e.g.,

git clone https://github.com/nasa/astrobee.git freeflyer-shared

3As a reminder, most directories mentioned in this guide are relative to the main source
code directory, freeflyer-shared.
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Scripts are available to install required debians (packages)—some of these
packages are available from the normal Ubuntu repositories, others are created
by AFS scripts and built specifically for the user’s computer, and some must
come from the ROS repositories. Three scripts accomplish this:

./scripts/setup/add_ros_repository.sh

./scripts/setup/debians/build_install_debians.sh

./scripts/setup/debians/install_desktop_16_04_packages.sh

It is a good idea to have ROS check for additional dependencies:

sudo rosdep init

rosdep update

As a non-NASA user some of these packages (related to use of the Ground Data
System (GDS)) are unavailable—this is okay, but the user will notice that some
packages are not found when running the installation scripts.

AFS uses CMake for its build system. In order to prepare a makefile for the
entire project, the build must be configured from AFS’ CMakeLists.txt files.
NASA provides a configuration script to help with this—the user just needs
to run the configuration script with the desired build and install directories.
(Reminder: these paths are relative to freeflyer-shared):

./scripts/configure.sh -l -F -D -p $INSTALL_PATH -b $BUILD_PATH

e.g.,

./scripts/configure.sh -l -F -D -p ../freeflyer-install/native

-b ../freeflyer-build/native

The recommended $INSTALL PATH is ../freeflyer-install/native. The
recommended $BUILD PATH is ../freeflyer-build/native.

CMake has generated the makefile and other necessary bits in the build
directory after running configure.sh.

3.1.1 Advanced Details, Ubuntu 18.04 and 20.04 Setup

Note: Skip these details unless interested in installing new external
libraries or attempting to satisfy dependencies on a different Linux
operating system.

Astrobee has a variety of external dependencies that must be available on the
processors (and the user’s simulation computer) for the flight software stack to
work. NASA’s setup instructions install (most) of these dependencies as debians,
the standard package format for Ubuntu-based Linux systems. This is accom-
plished through two scripts, scripts/setup/debians/build install debians.sh

and scripts/setup/install desktop 16 04 packages.sh. Briefly, creating a
debian package works in the following way:
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1. A normal directory full of source code and CMakeLists.txt is produced.

2. A debian subdirectory is inserted.

3. control and rules files are created inside the debian subdirectory in
order to define dependencies and compilation instructions, respectively.

4. The debuild command is used on the package directory to create a debian
package.

5. The dpkg -i command is used to actually install the debian according to
the *.install instructions in the package directory.

Astrobee’s setup process creates some of these debians on-demand and fetches
some pre-prepared debians for installation. Advanced instructions on tweaking
Astrobee’s debian installation process (e.g., for installing dependencies on an-
other distro) are explained in scripts/setup/debians/readme.md. On Ubuntu
18.04, for example, different controls and rules files are used, and an older
version of OpenCV (3.3.1, which is found in ROS Kinetic) must be installed.
The main difficulty the user might encounter is updating dependency versions
or telling CMakeLists.txt that a specific dependency is required if multiple exist
on a system. An example of a custom setup and build process is available in
Appendix B.

3.2 Building

After setting up the directory structure, getting the source code, and config-
uring, it’s time to begin building (compiling and linking) the source code. This
process is a little different depending on whether the user is working with the
simulation or the actual robot (cross-compiling).

3.2.1 For Simulation

After setup, to perform a first build or incorporate new source code changes
into the Astrobee build, run:

make -j2

in the build directory, freeflyer-build/native for example. Note that -j2

specifies the number of cores to run on—e.g., if the user has 8 cores and runs
make -j8 the code will build much faster.

What is the the build process doing? A few things—first, it checks to make
sure a set of required libraries are installed. Some ROS messages are generated,
media files are loaded, and OGRE (a graphics engine used for some RViz visuals)
is configured. Finally, C++ targets are built according to what is specified in
the (long) makefile in freeflyer-build/native. Specific details can be found
by analyzing the CMakeLists.txt files which start in the main source directory.
To additionally install targets (i.e., place targets in the directories specified by
CMakeLists.txt), the user can run:
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make install -j2

Build targets are placed in freeflyer-install, though this is not necessary
for just working in simulation.

3.2.2 For Hardware

The cross-compile build to be uploaded to Astrobee hardware requires a
bit of extra work in order to cross-compile ARM-compatible targets. Detailed
instructions are in NASA INSTALL.md.

Directories for the chroot (a directory mimicking the ARM file system) and
toolchain (the actual tools used to cross-compile) must be specified. One option
is to just put this working directory in the freeflyer workspace:

export ARMHF_CHROOT_DIR=$YOUR_CHOICE/arm_cross/rootfs

export ARMHF_TOOLCHAIN=$YOUR_CHOICE/arm_cross/toolchain/gcc

NASA INSTALL.md details the further steps needed to do a cross-compile build
for ARM. Those instructions are for NASA users only, however. An example
native ARM build process is outlined in Appendix B.

3.3 Running

The Astrobee ROS workspace environment must be overlaid for ROS to find
it. This can be done by sourcing the workspace setup file:

source $BUILD_PATH/native/devel/setup.bash

As a first sample test of the simulation, the user can start up the standard
sim using:

roslaunch astrobee sim.launch dds:=false robot:=sim_pub rviz:=true

The simulation’s RViz visualization should display in the ISS world.
It is possible to interact from the command line using rosrun or roslaunch

to start up sets of nodes. Astrobee uses ROS for most of its message-passing,
so interacting similarly as with a normal ROS environment is possible. It is
also possible to use a script that will run the desired ROS commands so that
command line updates aren’t required, or to write a custom node(let) that
interacts with the desired topics. Again, Astrobee runs on ROS: the hard part
is finding exact details on which node(let)s do what, and what their interfaces
are. For the autonomy pipeline, these details are covered in Section 5.

The user can also interact with Astrobee via NASA’s ground data system
(GDS) software. GDS is open-sourced here, but its underlying DDS libraries are
NASA-internal. GDS provides a GUI interface and convenient communications
with Astrobee, and by default can support Guest Science interfacing with guest
Android APKs or Java code—some additional details can be found in Section
8.
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3.4 Special Procedures for non-NASA Hardware Users

If working on setup with the goal of eventually developing for custom hard-
ware, then the user will need to follow some additional instructions. The MIT
Space Systems Lab (SSL), for example, has a custom hardware setup using dif-
ferent processors and operating systems. Appendix B has an example of these
special instructions for custom configuration on MIT’s processors and may be
useful for other custom hardware setups.
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4 Using the Simulation and Gazebo

With AFS and the simulation environment set up from Section 3, it is now
possible to begin working with the simulation, which is powered by Gazebo.
Gazebo is the simulation backend (physics, visualization, etc.)—it is tightly
integrated with ROS and does not require any setup beyond setup steps followed
in Section 3. Note that NASA documentation for the simulation is growing and
that simulation/README.md is another helpful resource.

4.1 Launching the Sim

A ROS launch file starts up a number of nodes (in Astrobee’s case, nodelets)
at the same time. The Astrobee simulation starts from a cascade of these launch
files. The astrobee/launch/sim.launch file is the default starting point to run
the simulation:

roslaunch astrobee sim.launch dds:=false robot:=sim_pub rviz:=true

Default robot and DDS arguments are required for non-NASA usage. Flags
and more information can be found here.

4.2 Launch Sequence

Astrobee is launched using a series of cascading launch files, as above. The
sequence of these launch files is given in Figure 6. descriptions.launch creates
the environment and corresponding coordinate transforms; spawn.launch starts
artificial drivers and nodes running on the LLP and MLP; sim start.launch

begins the Gazebo and RViz simulation environments.
Consult individual launch files for more details. Most launch files are found

in astrobee/launch, but some are also located in simulation/launch. Indi-
vidual packages also usually have their own launch files. Note that Astrobee
uses special nodelets instead of nodes, which are able to pass messages more ef-
ficiently. Documentation on nodelets can be found here, and additional details
are provided in Section 7.

