
THE PRAGMATIC WORKFLOW FRAMEWORK



Agenda

1. Architectural Prologue

2. Gathering Motivation

3. Introducing nFlow

4. Example: Credit Application Workflow

5. Success Stories

6. Performance

7. Next Steps



Architectural Prologue – Event-driven Architecture

• “Event-driven architecture (EDA) is a software architecture pattern 

promoting the production, detection, consumption of, and reaction 

to events.” – Wikipedia

• Two main topologies

– Broker topology: no central event mediator, workflow is 

distributed across the event processors as chain through 

message broker (ActiveMQ, HornetQ,…)

– Mediator topology: has central event mediator that 

orchestrates the workflow (jBPM, Activiti, Mule ESB,…)

• nFlow facilitates event-driven architecture and implements hybrid 

of broker and mediator topologies

– Business workflow follows broker topology

– Technical errors and retrying handled by the framework



Architectural Prologue – Broker Topology

http://radar.oreilly.com/2015/02/variations-in-event-driven-architecture.html



Architectural Prologue – Mediator Topology

http://radar.oreilly.com/2015/02/variations-in-event-driven-architecture.html



Gathering Motivation – Information Systems

• Information systems oftentimes 
contain following elements:

– Workflows

– Services

– (Distributed) transactions

– Databases

• Example: 

– Deliver order workflow uses 
send payment and dispatch 
items services

– Payment and delivery statuses 
are stored to respective 
databases

• How do we implement them?

DB 1 DB 3DB 2

Workflow

Service A Service B

Transactions



Gathering Motivation – Workflows

• Workflows are usually implicit and 
hardcoded in the user interface and/or 
services layer

– An example: user action starts a 
synchronous chain of service calls, 
whose result determines the next 
workflow state

– Outcome: bad user experience and 
obfuscated business process 
(=read whole codebase in order to 
understand the workflow)

• Other ways to implement workflows:

– Collection of queues

– Process engines (anyone?)

– Custom workflow engines

DB 1 DB 3DB 2

Workflow

Service A Service B

Transactions



Gathering Motivation – Transactions

• Transactions guarantee that ACID 

properties are fulfilled. This is all good 

and well, but…

• Distributed transactions that span 

over multiple resources (XA) are 

painful to manage and exact a 

performance penalty

• Many integration technologies (e.g. 

trending REST services) do not 

enable distributed transactions that 

span over multiple services 
DB 1 DB 3DB 2

Workflow

Service A Service B

Transactions



Introducing nFlow

• nFlow is a lightweight and modular solution 
for orchestrating workflows using Java

– Explicit workflow implementation as 
components

– Multiple management and monitoring 
options (UI, REST, …)

– Low entry barrier: single Java-library + 
few database tables

• Promotes micro-service architectures in 
which:

– Reliable outcomes are guaranteed by 
idempotent retry pattern (instead of 
distributed transactions)

– Good user experience is achieved 
through request/acknowledge pattern

http://www.servicedesignpatterns.com/WebServiceInfrastructures/IdempotentRetry
http://www.servicedesignpatterns.com/ClientServiceInteractions/RequestAcknowledge


Introducing nFlow – Minimal Setup

• In a minimal setup:

– Embed a single library to your 

application (nflow-engine)

– Create few database tables

• Supported databases: 

PostgreSQL, MySQL, 

MariaDB, H2

– Implement your workflow 

component(s)

– That’s it! Database

Your workflows

nflow-engine

Your UI/service

(Your application server)

Your application



Introducing nFlow – Optional Modules

• Optional modules include

– nflow-explorer

• Management and monitoring UI

– nflow-rest

• JAX-RS compliant REST API 

for workflow management and 

monitoring

• Swagger UI for API testing and 

documentation

– nflow-metrics

• Integration to monitoring tools 

like Graphite and Ganglia
Database

Your workflows

nflow-engine

nflow-rest

Your application server

Your application

nflow-metrics

Your UI/service

nflow-explorer

http://swagger.io/
https://graphite.readthedocs.org/en/latest/
http://ganglia.sourceforge.net/


Introducing nFlow – Standalone Server

• Standalone server (nflow-jetty) is also

provided, if you want keep your

workflows separated from existing

applications

• Useful for quick-start evaluation of

nFlow

Database

Your workflows

nflow-engine

nflow-rest

nflow-jetty

nflow-metrics

nflow-explorer



Introducing nFlow – Explorer

• nFlow Explorer is a monitoring

and management UI

– Search, manage and 

visualize workflow instances

– Visualize workflow definitions

– Visualize and monitor 

instance statistics per 

workflow definition

• JavaScript application that uses 

nFlow REST services



Example: Credit Application Workflow (1/3)

• The workflow orchestrates 

processing of a single credit 

application

1. New workflow instance is 

created, when a customer 

submits an application

2. The result of credit decision 

(sub)workflow determines if 

money is transferred or 

application rejected

3. Each step is retried until 

successful, persistent failures 

lead to manual processing



Example: Credit Application Workflow (2/3)

• Application of 

request/acknowledge pattern

– Workflow instance is created 

with the credit application 

information

– All backend system updates 

are done via the workflow

– The only UI dependencies are 

cached business data (read 

only) and nFlow



Example: Credit Application Workflow (3/3)

• Application of idempotent retry 

pattern

– Variation of classical money 

transfer example

– Idempotent retry takes care of 

realiable outcome instead of 

transaction

– Manual work is required, if the 

operation fails consistently 

over long period of time

– In transactional solution 

support organization would be 

contacted immediately



Success Stories

• Order management and delivery processes for a large multinational 

media company

– Example workflow: process new order

• Workflow instance is created, when a customer submits her 

order. After the payment confirmation, the workflow fulfills all 

order entries, updates other backend system (e.g. customer 

master) and notifies external systems.

• Workflow definition contains about 20 steps

– Millions of processed workflow instances per year, peak rate 

over 20 started workflows per second



Performance

• In a typical setup, nFlow can process 10000-50000 workflow 
instances per minute

– Typical setup means one database server and two application 
servers running nFlow that process the same workflow instances

– The actual throughput is determined by the complexity of the 
workflow steps

• nFlow application servers can be scaled horizontally up to a point 
where the database becomes the bottleneck. After this you have two 
options:

– Get a faster database (e.g. more IOPS from your cloud provider 
or faster SSD drives)

– Distribute your workflows to multiple executor groups that use 
different databases

• nFlow performance data for AWS is available



Next Steps

• Test drive nFlow by following the 1 minute guide

• Read the documentation

• Start using nFlow in your own projects

• Missing a feature? Contact us through Google group (nFlow-users)!

https://github.com/NitorCreations/nflow#getting-started
https://github.com/NitorCreations/nflow/wiki
https://groups.google.com/forum/#!forum/nflow-users

