8000 DOC fix random_state in several example for reproducibility (#27153) · REDVM/scikit-learn@908784a · GitHub
[go: up one dir, main page]

Skip to content

Commit 908784a

Browse files
TamaraAtanasoskaREDVM
authored andcommitted
DOC fix random_state in several example for reproducibility (scikit-learn#27153)
1 parent 195778b commit 908784a

File tree

3 files changed

+17
-13
lines changed

3 files changed

+17
-13
lines changed

examples/cluster/plot_linkage_comparison.py

Lines changed: 9 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -33,28 +33,28 @@
3333
from sklearn import cluster, datasets
3434
from sklearn.preprocessing import StandardScaler
3535

36-
np.random.seed(0)
37-
3836
# %%
3937
# Generate datasets. We choose the size big enough to see the scalability
4038
# of the algorithms, but not too big to avoid too long running times
4139

4240
n_samples = 1500
43-
noisy_circles = datasets.make_circles(n_samples=n_samples, factor=0.5, noise=0.05)
44-
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05)
45-
blobs = datasets.make_blobs(n_samples=n_samples, random_state=8)
46-
no_structure = np.random.rand(n_samples, 2), None
41+
noisy_circles = datasets.make_circles(
42+
n_samples=n_samples, factor=0.5, noise=0.05, random_state=170
43+
)
44+
noisy_moons = datasets.make_moons(n_samples=n_samples, noise=0.05, random_state=170)
45+
blobs = datasets.make_blobs(n_samples=n_samples, random_state=170)
46+
rng = np.random.RandomState(170)
47+
no_structure = rng.rand(n_samples, 2), None
4748

4849
# Anisotropicly distributed data
49-
random_state = 170
50-
X, y = datasets.make_blobs(n_samples=n_samples, random_state=random_state)
50+
X, y = datasets.make_blobs(n_samples=n_samples, random_state=170)
5151
transformation = [[0.6, -0.6], [-0.4, 0.8]]
5252
X_aniso = np.dot(X, transformation)
5353
aniso = (X_aniso, y)
5454

5555
# blobs with varied variances
5656
varied = datasets.make_blobs(
57-
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=random_state
57+
n_samples=n_samples, cluster_std=[1.0, 2.5, 0.5], random_state=170
5858
)
5959

6060
# %%

examples/preprocessing/plot_all_scaling.py

Lines changed: 6 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -102,11 +102,15 @@
102102
),
103103
(
104104
"Data after quantile transformation (uniform pdf)",
105-
QuantileTransformer(output_distribution="uniform").fit_transform(X),
105+
QuantileTransformer(
106+
output_distribution="uniform", random_state=42
107+
).fit_transform(X),
106108
),
107109
(
108110
"Data after quantile transformation (gaussian pdf)",
109-
QuantileTransformer(output_distribution="normal").fit_transform(X),
111+
QuantileTransformer(
112+
output_distribution="normal", random_state=42
113+
).fit_transform(X),
110114
),
111115
("Data after sample-wise L2 normalizing", Normalizer().fit_transform(X)),
112116
]

examples/preprocessing/plot_discretization_classification.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ def get_name(estimator):
7474
(
7575
make_pipeline(
7676
StandardScaler(),
77-
KBinsDiscretizer(encode="onehot"),
77+
KBinsDiscretizer(encode="onehot", random_state=0),
7878
LogisticRegression(random_state=0),
7979
),
8080
{
@@ -85,7 +85,7 @@ def get_name(estimator):
8585
(
8686
make_pipeline(
8787
StandardScaler(),
88-
KBinsDiscretizer(encode="onehot"),
88+
KBinsDiscretizer(encode="onehot", random_state=0),
8989
LinearSVC(random_state=0, dual="auto"),
9090
),
9191
{

0 commit comments

Comments
 (0)
0