4.3 Creating Objects, URDFs

The spawn astrobee node located in spawn astrobee.launch

(located in simulation/launch) is used to bring Astrobee online in simula-
tion. Parameter information is specified via xacro files, which are kept in
description/description/urdf. These xacros are converted to URDFs by
a parameter command in astrobee.launch. The robot description parame-
ter contains the output of this command and is passed to the spawn model script
in simulation/scripts/spawn model. The launch sequence is summarized in
Figure 7. The model carriage* xacros are only used if specified by launch file
input arguments. Additional documentation on URDF and xacro files can be
found here.
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Figure 6: The nominal Astrobee launch file sequence. The entry point to starting the simulation is sim.launch.
A related launch file sequence is used to start up nodes on the actual hardware. Red indicates visualization
launch files while blue indicates low-level driver and nodelet launch files.

4.3.1 Attaching Rigid Objects

Objects that are rigidly attached to another model must have a URDF that is
incorporated into the base. model.urdf.xacro contains an example of this pro-
cess, including macro perching arm.urdf.xacro in its definition. Attaching a
rigid object to another URDF (such as model.urdf.xacro) can be accomplished
by mimicking this process.
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Figure 7: The Astrobee object spawning sequence. A sample “with object” launch sequence that is not
in the default simulation is also provided in this diagram. This spawn sequence is used to create objects
in the sim, and can be modified as desired to include free-floating or rigidly attached objects.

4.3.2 Free-floating Objects

Free-floating objects can be spawned using a custom xacro and do not require
interfacing with model.urdf.xacro. Just ensure that the Gazebo spawn is
called from the launch file sequence.

4.3.3 Multiple Objects

Multiple URDF files with the same link name are a problem. This can
be fixed by creating an xacro macro that wraps the xacro file, allowing for
different parents, etc. to be specified. This would be required, for example, if
model carriage.xacro, was used twice to describe an Astrobee and another
object supported by a carriage.

21



4.3.4 Global Static Objects

The simulation uses a convention of “global” transforms for objects that are
static relative to the inertial ISS frame (e.g., the dock). Most of these objects
are defined in description/media/ and the ensuing subfolders. The actual
transformations for these objects get set by the framestore node, which checks
the config files (namely iss.config and granite.config) in order to set the
necessary transformations relative to the ISS.

New global objects may be added to framestore for broadcasting, if desired.

4.4 Visualization

The Astrobee sim has RViz, SViz (Gazebo), GViz (GNC), and GDS visu-
alizations. The RViz visualization is the most practically useful. Each of these
can be started using the launch file input arguments specified here.

4.5 Multiple Astrobees

Launching multiple Astrobees is possible using namespacing of topics. The
Astrobee simulator can account for the following namespaces, currently: /,
honey, bumble, and queen. ‘/’ is the root namespace, and is the default when
launching.

Many default Astrobee command-line tools also accept the -ns argument, e.g.,
rosrun executive teleop -ns bumble -move -pos "4 0"

The spawn.launch launch file conjures up Astrobee in Gazebo and starts up
namespaced nodelets. A namespaced Astrobee can be started using e.g.;

roslaunch astrobee spawn.launch ns:=honey pose:="1 2 3 0 0 0 1"

Additionally, spawn.launch namespacing options are available in the sim.launch
file for calling up each platform, using arguments honey, bumble, and queen.

As an example, if running multiple Astrobees their respective topics must be
properly namespaced so that they do not clash when run on a single machine.
This can be accomplished using the ns argument when launching an Astrobee
from a launch file. For example, the following will launch a set of Astrobee
nodelets under the honey/ namespace:

<group if="$(arg honey)">

<include file="$(find astrobee)/launch/spawn.launch">

<arg name="robot" value="$(arg robot)" /> <!-- Type of robot -->

<arg name="world" value="$(arg world)" /> <!-- Execution context -->

<arg name="ns" value="honey" /> <!-- Robot namespace -->

<arg name="output" value="$(arg output)" /> <!-- Output for logging -->

<arg name="pose" value="$(arg pose_honey)" /> <!-- Initial robot pose -->

<arg name="spurn" value="$(arg spurn)" /> <!-- Prevent node -->

<arg name="nodes" value="$(arg nodes)" /> <!-- Launch node group -->
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<arg name="extra" value="$(arg extra)" /> <!-- Inject extra nodes -->

<arg name="debug" value="$(arg debug)" /> <!-- Debug a node set -->

<arg name="sim" value="$(arg sim)" /> <!-- SIM IP address -->

<arg name="llp" value="$(arg llp)" /> <!-- LLP IP address -->

<arg name="mlp" value="$(arg mlp)" /> <!-- MLP IP address -->

<arg name="dds" value="$(arg dds)" /> <!-- Enable DDS -->

</include>

</group>

However, on actual hardware each Astrobee is namespaced relative to the /

namespace on their individual processors. This means that launch file names-
pacing is not necessary on the actual hardware!

4.6 Teleop

A few mobility command-line commands can be issued using the Astrobee
mobility’s teleop tool to directly control Astrobee. See the teleop documenta-
tion in mobility/README.md. These are convenience commands that sequence
together other Astrobee tools to provide functionality for the user e.g., moving
point to point by calling the planner and underlying control, for example:

rosrun mobility teleop -move -pos "0.1 0.2"
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5 The Autonomy Pipeline

The Astrobee GNC is divided into a few main packages: CTL (control),
EKF (estimation), and FAM (force allocation module/mixer), along with au-
tonomy packages for localization and planning. EKF fuses localization and
measurement information to produce a state estimate, which is used by CTL in
correcting error. Desired waypoints for planning come from a designated plan-
ner, which is in turn managed by the choreographer. Finally, actual control
inputs are produced using the FAM module which interfaces with the low-level
hardware drivers. Meanwhile, a variety of other Astrobee nodelets run along-
side this system to e.g., manage external communications. Locating the source
files and identifying their ROS inputs and outputs is key to making low-level
modifications to Astrobee’s autonomy software.

By default, Astrobee launches a set of control and estimation nodelets on the
LLP. (See astrobee/launch/robot/LLP.launch.) Some higher-level nodes are
launched on the MLP. (See astrobee/launch/robot/MLP.launch.) Figure 8
provides a high-level overview of this pipeline, along with a sample of overriding
it using integrated code.

Figure 8: An overview of the Astrobee GNC subsystem. The components out-
lined in black are an example of a replacement pipeline overriding Astrobee’s
default GNC subsystem, which is outlined in red. This sort of customization is
described further in this section.
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5.1 Locations of Key Parts of the Autonomy Pipeline

Most of the CTL, EKF, and FAM code was autocoded from a MATLAB
Simulink model (and is therefore somewhat hard to read as source code). This
Simulink model can be found in gnc/matlab/astrobee control sim.slx. Also
note that most packages have individual READMEs with additional informa-
tion. For ease of reference, source code for portions of the pipeline can be found
as noted here:

• High-Level Finite State Machine (FSM): management/executive

• Mobility FSM: mobility/choreographer

• Trajectory Planning: mobility/planner *

• Control: gnc/ctl

• Mixer: gnc/fam

• Estimation: gnc/ekf

• Localization: localization

5.2 Finite State Machines (FSMs)

The executive and choreographer provide system-level and GNC-level
management, respectively, often using their own FSMs to determine how to re-
act. The exact logic behind decision-making is not covered here (it is intricate),
but generally executive is useful from an autonomy perspective for getting ex-
ternal commands routed properly, and choreographer is useful for coordinat-
ing and monitoring interaction between GNC components (and interfacing with
executive). Important information like inertial parameters and flight mode is
also published by the choreographer. The general flow of information between
these components is shown in Figure 9.

5.3 Planning

Astrobee’s default trajectory generators (planners) are directly coded in
C++: there is no MATLAB autocoding. The goal of the planners is, given
a goal state, to produce a set of dynamically-feasible trajectory setpoints. On
top of that, the planners may optimize a cost function, or avoid obstacles. Only
planner qp does both of these. The default planner, planner trapezoidal,
creates straight-line trapezoidal velocity ramps and does simple obstacle checking—
if an obstacle is in the way, it aborts. planner qp is a bit more sophisticated,
and produces minimum-jerk, smooth, obstacle-avoiding trajectories [3]. There
are two main ways to incorporate a new planner: (1) using the planner frame-
work that the default planners uses or (2) bypassing the planning framework.
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Figure 9: A general overview of the interfacing between GNC components and
the FSMs. The FSM-based nodelets are outlined in blue. (Based on NASA
Ames AFS documentation.)

5.3.1 Integrate into the Planner Framework

This method requires the following:

• Creating a new planner that inherits planner::PlannerImplementation
(see planner trapezoidal nodelet.cc for an example)

• Filling in a minimal set of callbacks for a planner::PlannerImplementation

• Making sure planner.h is included, to register with choreographer

A finite state machine running in the mobility subsystem (choreographer)
determines when and how planners are called, with configuration parameters
also exposed via the rqt reconfigure ROS tool. Registration of a planner
with choreographer makes a planner accessible to the mob/motion action.
mob/motion is the interface for calling a planner. It is used by the teleop

tool and by other internal commands involving motion requests. mob/motion is
aliased as ACTION MOBILITY MOTION in the codebase with action ff msgs::MotionAction.
This action is made available by the choreographer nodelet upon launch. A
detailed diagram of this process can be found in doc/images/mobility.

The flow of generating a trajectory and sending it out for control is:
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• teleop or executive calls choreographer.Plan() to initiate creating a
trajectory (line 900 of choreographer nodelet.cc) via the MotionAction

• a request is sent to planner.SendGoal() (line 960 of choreographer nodelet.cc)

• the planner action server calls its GoalCallback() (line 252 of planner.h)
and calls the PlanCallback() (line 267 of planner.h)

• the PlanCallback() routes the request to the trajectory generator defined
by the planner implementation, and a plan result is set (e.g., line 85 of
planner trapezoidal nodelet.cc)

• separately, a request for control is made in choreographer.Control()

(line 1068 of choreographer nodelet.cc) which publishes a goal to the
control client. This call is made by the FSM, but the exact mechanism
for specifying the rate of reading the plan is not clear

• CTL picks up the current action goal setpoint (line 343 of ctl.cc) and
the segment is copied over to be processed

• a wrapper around the autocoded GNC uses the setpoint and current state
to compute the required forces and torques, and sends them to the FAM
(line 438 of ctl.cc), see ctl.h for the wrapper class definition. Note that
Control() (line 400 of ctl.cc) actually sets the desired control state

5.3.2 Bypass the Planner Framework

It is also possible to bypass this framework entirely, if this acceptable for the
intended use. If the user has their own trajectory generation scheme (in Astrobee
parlance, a planner) you can avoid the FSM management from choreographer

by simply publishing trajectory setpoints to the topic that choreographer

would have ultimately published to.
The following publishers can be made with roscpp: one for base controller

setpoints, and another for the arm controller. This will route trajectory set-
points directly to the controller monitoring TOPIC GNC CTL SETPOINT.

// Publish setpoints to base controller

pub_ctl_ = nh->advertise<ff_msgs::ControlState>(

TOPIC_GNC_CTL_SETPOINT, 5, true);

// Publish setpoints to arm

pub_arm_ = nh->advertise<sensor_msgs::JointState>(

TOPIC_BEHAVIORS_ARM_SETPOINT, 5, true);

/gnc/ctl/setpoint is aliased as TOPIC GNC CTL SETPOINT in the codebase
with message ff msgs::ControlState.

Anecdotally, sending commands too frequently can make ctl node zero out
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commanded force. There is also a position tolerance violation if tracking is par-
ticularly poor. Its value can be changed in the config files. This can lead to
entering a different mode, ‘stopping’ mode. Finally, the user will need a way to
run their setpoint publisher—in simulation, simply call via the command line
or from another piece of code; for ISS use, one possibility is creating a custom
command sent from GDS. Section 8 addresses some of these options.

5.4 Control (CTL)

The ctl node handles determining force/torques to send to the force allo-
cation module (FAM), given the state of the system and a desired nominal tra-
jectory. Within the original Simulink model, the closed loop control occurs at
astrobee/fsw lib/ctl controller/clc closed loop controller lib. The
following topics are used:

5.4.1 Inputs

• gnc/ekf: EKF state estimate.
• gnc/ctl/control An action specifying desired states for control.

5.4.2 Outputs

• gnc/ctl/command: The force and torque commanded by control.
• gnc/ctl/shaper: The output from the GNC command shaper (smooths

the control).
• gnc/ctl/traj: The desired trajectory.
• gnc/ctl/segment: The current segment of the trajectory.
• gnc/ctl/progress: The progress along the current segment.

5.4.3 Bypassing the Controller Framework

If the user wants a more general integration method that does not use the
default Astrobee control framework (actions, state machines, etc) it is possible
to publish directly to the mixer (FAM) (and arm, if desired). Otherwise, the
default control scheme can then be tweaked to use incoming setpoints as desired.
However, the default controller is a challenge to interface with, given that most
of the code was autogenerated from MATLAB/Simulink. More likely, it makes
sense to take incoming setpoints, perform custom control, and write to the topic
commanding the FAM.

The following topics should be monitored:

• TOPIC GNC CTL SETPOINT, for setpoints to the base

• TOPIC BEHAVIORS ARM SETPOINT, for setpoints to the arm

To send force and torque commands directly to FAM after the custom con-
troller has calculated forces and torques, use:
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// Publish setpoints to fam

ctl_pub_ = nh->advertise<ff_msgs::FamCommand>(

TOPIC_GNC_CTL_COMMAND, 5);

To disable the onboard controller, Astrobee versions v0.12.0/develop and
higher provide a user-callable service on the GNC module. An example request
to shutdown the GNC is:

// Include Header

#include <std_srvs/SetBool.h>

// ROS Node Handler

ros::NodeHandle n;

// Request GNC to be disabled

// SERVICE_GNC_CTL_ENABLE = "gnc/ctl/enable"

ros::ServiceClient client =

n.serviceClient<std_srvs::SetBool>(SERVICE_GNC_CTL_ENABLE);

std_srvs::SetBool srv;

srv.data = false;

if (client.call(srv))

{

ROS_INFO("Success: %d", (long int)srv.response.success);

ROS_INFO("Message: %s", srv.response.message.c_str());

}

else

{

ROS_ERROR("Failed to call service.");

}

At this point, the onboard GNC won’t publish to gnc/ctl/command. Note
that gnc/ctl/command must be updated at 62.5 Hz by the GSP if overriding the
stock controller, otherwise FAM will shut down the impeller system prematurely.

5.5 Force Allocation Module/Mixer (FAM)

It is also possible to override the mixer (FAM) by publishing directly to its
write topics. If doing so, and shifted center of mass has already been accounted
for, then the user can disable the FAM’s CoM shift adjustment by setting
mob/inertia to zero by modifying the Gazebo config file(s) in astrobee/config/worlds.

Note that the original FAM Simulink model can also be found at
astrobee/fsw lib/ctl controller/clc closed loop controller lib. Force
and torque limits are also listed at tun control linear force limit, but must
still be verified at this time. See Section 2.
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5.5.1 Inputs

• gnc/ctl/command: the control command which the FAM follows, con-
taining force and torque. Force and torque are in the body frame. The
mixer will account for an offset center of mass (CoM) by monitoring
mob/inertia for the offset values.

5.5.2 Outputs

• hw/pmc/command: The commands for the PMC (propulsion controller) to
execute to obtain the desired force and torque.

5.5.3 Bypassing the Mixer

ctl.cc actually sets the force/torque values to take, while hw/pmc/command

gives the mixed version to hardware (i.e., vent servos) to execute. choreographer’s
flight mode message is used by FAM to determine PMC speed (see fam.cc).
Actual actuation occurs in pmc actuator tool.cc. As mentioned above, the
FAM is implemented in Simulink. A summary of what happens under the hood
is given in section C, in case knowing the mixing procedure becomes neces-
sary (for instance, to override FAM and directly publish to hw/pmc/command,
or directly incorporate the nozzle opening limits in one’s control algorithm.)
pmc actuator nodelet.cc is the real coordinator—lots of complicated low-level
commanding occurs there that is not covered in this guide.

FAM defaults to a nominal fan setting in the following lines in fam.cc:

{

std::lock_guard<std::mutex> lock(mutex_speed_);

// Overwrite the speed command with the cached value, provided

// through the flight mode message offered by the choreographer

cmd->speed_gain_cmd = speed_;

}

The user can set this nominal fan setting using flight mode, as follows:

ros::Publisher pub_flight_mode_;

ff_msgs::FlightMode flight_mode_;

std::string flight_mode_name_ = "nominal"; // FlightMode to enter

ff_util::FlightUtil::GetFlightMode(flight_mode_, flight_mode_name_);

pub_flight_mode_ = nh->advertise<ff_msgs::FlightMode>(TOPIC_MOBILITY_FLIGHT_MODE, 1, true);

pub_flight_mode_.publish(flight_mode_);// Publish default flight mode

flight mode must be set or FAM will default to a non-moving mode!
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5.6 Estimation (EKF)

It is possible to run other estimators simultaneously (e.g. a parameter esti-
mator using RLSE) or to replace the default estimator entirely. The user can do
what they wish with the results of additional computation. The default EKF is
covered here. Additional detail is available in [5] and in astrobee/gnc/ekf.

5.6.1 Inputs

• /hw/imu: IMU readings, which must be received at a constant rate.
• /loc/ml/features and /loc/ml/registration: The features and regis-

tration pulses from the sparse map. The features include image coordi-
nates and corresponding 3D feature positions from the map.

• /loc/ar/features and /loc/ar/registration: AR tag features. As-
sumed to come from the dock camera.

• /loc/of/features and /loc/of/registration: Optical flow features for
visual odometry. They are not associated with a 3D position, but are
tracked over time. Appropriate features are sent to the EKF.

• /loc/handrail/features and /loc/handrail/registration: Handrail
features for localization relative to the handrail. These are point features,
but also include a direction of the handrail axis and a boolean indicating
whether the position along this axis has been observed.

5.6.2 Outputs

• /gnc/ekf: the body state estimate. See the EkfState message documen-
tation for details.

• The body tf2 transform is also updated for ROS bookkeeping.

5.6.3 Ground Truth

Ground truth information is the “true” physical state information about
Astrobee. In simulation, this information is precisely known—in reality, it can
only be estimated. Ground truth information can be found in:
• /loc/truth/pose: position and attitude.
• /loc/truth/twist: linear velocity and angular velocity.
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6 The Arm

Astrobee has a two-joint perching arm which is controlled separately from
the rigid body control, as shown in Figure 10 [1]. The arm’s motion is treated as
a “behavior”, and is found in behaviors/arm. The documentation is fleshed out
within the source code, but essentially there are three layers of the arm software:
firmware for the servos on a dedicated microcontroller; middleware to translate
to/from serial commands and sensor msgs::JointState messages; and high-
level action commands through the arm behavior using ff msgs::ArmAction

messages. Figure 11 explains this flow.

Figure 10: The Astrobee perchcing arm partially deployed. The arm consists
of two degrees of freedom for its linkages, as well as an additional degree of
freedom to close its underactuated gripper. Image credit: NASA.

The possible actions are:
• ARM STOP - Stop any action underway.
• ARM DEPLOY - Deploy arm to pan = 0, tilt = 0.
• ARM STOW - Stow arm back to its home position.
• ARM PAN - Pan to a specific value in degrees.
• ARM TILT - Tilt to a specific value in degrees.
• ARM MOVE - Move to a specific pan and tilt value.
• GRIPPER CALIBRATE - Instruct firmware to find gripper end-stops.
• GRIPPER SET - Set the gripper to a percentage open.
• GRIPPER OPEN - Open the gripper.
• GRIPPER CLOSE - Close the gripper.
For actual hardware use, the arm must be started up via:
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Figure 11: The arm software flow. Note that changes to the arm interface are
expected in future Astrobee code updates.

eps_driver_tool -power -set on $PAYLOAD

where $PAYLOAD is either pay ba or pay ta, depending on where the arm is
located.

6.1 Firmware

The arm firmware is located at submodules/avionics/src/tools/perching arm,
but is currently NASA-only.

6.2 Driver/Parser

The arm driver/command parser is located at hardware/perching arm. A
command-line interface for serial commanding exists:

perching_arm_tester -o /dev/null

This will run the serial command-line interface to the arm. For example, the
following sequence can be commanded over serial:
• m SERVO NUM -DEG moves SERVO NUM to DEG degrees, [-90, 90]. Servo

0 starts at 90, Servo 1 starts at 0.
• en g enables the gripper
• c 8 51 0 calibrates the gripper
• c 8 52 0 opens the gripper
• c 8 53 0 closes the gripper
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6.3 Command-Line Interface

There is also command line interface to the arm that can be used as follows:

rosrun arm arm_tool -helpshort

The arm’s gripper must be calibrated before use. To calibrate the gripper,
open it, close it and then set it to 50% open via the following sequence of
commands:

rosrun arm arm_tool -cal

rosrun arm arm_tool -open

rosrun arm arm_tool -close

rosrun arm arm_tool -set 50

6.4 Topics and Messages

At any point the user can inspect the internal state of the arm behav-
ior using the following command. This command will return a sequence of
numbers, which represent a time ordered sequence of states. Please refer to
ff msgs::ArmState for a mapping from numbers to states.

rostopic echo /beh/arm/state

If the user ever needs to manually set the arm state to a specific value, they
can call the set state service with the new state as the single argument:

rosservice call /beh/arm/set_state 1
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7 Adding New Code

This section includes general advice on pulling new code into the Astrobee
build system and running it successfully in the simulation. (The process on
hardware is similar, but has additional steps including cross-compilation men-
tioned in Section 3. Consult the Astrobee Operations Manual for ground test
instructions.) Like typical ROS development, Astrobee groups key functionality
into packages but additionally tends to use nodelets (rather than nodes) to en-
capsulate functions within these packages. First, the process for adding a new
package will be discussed.

7.1 Adding a New Package

For non-NASA development, packages can be added in any directory in the
$SOURCE DIR, e.g., freeflyer-shared/$MY NEW PACKAGE DIR. New directories
can be added to the existing file structure of the source code as well, but the
CMakeLists.txt sequence must be modified to find them.

A typical package looks like Figure 12. Here the package has been named
planner trapezoidal and has source code for a nodelet, a launch file to launch
the package, and some supporting files for building and helping ROS to identify
the package. These details are covered later in this section.

Figure 12: The typical package structure for an Astrobee package. Note the
nodelet plugins.xml, meaning that a nodelet is used.
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Note that the new package name cannot compete with the name of an ex-
isting package! If this is the case, the user must either replace the existing
package’s functionality entirely and turn off its compilation, or rename the new
package.

7.2 Integrating with the Build System

Assuming a new directory has been added, modifying the main CMakeLists.txt,
located in $SOURCE DIRECTORY would be appropriate to include the $MY NEW PACKAGE DIR

directory. Near the if (USE ROS) conditional, add the desired subdirectory, e.g.
add subdirectory($MY NEW PACKAGE DIR). An additional CMakeLists.txt must
be added in the newly created subdirectory and in every package in that sub-
directory as well, as in Figure 12. Using e.g. gnc as an example, format an
additional CMakeLists.txt in the newly added subdirectory. Place individ-
ual packages as add subdirectory($PACKAGE NAME), and format the individual
package CMakeLists.txt’s as usual for a ROS CMakeLists.txt.

7.2.1 Custom CMakeLists.txt Commands

In addition to the standard ROS usage of CMakeLists.txt, the cmake folder
has custom CMake functions that are used in the top-level CMakeLists.txt and
its sub-CMakeLists.txt’s. The important ones to note are: CreateLibrary,
CreateMsgTargets, and InstallLaunchFiles. These custom commands are
listed below, to ensure that any code written actually gets placed in the correct
directories that ROS and Astrobee hardware will expect to see.

ROS Messages
The majority of Astrobee’s message files are located in the ff msgs package,

located at

communications/ff msgs/msg

During build, these .msg files get ROS-ified and turned into usable headers
for C++. Include these in source files, e.g., #include <ff msgs/FamCommand.h>.

Custom messages in a package can be installed via CMake using

create msg targets()

Launch Files
Custom launch files in a package can be installed via CMake using

install launch files()
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7.2.2 Comparison to Catkin

A typical Catkin workspace and Astrobee workspace are shown in Figure
13. Catkin is normally used to produce the ROS workspace, and then to man-
age CMake in compiling files from src in build, and moving the products to
devel and install. Astrobee’s build system will place the devel folder inside
freeflyer-build, and a few custom CMake scripts exist for e.g., installation
of launch files. The Astrobee build process uses regular make called from the
freeflyer-build folder. Rules defined in the top-level CMakeLists.txt in src

make sure that some Catkin-specific functions are fulfilled.

Figure 13: A standard Catkin workspace directory (left); the typical workspace
setup used by the Astrobee Flight Software (right).

7.3 Running a New Package

After a package gets compiled, its node(let)s and other targets are available
for ROS use, as long as the ROS Astrobee workspace has been overlaid as
in Section 3. A custom node executable, for example, can be launched via
rosrun $PACKAGE $NODE EXE NAME. Nodelets can also be run after compilation,
as specified in the nodelet subsection below.

7.3.1 Debugging

• rqt graph is a handy ROS tool for showing node interactions.
• rostopic echo can show what’s being published on a certain topic.
• rosnode $NODE info can show what a node is interacting with.
• logging using ROS NODELET DEBUG statements is especially handy for view-

ing output. See the subsection below on nodelet debugging and logging.
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7.3.2 “Turning Off” a Node

The user can effectively turn off a node by stopping its execution from
the Astrobee launch file sequence. To do so, trace the launch file calls from
astrobee/launch (see Section 4) and remove the desired node(let)s from exe-
cution.

To stop compilation entirely, a node(let)’s package must be removed from
the chain of CMakeLists.txt’s.

Alternately, it is possible to just run rosnode kill $NODE in order to stop
a node after it has been launched.

7.4 Nodelets

Nodelets incur no copy-passing and can therefore be more efficient than
nodes. Astrobee uses them. More information on nodelets can be found here.
Nodelets have a manager which can handle multiple nodelets and takes care of
the no-copy message passing between nodelets under that manager. The user
must roslaunch both a nodelet and its manager for code to run. (An exception:
it is possible to launch standalone nodelets, mainly for debugging)

7.4.1 Integrating a Nodelet

The following must be included and/or modified in a package containing a
nodelet in order to fully integrate it:

• nodelet plugins.xml : add and fill out basic information.

• package.xml : add a nodelet dependency.

• CMakeLists.txt : create a shared library.

• src : extend the NodeHandle class and include required functions in any
nodelet source code. For Astrobee, all nodelets extend from ff util::FreeFlyerNodelet.

• launch file : the main launch file (probably MLP.launch or LLP.launch)
must call the nodelet and nodelet manager to start them. See MLP.launch
for Astrobee-esque examples.

Here is an example of creating a shared library for a nodelet within CMakeLists.txt:

create_library(TARGET tumble_targ_ctl

LIBS ${catkin_LIBRARIES} ${EIGEN_LIBRARIES} common ff_nodelet

INC ${catkin_INCLUDE_DIRS} ${EIGEN3_INCLUDE_DIRS}

DEPS ff_msgs ff_hw_msgs)
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7.4.2 Nodelet Debugging

It is useful to run nodelets individually for debugging purposes. This can
be done with a special launch file that launches the nodelet standalone, with-
out a nodelet manager, or with a nodelet manager just like in MLP.launch.
The user must set their environment variables to be the same as those used in
astrobee/sim.launch, since they will be used by FreeFlyerNodelet. Addi-
tionally, logging must be set appropriately as noted in the next subsection. An
example standalone launch file might look like:

<launch>

<arg name="robot" default="$(optenv ASTROBEE_ROBOT sim)" />

<arg name="world" default="$(optenv ASTROBEE_WORLD iss)" />

<env name="ASTROBEE_ROBOT" value="$(arg robot)" />

<env name="ASTROBEE_WORLD" value="$(arg world)" />

<env if="$(eval optenv(’ASTROBEE_CONFIG_DIR’,’’)==’’)"

name="ASTROBEE_CONFIG_DIR" value="$(find astrobee)/config" />

<env if="$(eval optenv(’ASTROBEE_RESOURCE_DIR’,’’)==’’)"

name="ASTROBEE_RESOURCE_DIR" value="$(find astrobee)/resources" />

<env if="$(eval optenv(’ROSCONSOLE_CONFIG_FILE’,’’)==’’)"

name="ROSCONSOLE_CONFIG_FILE" value="$(find astrobee)/resources/logging.config"/>

<arg name="spurn" default=""/> <!-- Prevent a specific node -->

<arg name="nodes" default=""/> <!-- Launch specific nodes -->

<arg name="extra" default=""/> <!-- Inject an additional node -->

<arg name="debug" default=""/> <!-- Debug a node set -->

<arg name="dds" default="false"/> <!-- Should DDS be started -->

<arg name="output" default="screen"/> <!-- Where nodes should log -->

<!-- Start a nodelet manager, if needed -->

<node

pkg="nodelet" type="nodelet" name="td_manager"

args="manager"

output="$(arg output)"/>

<!-- Now inject the nodelet into the nodelet manager -->

<node pkg="nodelet" type="nodelet" name="chaser_coordinator"

required="false" respawn="false"

args="load chaser_coordinator/ChaserCoordinatorNodelet td_manager"

output="$(arg output)"/>

<param name="td/instruct" type="string" value="no_action" />

</launch>
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7.4.3 Nodelet Logging

Nodelet logging levels must be set so that logged output is actually recorded
or sent to the screen. In brief: inside a nodelet, use one of the nodelet logging
macros like NODELET DEBUG STREAM. In astrobee/resources/logging.config

add the specific nodelet and set the logging level to DEBUG:

# TUMBLEDOCK NODELET LOGGING

log4j.logger.ros.Astrobee./honey/chaser_coordinator = DEBUG

log4j.logger.ros.Astrobee./target_coordinator = DEBUG

A bit more verbosely: usually, the rosconsole package is used for ROS
logging. A variety of macros discussed here are available to record informa-
tion. Output can be provided to the screen using the output = screen argu-
ment when launching a node, or to a log file (located at /.ros/log) using
output = log. Nodelets print information using NODELET DEBUG rather than
ROS DEBUG statements. Depending on the nodelet wrapper class used, the ex-
act logging command might be different than NODELET DEBUG. For Astrobee,
NODELET DEBUG STREAM is recommended for logging. For logging to record,
the logging level for individual nodelets must be set appropriately. The global
ROSCONSOLE CONFIG FILE is located at astrobee/resources/logging.config.
ff nodelet.launch also has a special debug argument to use
astrobee/resources/debug.config, but this does not appear to be working
presently. Therefore, set logging level for any nodelets in logging.config.
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8 Setting up Tests and Moving to Hardware

After creating new autonomy functionality, integrating code into the As-
trobee ecosystem, and debugging, it is time to begin thinking about setting up
higher-level test coordination. There are a few major options when deciding
how to run Astrobee Flight Software code, involving either the Ground Data
System (GDS) or a command-line interface:

1. Use the Astrobee Android/Java API (Android APK using Java/rosjava)
as the high-level test commanding environment on the HLP processor.

2. Use the Astrobee Android/Java API on the HLP processor as a pass-
through to trigger automated testing on the MLP/LLP processors.

3. Use direct ROS command-line functionality (e.g., Python or Bash scripts,
or direct terminal commands) to trigger automated testing on the MLP/LLP
processors.

The first method allows APKs to interface via rosjava to the general ROS
ecosystem. This would allow one to, for example, use Astrobee Android as a
high-level scripting environment to trigger nodelet functions like creating a mo-
tion plan. Astrobee Android integrates with the GDS GUI and allows users to
create custom Guest Science commands making the commanding options wide-
ranging. However, simulation-only testing is a challenge because the Android
environment of the HLP must run simultaneously with the Ubuntu simulation
environment of the MLP/LLP. Additionally, GDS is not configured for simula-
tion testing and may only be used via the GDS helper tool.

The second method also uses Astrobee Android, mainly to provide the user
with access to the GDS commanding environment on ISS test day. However, this
method emphasizes high-level test scripting on the MLP/LLP rather than the
HLP; a minimal APK may be used to simply pass GDS commands to nodelets
running on the MLP/LLP. The benefit is that simulation testing is significantly
easier (most simulation testing may be run without an Android HLP environ-
ment). This approach is used by the Astrobee Science Application Package
(ASAP) testing interface, currently in development by MIT and collaborators.
A drawback is that the computational resources of the HLP are laregly ignored
by this method.

The third method relies on having a command line interface directly on
the MLP and/or LLP. This is occasionally possible for ISS testing, but is not
very practical as it prevents use of the feature-rich GDS GUI. However, from
a simulation development standpoint this is by far the simplest approach as
it only reqires the standard Ubuntu simulation environment, without Android
HLP interfacing.

A final, major consideration for the above methods is whether tests should
be designed for teleoperation or automation. Astrobee offers the unique oppor-
tunity for the ground operator to send arbitrary commands in near real-time.
The important result is that tests need not be fully automated; they can be run
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in piecemeal chunks commanded one-by-one by the ground operator. However,
this form of teleoperation can be challenging for the ISS environment, particu-
larly when situational awareness is not perfect (e.g., where Astrobee is located,
what state its systems are in). An additional complication is the difficulty in
standardizing test runs when each series of tests is possibly modified in real-time
by a human operator. On the other hand, automated tests may be unneces-
sarily rigid, e.g., if initial conditions are fixed beforehand and cannot be set in
real-time by the ground operator. Astrobee’s real-time teleoperation capability
is a real asset to providing more flexible on-orbit testing, but the test design
must approach teleoperation carefully if used.

8.1 Ground Data System (GDS) or Command Line?

GDS is able to issue customized Guest Science commands which pass off
strings to a Java/rosjava interface. These Guest Science commands can then
trigger any arbitrary set of instructions (written in Java) that the user is inter-
ested in. Additionally, GDS provides a GUI environment for issuing commands,
receiving data from the Astrobee robots, and performing other commanding
tasks. It is the default commanding environment for Astrobee.

The GDS code is open-sourced here. An open-source binary can be re-
quested (with application) here. However, the DDS communications libraries
are proprietary and are not open-sourced—they are included in the requestable
executable, but cannot be independently distributed or compiled from source. A
Guest Science commanding tool mimicking actual functionality is documented
here. This tool can also be launched via:

rosrun gds_helper gds_simulator.py

GDS use requires:

• An Astrobee Android APK (containing code to process Guest Science
commands).

• An Astrobee Android processor (HLP) or emulator.

• The GDS software, or the gds helper tool if working in simulation.

• The Astrobee Flight Software (running on the robot or in simulation).

As mentioned in methods 1 and 2 above, many approaches can be taken to either
use the Astrobee Android environment extensively or minimally. Foregoing
Astrobee Android altogehter, one can also use the command line approach of
method 3 with the main advantage of avoiding interaction with two separate
development environments (Astrobee Android on the HLP and Ubuntu on the
MLP/LLP) and the additional complications of testing GDS commands.
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8.2 A Sample Simulation Test, using Command Line

The steps in this subsection provide one set of procedures for commanding
Astrobee tests via rospy/roscpp on a command-line level (method 3). A few op-
tions for running tests are to incorporate high-level logic into a main test script,
or to embed this logic directly in a coordinating node(s), possibly launched by
a main launch file. As an example:

• Main Test Script (e.g., main.py) : The entrypoint to running other tests,
this script can perform high-level coordination with ROS. A simple Python
script that starts nodes and communicates on desired topics.

• Main Launch File (e.g., main.launch) : The main launch file, launching
the desired ROS nodes. A ROS launch file that starts nodes and com-
municates on desired topics, and may mimic the cascade of launch files
shown in Section 4.

Really, the end goal is to communicate with the desired node(let)s on the
right topics at the right times. There will be multiple ways to accomplish this,
but one sample procedure is provided here that has previously been demon-
strated in simulation and on Astrobee ground hardware. Another commanding
API called the Astrobee Science Application Package (ASAP) using method 2
is under development by MIT and collaborators and will be documented in a
future release of this guide.

1. Launch Astrobee, including environment setup (Main Launch File). In-
corporate any custom nodes into the launch sequence. In this example, a
custom node is created called my ctl node and is launched using a modi-
fied sim info plan.launch.

roslaunch astrobee sim_info_plan.launch dds:=false robot:=sim_pub rviz:=true

The custom my ctl node must be launched. If not already configured in
sim info plan.launch, this can be done via

rosrun $DESIRED_PACKAGE $DESIRED_NODE

2. Call scripted test number (Main Test Script). The test script should
include ample time in between desired maneuvers if executing custom
planning, for example.

rosrun test_session_tools main.py -run 0

3. Wait for test execution. The test script will make the desired ROS calls
and wait as specified—the running node(let)s will be configured as desired
to interpret these test calls.

8.2.1 Data Recording

Simulation data recording is as easy as using ROS’ rosbag tool. See the
rosbag documentation for selecting the desired topics to save.
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8.3 A Sample Hardware Test

There are additional considerations when running a hardware test, though
the basic test structure above will work and has been demonstrated in a ground
test environment. A future revision of this guide will include a more detailed
sample hardware demonstration using method 2 and the ASAP interface.

8.3.1 Data Recording

Hardware data recording can either be performed similar to simulation using
rosbag and copied over (e.g., via rsync), or via NASA’s Ground Data Station
(GDS) GUI. GDS provides the option of creating recording profiles with speci-
fied topics on hardware that are manually activated. However, it is also possible
to directly use rosbag to trigger topic recording at test time. Such an approach
is under development for the Astrobee Science Application Package (ASAP)
interface and will be documented in a future version of this guide.

rosbag: rosbag can be used like in simulation. This can be done through an
ssh to Astrobee, or by setting up a proper ROS node that issues rosbag locally
on the Astrobee processors via rospy or roscpp, for example.

On hardware, Astrobee also has a desired data storage directory. Consult
the Astrobee Ops team for the current location of this directory, which can be
automatically synced following ISS testing.

GDS: GDS can be used, which uses DDS for communications. Example pro-
file config files are found in $SOURCE PATH/astrobee/gds configs/DataToDisk/.
These are placed in $GDS/ControlStationConfig/DataToDisk/ where the com-
puter running GDS will display this as a recording option in the GDS GUI. These
topics can then be selected for automatic download to the GDS computer from
the robot.

8.4 Integration for ISS Hardware Testing

There are additional considerations if AFS code is eventually destined for
testing on the Astrobees onboard the ISS: how will code be delivered; how
should tests be structured with limited situational awareness; what safety con-
siderations should be considered? Some of the main considerations are detailed
here; a future version of this guide will include additional detail.

8.4.1 ISS Layout

The ISS environment has a unique layout, and operations in the Japanese
Experiment Module (JEM) are generally preferred. Roughly, a bounding box
of [1.5, 6.4, 1.7] m ([x, y, z], aligned with ISS coordinates), with centroid at
[10.9,−6.65, 4.9] m (also ISS coordinates) fills the internal volume of the JEM.

44



This is not accounting for collision geometry of Astrobee, but is a rough esti-
mate of the internal non-cluttered dimensions of the JEM, which is useful for
experiment prototyping. Figure 8.4.1 shows these approximate dimensions.

8.4.2 Code Delivery and Upload

Modifications to AFS intended for eventual use on ISS must be packaged
as debians, the preferred method of installing and removing packages for the
MLP and LLP. Section 3 has brief details on what is required to produce a
debian package. In short, any external C++ dependencies must have custom
debians created (or be installed in a single debian with flight software additions),
following the format used in scripts/setup/debians. Source code changes
that have been integrated into Astrobee’s build system benefit from an existing
debian creation system, which uses the debian directory to perform packaging.
Note that, as usual, cross-compilation instructions (Section 3) must be followed
if the Astrobee ARM processors are the final goal for compiled code.

External library debians and a single AFS revision debian can be used to
installed cross-compiled build products on the Astrobee robots. This process
will also work for the Astrobee ground units; however, consult the Astrobee Ops
team before making any final hardware deployment plans.

8.4.3 Integration with GDS

If using an Astrobee Android command method (methods 1 and 2), GDS
integration is as simple as creating custom commands for the Guest Science
interface and receiving them properly from any APK code. A future version of
this guide will include further detail based on ISS test experience.
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Figure 14: The ISS simulation environment (top), with the approximate usable
volume of the JEM, in red (bottom).
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A Directory Organization

A cursory summary of the Astrobee Flight Software source directory is pro-
vided here for reference.

freeflyer

astrobee: "primary entry point" into the AFS: many launch files; config files; etc.

config: configuration files

launch: main launch file cascade for AFS

plans: holds plans which are built using the Ground Data System (GDS) user interface tool

resources: all non-LUA resources used by nodes in the system (e.g. logging)

scripts: bash script to print out the environment variables; launch GDS

cmake: custom cmake functions for Astrobee build system

communications: DDS and ROS message definitions

debian: files for setting up a debian of the AFS

description: files describing inertial properties and environments for simulation

description: ROS URDFs used to describe Astrobee in simulation

media: robot geometry; skins; etc.

doc: tools for AFS documenation

external: gtest debugging tools

gnc: GNC nodelets; mainly autocoded

ekf: extended Kalman filter uses IMU and CV measurements from localization subsystem

ctl: calculates forces and torques to meet requirements of mobility subsystem

fam: force allocation module (a mixer to provide vent open angles)

sim wrapper: a wrapper for using the GNC subsystem in simulation

gnc autocode: thin C++ wrapper around the auto-generated C functions

matlab: the original GNC Matlab/Simulink code

hardware: drivers etc. for hardware control
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freeflyer

localization: feature detection algorithms which are then integrated into the EKF

management: system monitoring and executive tools; FSMs

mobility: tools that enable waypoint following within constraints

choreographer: manage motion requests from client nodes and manage mobility

mapper: maintains a representation of the environment

mobility: mobility tools like teleop

planner qp: quartic polynomial planner

planner trapezoidal: "straight line" trapezoidal planner

scripts: scripts for running AFS on hardware; setting up; etc.

shared: functions used between different packages; headers; etc.

simulation: all code related to the simulation/Gazebo; plugins; worlds; etc.

submodules: significantly large codebases used by Astrobee: NASA internal

tools: debugging tools; visualizers; helpers

wdock
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B Sample Non-NASA Hardware Setup, Build-
ing, and Running the Flight Software

This section describes the specific code and instructions used to operate
the MIT Space Systems Laboratory’s ground Astrobee. The SSL Astrobee is
currently being built to provide preliminary ground tests for later experiments
using NASA’s ISS Astrobees. It is generally similar to NASA’s Astrobees, but
there are a few notable differences. Details on the SSL robot processors are
shared below, and the unique steps to build and run the code on the SSL robot
are also included—the process of adapting the Astrobee Flight Software might
prove useful to other hardware builds.

B.1 Processors

Like the NASA Astrobees, the SSL Astrobee includes two processors for
running the main Astrobee code. The LLP is the exact same processor type as
NASA’s, while the MLP is a newer version of NASA’s (the original NASA MLP
is no longer manufactured).

B.1.1 Mid-Level Processor

The SSL robot runs Astrobee MLP code on the Snapdragon 820 (APQ8096)
based Inforce 6601 Micro System on Module4. The MLP is an ARM64 comput-
ing platform with four cores in dual clusters: two cores operate at 2.2GHz and
the other two operate at 1.6GHz. It has 4GB of RAM and 64GB of disk space.
The development board includes USB, Ethernet, and HDMI connections, as
well as WiFi capabilities. The MLP is kept on the development board for easy
setup and debugging. Then, the MLP is transferred to the MLP/HLP carrier
board on the Astrobee as part of the core module PCB stack.

The Inforce 6601 runs either an Android or Linux Debian OS. Since Astrobee
needs to run in a Linux environment with ROS, the SSL robot’s MLP is running
the Debian 10.5 (“buster”) operating system. A specific Inforce 6601 broad
support package was downloaded from the Inforce TechWeb site5 (version 1.1).
So far, this operating system has been compatible with Astrobee software and
uses the ROS “noetic” distribution. The TechWeb has resources for installing
the operating system and troubleshooting basic issues. Most commands can
be run by connecting the board to a monitor via HDMI and using its minimal
desktop environment. The WiFi typically works out of the box. Small issues
can come up and can often be solved by the following commands:

sudo nano /etc/NetworkManager/NetworkManager.conf

Change the line “managed=false” to “managed=true”. Then run:

sudo service network-manager restart

4https://www.inforcecomputing.com/products/system-on-modules-som/qualcomm-
snapdragon-820-inforce-6601-micro-som

5https://inforcecomputing.com/techweb/
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B.1.2 Low-Level Processor

The SSL robot runs Astrobee LLP code on the Wandboard Dual IMX6
processor6. The LLP is an ARM Cortex-A9 platform with two cores, both
running at 1GHz. It has 1GB of RAM and, via a microSD card, 64GB of disk
space. Like the MLP, the development board has USB, Ethernet, and HDMI
connections. However, it does not have WiFi capabilities. The LLP is eventually
transferred to the LLP carrier board as part of the Astrobee core module PCB
stack. Note that the processing and memory capabilities of LLP are significantly
less than the MLP.

It is straightforward for the Wandboard to run Ubuntu 16.04, which is the
most suitable OS for Astrobee software. The board OS image and setup steps
can be found on the Wandboard website7. As such, the LLP runs the ROS “ki-
netic” distribution. Like the MLP, most commands can be run using an HDMI
connection, monitor, and a minimal desktop environment. It is typically useful
to have an Ethernet connection by sharing a host PC’s network connection8.

B.2 Setup and Building Code

This section outlines the steps to download, build, and install Astrobee code
on the actual MLP and LLP hardware. Note that modifications are made for
the specific processors and operating systems used at the MIT SSL, and differ
somewhat from stock Astrobee.

B.2.1 SSL Source Code

An SSL-specific version of Astrobee software can be found within the SSL
GitHub repository9. This source code is mostly the same as NASA’s. The
differences generally concern the accomodation of the MLP Debian OS and its
ROS “noetic” distribution, specific IP address/network configurations, a library
to run the VN-100 IMU (which is different than NASA’s IMU), and localization
maps for the SSL.

B.2.2 MLP Build and Installation

Here are the steps to building and installing updated source code on the
MLP (all commands via a terminal on the MLP):

1. Pull the SSL/hardware repository using the MLP’s WiFi capabilities.

2. Set the source, build, and install paths as necessary.

3. Configure the build using the following command, run from the source
directory:

6https://www.wandboard.org/products/wandboard/WB-IMX6U-BW/
7https://www.wandboard.org/downloads/
8https://askubuntu.com/questions/169473/sharing-connection-to-other-pcs-via-wired-

ethernet
9https://github.mit.edu/SSL/Astrobee/tree/hardware
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./scripts/configure.sh -l -F -D -R -s -b $BUILD_PATH -p $INSTALL_PATH

The “-s” option sets the configuration specifically to build on the MLP.
The “-F”, “-D”, and “-R” options disable the PicoFlexx driver, DDS
driver, and QP planner, respectively, which are currently not supported
for hardware.

4. Change directories via the build path, and build the code using the fol-
lowing command:

make -j4

The “j4” option ensures a fast build without over-stressing the memory
and performance capabilities of the MLP.

5. Install the built code:

make install

6. Set the freeflyer target variable to “mlp” in line 80 of scripts/install to astrobee.sh

7. Transfer the installed files to the /opt folder, which is where Astrobee
expects to find the binaries. From the source folder:

./scripts/install_to_astrobee.sh $INSTALL_PATH$ ssl

Note that the MLP IP address may need to be updated depending on the
WiFi configuration. This can be set in scripts/deploy/constants.sh (make sure
to coordinate the IP address with the “ssl” robot). To test this connection,
make sure the MLP can ping its own WiFi address.

B.2.3 LLP Build and Installation

The LLP’s processing capabilities are significantly less powerful than the
MLP. As such, a large portion of the Astrobee software cannot be built na-
tively on the processor (it will run out of memory when trying to compile
big localization or mobility source files). Normally, this issue is resolved by
cross-compiling on a PC for the LLP’s ARM architecture. However, the cross-
compilation toolchain and rootfs are accessible only for NASA users.

The SSL resolves this issue by copying the source directory to the LLP via
rsync. Then, a specific LLP configuration option is set to prevent compilation of
Astrobee subsystems that do not run on the LLP. Fortunately, the LLP-specific
code components of Astrobee software (namely the hardware drivers and GNC
loop) can be built natively on the LLP. Here are the steps for building and
installing Astrobee software on the LLP:

1. From the source folder on a PC, copy the SSL/hardware freeflyer directory
to the LLP, excluding the debians folder:

rsync -rlug --exclude ’/path/to/source/freeflyer/scripts/setup/debians’

/path/to/source/freeflyer astrobee@{LLP_IP_ADDRESS}:/home/astrobee/ssl_ws
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2. Set the source, build, and install paths as necessary. This step and all
future steps are run on an LLP terminal.

3. Configure the build using the following command, run from the source
directory:

./scripts/configure.sh -l -F -D -R -w -b $BUILD_PATH -p $INSTALL_PATH

The “-w” option sets the configuration specifically to build on the LLP.

4. Change directories via the build path, and build the code using the fol-
lowing command:

make -j1

The “j1” option ensures the LLP will not run out of memory. This results
in a fairly slow build, but this is offset by the fact that the LLP only builds
a portion of the code.

5. Install the built code:

make install

6. Set the freeflyer target variable to “llp” in line 79 of scripts/install to astrobee.sh

7. Transfer the installed files to the /opt folder, which is where Astrobee
expects to find the binaries. From the source folder:

./scripts/install_to_astrobee.sh $INSTALL_PATH$ ssl

Currently, the LLP IP address is set and remains constant, as it only is used
for computer-computer Ethernet connections. However, it can be updated in
the same manner as the MLP IP address if necessary.

B.3 Running Code on the Robot

Now that the code is built and installed to the /opt folder of both the MLP
and LLP, the Astrobee code can be run with a host PC as the ROS master.
This section will walk through an example launch process to run the IMU.

B.3.1 Network

To begin, connections must be established with both the MLP and LLP in
the ROS framework. SSH keys of remote machines must reside in “known hosts”
to enable their use in the ROS framework. First, double-check that, from a host
PC, you can ssh into both the LLP and MLP using

ssh linaro@{MLP_IP_ADDRESS}

ssh astrobee@{LLP_IP_ADDRESS}
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Then, ssh into each processor and force it to use the RSA key algorithm,
which is required by ROS. Doing this with both machines will enable their SSH
keys to be used by ROS:

ssh linaro@{MLP_IP_ADDRESS} -oHostKeyAlgorithms=’ssh-rsa’

ssh astrobee@{LLP_IP_ADDRESS} -oHostKeyAlgorithms=’ssh-rsa’

At this point, both machines should be networked and enabled for ROS.
Other ROS networking issues can be resolved through the ROS documenta-
tion10. If issues persist, check the ROS MASTER URI variable and make sure it
matches across the PC, MLP, and LLP. The proper ROS MASTER URI can be set
in the host .bashrc script.

B.3.2 Launching

Having set up the connection, it is relatively simple to launch the Astrobee
Flight Software using the MLP and LLP. From the host PC, execute the follow-
ing command after setting the ROS environment:

roslaunch astrobee astrobee.launch llp:={LLP_IP_ADDRESS} mlp:={MLP_IP_ADDRESS}

nodes:=vn100_imu

The inclusion of vn100 imu as an extra node argument will automatically
launch the IMU if it is connected to the LLP. Upon launching the software,
all of the nodelet managers will launch on the actual LLP and MLP IP address
from the host PC terminal. In a separate terminal on the host PC, the following
command can be run to view the IMU’s output:

rostopic echo /hw/imu

To launch all nodes on a completed robot, the following command can be
run:

roslaunch astrobee astrobee.launch drivers:=true robot:=honey llp:={LLP_IP_ADDRESS}

Note that only the LLP IP address needs to be specified in this case. This is
because on a completed robot, there is an internal network between the LLP and
MLP. The LLP serves as the ROS master in this case. This case also launches
all hardware drivers.

The simulator can also be launched with the processor network. This essen-
tially creates a hardware-in-the-loop simulation, where all nodes are running on
the respective machines but the “robot” is still in the simulation environment.
This can be done by

roslaunch astrobee sim.launch llp:={LLP_IP_ADDRESS} mlp:={MLP_IP_ADDRESS}

For more information on different ways to launch Astrobee software, see the
astrobee documentation page on the NASA GitHub11.

10http://wiki.ros.org/ROS/NetworkSetup
11https://github.com/nasa/astrobee/tree/master/astrobee
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B.3.3 VN-100 IMU

The SSL robot uses a VectorNav-100 IMU12 instead of NASA’s normal Ep-
son IMU. This is because NASA’s Epson IMU is hard to acquire and also very
expensive. As such, the SSL source code repository has the necessary modi-
fications to run the VN-100 IMU on Astrobee. Fortunately, the VN-100 IMU
has a straightforward library online that can be built as a part of Astrobee’s
software (see the SSL repository). The modified IMU nodelet simply accepts
incoming data from the IMU and publishes the necessary data that Astrobee’s
EKF requires.

The latency in the USB connection between the VN-100 IMU and the pro-
cessor must be reduced in order to meet Astrobee’s EKF requirements. This
can be done by running the usb help.sh script from the SSL source repository
on the processor.

12https://www.vectornav.com/products/vn-100
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C FAM: From Forces and Torques to Commanded
Nozzle Openings

This section presents a summary of the operations carried out by the As-
trobee mixer, which is programmed in Simulink and detailed in Section 5.5.

• The commanded forces and torques, τ and f are converted to thrust per
nozzle TN

TN =
[
D−1 (R×D)

−1 ] [f
τ

]
(1)

Di: direction of nozzle i
Ri: position of nozzle i - position of center of gravity
Prevent negative thrust from being commanded, if Ti < 0, TN = TN +
min(|TN |)

• Impeller speed N is selected based on the speed specified in the flight
mode (see /mob/flight mode). The following impeller speeds are defined:

Number, name Speed
0 Zero 0
1 Quiet 209.4395

2 Nominal 261.7994
3 Aggressive 293.2153

• For each set of 6 nozzles, (i = 1 to 6 and 7 to 12), the following operations
are carried out

–

∑ TNi
Cdi

N2 is mapped to Cdp using a lookup table. Cd is the discharge
coefficient. The calculation of this table can be found under where
d: impeller diameter
N : impeller speed
Cd: Discharge coefficient
ρ : Air density

– ∆P or the plenum delta pressure

∆P = Cdp× ρ×N2 × d2 (2)

– The commanded area per nozzle is found as

Ai =
TNi

2×∆P × C2
di

(3)

– Then, the commanded nozzle opening

Si =
Ai
2W

(4)
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W : Width of nozzle
Si: Commanded nozzle opening

– Finally, the commanded nozzle opening angle,

cos(θi) =
H − Si
L

(5)

H: Nozzle height
L: Flap length
Si: Commanded nozzle opening
θi: Commanded nozzle opening angle. The maximum allowed nozzle
opening is about 79.91 ◦, and the lowest is 15.68 ◦

After checking that it lies within the limits, i.e, if θ < θmin, θ = θmin

and if θ > θmax, θ = θmax, the commanded angles are sent off to pwm
to convert to servo commands.

The commanded θs are mapped on a scale of 0 to 255 and
published at hw/pmc/nozzle positions.
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D ROS Tips

These are some useful ROS tips that will be updated from time-to-time in
future guide revisions.

• Adding and removing ROS packages is often made very simple since pack-
ages are commonly packaged as debians and made available via apt. The
typical naming convention is sudo apt-get install ros-DISTRIBUTION-
PACKAGE NAME

sudo apt-get install ros-kinetic-rqt-logger-level

Make sure to run a rosdep install to get any missing packages that the
new package depends on.

• Occasionally, rostime will not work at all after a shutdown of the Astrobee
sim. This is a hard error to catch, and can be solved by restarting roscore.
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